×
10.01.2015
216.013.1812

Результат интеллектуальной деятельности: СПОСОБ ПОДАЧИ ПАРА В КОНДЕНСАЦИОННУЮ КАМЕРУ

Вид РИД

Изобретение

Аннотация: Изобретение относится к очистке воздуха. При очистке газового потока средство для вдувания пара выполняют состоящим как минимум из двух цилиндров, которые располагают соосно один внутри другого с радиальным зазором, образуя при этом внутренние кольцевые каналы. Каждый цилиндр состоит из двух скрепленных между собой цилиндрических обечаек, наружной и внутренней, установленных с радиальным зазором по отношению друг к другу с образованием внутренних кольцевых каналов между обечайками. Очищаемый газовый поток преобразуют из сплошного в полый, поперечное сечение которого выполняют состоящим из нескольких соосных колец разного диаметра путем пропускания его через кольцевые каналы упомянутого средства для подачи пара. Полость цилиндра, расположенного в непосредственной близости возле холодильника, соединяют с источником пара. Полость цилиндра, расположенного внутри упомянутого цилиндра для подачи пара, соединяют с полостью холодильника, образуя при этом ряд из чередующихся цилиндров для подачи пара и цилиндров, соединенных с холодильником. На внешней поверхности обечаек цилиндров, соединенных с источником пара, выполняют отверстия, при помощи которых соединяют полость каналов для подачи пара с кольцевыми внутренними каналами, образованными упомянутыми цилиндрами и через которые пар подают из кольцевого канала между упомянутыми обечайками в кольцевые каналы между цилиндрами. Технический результат: повышение эффективности очистки. 8 з.п. ф-лы, 2 ил.

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности.

Известны способы очистки газового потока, сущность которых заключается в том, что в пресыщенном водяными парами запыленном потоке газа происходит конденсационное укрупнение дисперсных частиц и осаждение образовавшихся вокруг них капель под действием различных сил (Яворский И.А. и др. Улавливание аэрозолей в оловянной промышленности. Новосибирск: Наука. 1974, с.23-29).

Однако этот процесс сложный, имеет ряд особенностей, неправильный или неточный учет которых при создании способов очистки делает их неэффективными.

Первая особенность заключается в том, что для начала конденсационного укрупнения дисперсных частиц определенного размера x необходимо, чтобы в газовом потоке было достигнуто пересыщение пара, соответствующее закону Кельвина-Томсона. В этом случае будет возможна конденсация пара на частицах размера x и крупнее их. Более мелкие частицы при этом значении пересыщения останутся неукрупненными и не будут уловлены.

Вторая особенность заключается в том, что в очищенном газовом потоке с дисперсными частицами не может быть мгновенно достигнуто заданное пересыщение. При вдувании пара в поток пресыщение достигается после перемешивания пара с газом и установления термического равновесия в парогазовой смеси. Пересыщение в парогазовой смеси сопровождается конденсацией пара на крупных частицах пыли, для которых пересыщение уже достигло величины, достаточной для конденсации. Конденсация пара на этих частицах сопровождается выделением теплоты конденсации и нагревом парогазовой смеси. Конденсация, т.е. убывание парциального давления пара, и связанное с этим повышение средней температуры парогазовой смеси приводят к ограничению величины достигаемого пересыщения, а значит к невозможности улавливания мелких частиц пыли.

Третья особенность заключается в том, что если даже достигнуто пересыщение, достаточное для укрупнения мелких и сравнительно более крупных частиц, то скорость укрупнения для частиц различного размера будет разной. Более крупные частицы укрупняются быстрее. В процессе дальнейшей термостабилизации парогазовой смеси с укрупненными конденсатом пара частицами происходит обсыхание мелких частиц и дальнейшее укрупнение крупных. Это происходит потому, что имеющееся текущее значение пересыщения вследствие закона Кельвина-Томсона различно для капель различного размера.

Четвертая особенность заключается в том, что осаждение уже укрупненных конденсацией частиц принципиально отличается для частиц различного размера. Сравнительно крупные капли, образовавшиеся на дисперсных частицах, подвержены силам инерции и гравитации, поэтому сравнительно легко могут быть осаждены, а более мелкие частицы более взвешены в парогазовом потоке, скорость их витания мала, поэтому они могут быть осаждены быстро и простым путем.

В большинстве известных способов не учтена по меньшей мере часть вышеперечисленных особенностей, поэтому они не могут быть максимально эффективными.

Известен способ очистки газового потока путем многократного последовательного поэтапного насыщения запыленного и/или задымленного газового потока паром жидкости с последующим осаждением на каждом этапе конденсационно-укрупнившихся частиц в зоне охлаждения в виде конденсата и отвода этого конденсата и устройство для его осуществления, содержащее трубчатый корпус, имеющий входное отверстие для входа запыленного или задымленного газового потока, несколько последовательно расположенных конденсационных секций, каждая из которых снабжена инжектором для вдувания пара, холодильником, конфузором, в горловине которого помещен фильтр, и кольцевым сборником для конденсата, и выходное отверстие для выхода очищенного газового потока (патент США №3395510, 55-20, 1968).

Простое вдувание пара в загрязненный газовый поток дает пересыщение только после перемешивания и термостабилизации пара с газом, а этот процесс сравнительно медленный. Охлаждение парогазовой среды на холодильнике связано с конвективным и кондуктивным теплообменом, что также дает медленное нарастание пересыщения. Поэтому в этом способе нарастание пересыщения происходит медленно, а значит, начинающаяся конденсация на сравнительно крупных дисперсных частицах препятствует повышению пересыщения и укрупнению мелких частиц. Кроме того, при прохождении зоны охлаждения парогазовая смесь охлаждается, часть пара конденсируется на холодильнике, пересыщение ее снимается до величины насыщения жидкости над плоской поверхностью жидкости. Образовавшиеся на дисперсных частицах капли конденсата пара оказываются в условиях перегрева относительно газового потока и начинают высыхать. На фильтрах, куда парогазовая смесь поступает после холодильника, будут уловлены только те капли, которые не успели высохнуть. Недостатки этого способа не могут быть устранены повторением всех операций в последующих секциях, поскольку повышение допустимого пересыщения лимитировано температурой холодильника, а значит, газовый поток может быть очищен только от частиц определенного размера и крупнее.

Известны способ и устройство для очистки газового потока путем многократного последовательного поэтапного насыщения запыленного и/или задымленного газового потока паром жидкости с последующим осаждением на каждом этапе конденсационно-укрупнившихся частиц на элементе охлаждения в виде конденсата и отвода этого конденсата, при этом пар на каждом этапе вдувают в виде расширяющихся струй и направляют их на элемент охлаждения под углом к оси газового потока, а образовавшийся конденсат отводят после каждого этапа отдельно (патент РФ №2038125, МПК: B01D 47/05, B01D 47/00-прототип).

В указанном способе насыщение потока парами производят по стадиям под действием струй пара, направленных под углом к оси газового потока, на элемент охлаждения. На каждой стадии очистки степень пересыщения потока увеличивают и из него отбирают определенную фракцию, являющуюся самой крупной на данной стадии. Дифференциация укрупнения обеспечивает селективность сбора частиц. В устройстве имеются конденсационные секции, размещенные в трубчатом корпусе и содержащие распылительную головку, холодильник-рубашку, конфузор и кольцевой сборник для конденсата, а также индивидуальные емкости для сбора конденсата.

Основным недостатком является недостаточно высокая эффективность рабочего процесса, обусловленная несовершенством системы осаждения пара на улавливаемых частицах.

Задача изобретения заключается в создании способа и устройства, обеспечивающих эффективную очистку запыленных и задымленных газовых потоков, а также селективное улавливание загрязнений. Техническим результатом изобретения является повышение эффективности очистки газового потока.

Решение указанной задачи достигается тем, что в предложенном способе подачи пара в конденсационную камеру для очистки газового потока, преимущественно, потока воздуха, заключающегося в многократном последовательном поэтапном насыщении запыленного и/или задымленного газового потока паром жидкости с последующим осаждением на каждом этапе конденсационно-укрупнившихся частиц на элементе охлаждения в виде конденсата и отвода этого конденсата, согласно изобретению при очистке газового потока средство для вдувания пара выполняют состоящим как минимум из двух, предпочтительно трех и более, цилиндров, которые располагают соосно один внутри другого с радиальным зазором, образуя при этом внутренние кольцевые каналы, при этом каждый цилиндр состоит из двух скрепленных между собой цилиндрических обечаек, наружной и внутренней, установленных с радиальным зазором по отношению друг к другу с образованием внутренних кольцевых каналов между обечайками, при этом очищаемый газовый поток преобразуют из сплошного в полый, поперечное сечение которого выполняют состоящим из нескольких соосных колец разного диаметра путем пропускания его через кольцевые каналы упомянутого средства для подачи пара, при этом полость цилиндра, расположенного в непосредственной близости возле холодильника, выполненного в виде рубашки, соосной с корпусом, соединяют с источником пара, а полость цилиндра, расположенного внутри упомянутого цилиндра для подачи пара, соединяют с полостью холодильника, образуя при этом ряд из чередующихся цилиндров для подачи пара, и цилиндров, соединенных с холодильником, при этом на внешней поверхности обечаек цилиндров, соединенных с источником пара, выполняют отверстия, при помощи которых соединяют полость каналов для подачи пара с кольцевыми внутренними каналами, образованными упомянутыми цилиндрами и через которые пар подают из кольцевого канала между упомянутыми обечайками в кольцевые каналы между цилиндрами, при этом холодильник выполняют в виде рубашки, соосной с корпусом, а подогретую жидкость из холодильника и элементов охлаждения используют для подготовки пара.

В варианте применения способа пар в кольцевой зазор на каждом этапе вдувают в виде расширяющихся струй и направляют их на элемент охлаждения под углом к оси газового потока, а образовавшийся конденсат отводят после каждого этапа отдельно.

Такое осуществление способа обеспечивает более полную очистку газового потока и уменьшение размера частиц, отделяемых от газового потока благодаря тому, что в результате вдувания струй пара происходит большее пересыщение парогазовой смеси и, следовательно, конденсационное укрупнение более мелких частиц, а в результате перемещения укрупненных газовых частиц расширяющимися струями пара в зону охлаждения и направления струй пара на элемент охлаждения происходит инерционное осаждение частиц на поверхности холодильника.

В варианте применения способа струю пара направляют под углом 35…55° к оси газового потока.

Целесообразно вдуваемый на каждом этапе пар направлять расширяющимися струями под углом 35-55° к оси газового потока. При меньшем угле наклона (35-0°) увеличивается скорость потока и уменьшается инерционное движение укрупнившихся частиц в зону охлаждения. При большем угле наклона (55-90°) возрастает тепловое воздействие пара на холодильник, но увеличивается движение укрупнившихся частиц в зону охлаждения.

В варианте применения способа на каждом последующем этапе увеличивают концентрацию пара в газовом потоке по мере уменьшения размеров частиц.

В варианте применения способа на каждом последующем этапе давление пара увеличивают на 10…30% по сравнению с предыдущим этапом. Целесообразно на каждом последующем этапе давление пара увеличивать на 10-30% по сравнению с предыдущим этапом. Увеличение давления пара зависит от отношения размера уловленных частиц на предыдущем этапе к размерам частиц, подлежащих улавливанию на данном этапе. Этим обеспечивают отделение более крупных частиц в основном на предыдущих этапах и менее крупных на последующих этапах и тем самым осуществляют еще большее эффективную очистку газового потока с разделением частиц на фракции при общем уменьшении затрат энергии.

В варианте применения способа на каждом этапе осуществляют уменьшение давления газового потока при вдувании пара, а затем увеличение давления газового потока. При осуществлении способа можно на каждом этапе уменьшать давление газового потока в зоне вдувания пара, а затем увеличивать его. Тем самым можно обеспечить большее пересыщение парогазовой смеси благодаря уменьшению температуры, сопутствующему уменьшению давления газового потока, несмотря на выделение тепла конденсации при укрупнении частиц, а следовательно, обеспечить еще большую эффективность очистки газа.

В варианте применения способа изменение давления газового потока при вдувании пара осуществляют адиабатически.

В варианте применения способа при уменьшении давления газового потока увеличивают его скорость, а при увеличении давления уменьшают скорость газового потока.

Этим упрощается осуществление способа.

В варианте применения способа поток парогазовой смеси подвергают закрутке вдоль поверхности концентричной оси потока.

Сущность изобретения иллюстрируется чертежами, где на фиг.1 схематично изображена установка для очистки потока воздуха в продольном разрезе; на фиг.2 показан поперечный разрез секции устройства, выполненной в виде самостоятельного модуля.

Предложенный способ может быть реализован при помощи установки, имеющей следующую конструкцию.

Установка для очистки потока воздуха содержит трубчатый корпус 1, имеющий входной 2 и выходной 3 каналы. Внутри корпуса 1 расположено средство 4 для вдувания пара, холодильник 5 и кольцевой сборник для конденсата (не обозначен). Средство 4 для вдувания пара и дополнительный холодильник выполнены в виде цилиндров 6 и 7 соответственно, расположенных соосно один внутри другого с радиальным зазором, образуя при этом внутренние кольцевые каналы 8 и 9.

Цилиндр 6 состоит из двух скрепленных между собой цилиндрических обечаек, наружной 10 и внутренней 11, установленных с радиальным зазором по отношению друг к другу с образованием внутреннего кольцевого канала между обечайками.

Цилиндр дополнительного холодильника 7 состоит из двух скрепленных между собой цилиндрических обечаек, наружной 12 и внутренней 13, установленных с радиальным зазором по отношению друг к другу с образованием внутреннего кольцевого канала между обечайками.

Полость цилиндра 6, расположенного в непосредственной близости возле холодильника 5, выполненного в виде рубашки 14, соосной с корпусом 1, соединена с источником пара. Полость цилиндра 7, расположенного внутри упомянутого цилиндра 6 для подачи пара, соединена с полостью холодильника 5. На внешней поверхности наружной обечайки 10 цилиндра 6, соединенного с источником пара, выполнены отверстия 15, соединяющие полость канала для подачи пара, с кольцевыми каналами 8 и 9, образованными упомянутыми цилиндрами 6 и 7.

В варианте исполнения камера установки может быть составлена из нескольких корпусов 1, установленных последовательно и имеющих идентичную внутреннюю конструкцию.

Предложенный способ может быть реализован при помощи указанной установки следующим образом.

При очистке загрязненный воздушный поток подают внутрь корпуса 1 через входной канал 2. Внутри корпуса 1 поток преобразуют из сплошного в полый, поперечное сечение которого выполняют состоящим из нескольких соосных колец разного диаметра путем установки внутри корпуса 1 средства 4 для вдувания пара, состоящего из цилиндра 6, и цилиндра 7 дополнительного холодильника, которые располагают соосно один внутри другого с радиальным зазором, образуя при этом внутренние кольцевые каналы 8 и 9.

Полость цилиндра 6, расположенного в непосредственной близости возле холодильника 5, выполненного в виде рубашки 14, соосной с корпусом 1, соединяют с источником пара. Полость цилиндра 7, расположенного внутри упомянутого цилиндра 6 для подачи пара, соединяют с полостью холодильника 5.

В полость цилиндра 6, между обечайками 10 и 11 подают пар, который вдувают в газовый поток, проходящий между цилиндрами 6 и 7, через отверстия 15, в виде расширяющихся струй и направляют их на поверхность холодильника 5 и цилиндр 7 под углами от 0 до 180°.

Наиболее оптимальным углом наклона струй пара к поверхности холодильника 5 и цилиндра 7 является угол в пределах 35-55°. Расширяющиеся струи пара имеют такую плотность и скорость, что достигают поверхность холодильника 5 и цилиндра 7 и обеспечивают инерционное движение образовавшихся капель конденсата к нему.

Преобразование потока из сплошного в полый, состоящий из нескольких соосных кольцевых потоков, позволяет повысить концентрацию осаждаемых частиц и пара в единице объема, в частности в образованных кольцах, что дает возможность повысить эффективность очистки за счет уменьшения пути перемешивания и образования частиц. Кроме этого, непрерывная подача пара по всей длине центрального тела позволит улучшить условия перемешивания и осаждения по всей длине тракта.

Струи пара, подаваемые из отверстий 15, подсасывают очищаемый газ, одновременно обеспечивают инерционное движение образовавшихся капель конденсата и при этом одновременно перемешиваются с ним и образуют парогазовую смесь. В парогазовой смеси быстро создается пересыщение, в результате чего происходит конденсационное укрупнение аэрозольных частиц, причем первыми укрупняться начинают самые крупные частицы. Под действием паровых струй образующиеся укрупненные частицы отбрасываются на поверхность холодильника 5 и цилиндра 7, где происходит инерционное осаждение капель конденсата, при этом укрупненным частицам необходимо преодолеть гораздо меньшее расстояние. Конденсат вместе с уловленными аэрозольными частицами стекает по поверхности холодильника в кольцевой сборник конденсата, а затем по трубке его отводят в отдельную емкость. Спиральные гофры внутренней поверхности холодильника способствуют закрутке потока газа, чем улучшают инерционное осаждение частиц на поверхности холодильника. Очищенный газовый поток отводится через выходной канал 3.

Очищенную в первой секции от частиц крупной фракции парогазовую смесь подают по каналу, образованному стенками холодильника 5, цилиндров 6 и 7, в последующую секцию. При этом происходит ее охлаждение. Исследованиями установлено, что температура стенок холодильника 5 и соединенных с ним охлаждающих элементов, в частности цилиндра 7, должна быть такой, чтобы создавать условия конденсации пара, обеспечивающие надежное прилипание капель конденсата к поверхности его стенок.

Подаваемую в корпус 1 второй секции парогазовую смесь снова обрабатывают струями пара из отверстий 15, но уже с большим пересыщением, чем в первой секции. При этом увеличивается концентрация пара в газовом потоке по мере уменьшения размеров оставшихся частиц. На каждом последующем этапе давление пара увеличивают на 10-30% по сравнению с предыдущим этапом. В результате происходит новое конденсационное укрупнение аэрозольных частиц, причем в первую очередь укрупнению подвергают самые крупные из оставшихся в потоке частиц, которые под действием паровых струй отбрасываются на поверхность рубашки 14 холодильника 5 второй секции, где происходит инерционное осаждение капель второй фракции конденсата. Конденсат с уловленными аэрозольными частицами второй фракции через кольцевой сборник и трубку отводят в свою отдельную емкость.

Прошедшую очистку во второй секции от частиц второй фракции парогазовую смесь по каналу, образованному стенками холодильника 5, подают в последующие секции, где парогазовую смесь обрабатывают таким же образом, что и в первых двух секциях, до достижения заданной чистоты газового потока.

Весь процесс очистки контролируют температурными датчиками, на основании показаний которых производят управление подачей пара в средство для вдувания пара каждой секции.

Жидкость, используемая для охлаждения стенок холодильника 5, в процессе работы разогревается за счет теплообмена через стенку холодильника с потоком пара и осажденных капель конденсата, стекающих по наружной поверхности стенки. Подогретая таким образом жидкость, имеющая температуру выше температуры окружающей среды, может быть использована для получения пара, т.к. в этом случае, для доведения ее от исходной температуры до температуры кипения, потребуется меньшее количество теплоты и времени, что позволит повысить эффективность работы установки.

Предложенное техническое решение может быть использовано в промышленных газоочистителях, а также для очистки воздуха в помещениях, установках кондиционирования воздуха, при сжигании отходов, производстве технической сажи, порошковых материалов, абразивов, красок и других материалов, транспортируемых в виде пыли или аэрозолей.


СПОСОБ ПОДАЧИ ПАРА В КОНДЕНСАЦИОННУЮ КАМЕРУ
СПОСОБ ПОДАЧИ ПАРА В КОНДЕНСАЦИОННУЮ КАМЕРУ
Источник поступления информации: Роспатент

Показаны записи 291-300 из 730.
27.08.2015
№216.013.73cf

Тракт охлаждения теплонапряженных конструкций

Изобретение относится к области теплоэнергетики, а именно к теплообменным аппаратам, и может быть использовано при создании охлаждаемых конструкций с большими удельными тепловыми потоками. Тракт охлаждения теплонапряженных конструкций содержит внутреннюю профилированную оболочку, на внешней...
Тип: Изобретение
Номер охранного документа: 0002561222
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.73d0

Испаритель криогенной жидкости

Изобретение относится к области теплотехники и может быть использовано в криогенной технике для испарения газообразных сред, находящихся в жидком состоянии. Испаритель криогенной жидкости содержит корпус, в котором расположены теплообменные элементы и нагреватель. Корпус выполнен в виде, как...
Тип: Изобретение
Номер охранного документа: 0002561223
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.73d3

Роторный вертикальный ветродвигатель

Изобретение относится к области ветроэнергетики. Изобретение обеспечивает упрощение конструкции ветродвигателя и повышение его надежности. Роторный вертикальный ветродвигатель содержит вращающиеся основания, траверсы, приемники энергии, центральную стойку с поворотным основанием. Каждая пара...
Тип: Изобретение
Номер охранного документа: 0002561226
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.73d4

Устройство ориентации гелиоустановки

Изобретение относится к гелиотехнике, а именно к приводным устройствам для ориентации гелиоустановки, и может быть использовано для ориентации любого коллектора лучевой энергии, облучаемого перемещаемым источником тепловой радиации. Устройство ориентации гелиоустановки дополнительно снабжено...
Тип: Изобретение
Номер охранного документа: 0002561227
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.74de

Муфта кривошипно-шатунного пресса

Изобретение относится к машиностроению, в частности к приводу фрикционных муфт кривошипно-шатунных прессов, преимущественно с дисковой рабочей поверхностью. Муфта кривошипно-шатунного пресса содержит опорный и ведомый диски, привод перемещения нажимного диска, который выполнен в виде модулей,...
Тип: Изобретение
Номер охранного документа: 0002561493
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.74f2

Испаритель криогенной жидкости

Изобретение относится к области теплотехники и может быть использовано в криогенной технике для испарения газообразных сред, находящихся в жидком состоянии. Испаритель криогенной жидкости содержит корпус, в котором расположены теплообменные элементы и нагреватель. Корпус выполнен в виде как...
Тип: Изобретение
Номер охранного документа: 0002561513
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7515

Вращающаяся установка с вспомогательным приводом для тепловой обработки сыпучего материала

Изобретение относится к установке для термообработки сыпучего материала, в частности строительных материалов. Установка содержит два наклонно установленных барабана с загрузочным и разгрузочным участками, вращающихся независимо друг от друга, и камеру- коллектор, расположенную соосно между ними...
Тип: Изобретение
Номер охранного документа: 0002561548
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.75ff

Камера сгорания жрд с электроплазменным зажиганием

Изобретение относится к жидкостным ракетным двигателям. Камера сгорания жидкостного ракетного двигателя, работающая на компонентах топлива жидкий кислород и жидкий водород или жидкий кислород и сжиженный природный газ, содержащая запальное устройство, корпус камеры с магистралями подвода...
Тип: Изобретение
Номер охранного документа: 0002561796
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7657

Система комплексного управления движением транспорта

Изобретение относится к управлению движением транспорта, а именно к системам комплексного управления движением транспорта. Система включает в себя центральный компьютер, каналы связи с передатчиком и приемником, устройства сбора информации, централизованное устройство управления светофорами,...
Тип: Изобретение
Номер охранного документа: 0002561884
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7659

Устройство увеличения подъемной силы самолета короткого взлета и посадки

Изобретение относится к авиационной технике и касается средств увеличения подъемной силы самолетов короткого взлета и посадки. Устройство увеличения подъемной силы содержит поворотную силовую установку с винтами, привод поворота, автоматы демпфирования нагрузок, замки фиксации, топливную...
Тип: Изобретение
Номер охранного документа: 0002561886
Дата охранного документа: 10.09.2015
Показаны записи 291-300 из 920.
20.12.2014
№216.013.1390

Способ перемещения снегохода

Изобретение относится к способу перемещения снегохода. Способ перемещения снегохода заключается в обеспечении взаимодействия элементов движителя с опорной поверхностью. Движитель выполняют в виде, как минимум, трех лыж, одной центральной, которую располагают, преимущественно, по центру...
Тип: Изобретение
Номер охранного документа: 0002536431
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.146d

Способ изготовления сопла жидкостного ракетного двигателя оживальной формы (варианты)

Изобретение относится к ракетной технике, а именно к способу изготовления сопла жидкостного ракетного двигателя оживальной формы. Сопло состоит из нескольких автономных трапецеидальных секторов оживальной формы, соединенных в осевом направлении. Формообразование оживального профиля пакета...
Тип: Изобретение
Номер охранного документа: 0002536653
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.15b9

Способ выращивания планарных нитевидных кристаллов полупроводников

Изобретение относится к технологии получения полупроводниковых материалов и предназначено для управляемого выращивания нитевидных кристаллов полупроводников. Способ включает подготовку полупроводниковой пластины путем нанесения на ее поверхность частиц катализатора с последующим помещением...
Тип: Изобретение
Номер охранного документа: 0002536985
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.162e

Способ дозирования энергии при импульсном брикетировании металлической стружки

Изобретение относится к испытательной технике, в частности к испытаниям, связанным с дозированием энергии при импульсном брикетировании металлической стружки. Сущность: объему пластически деформируемой стружки предварительно к моменту брикетирующего удара придают жесткое боковое ограничение,...
Тип: Изобретение
Номер охранного документа: 0002537102
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.162f

Вибрационная установка

Изобретение относится к вибрационной технике, в частности к средствам генерирования вибраций. Устройство содержит вал, основной торцевой ротор, дебалансный ротор, основание, обоймы направляющих, подпружиненную платформу, упругие элементы и привод ротора. При этом привод ротора выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002537103
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1631

Способ измерения деформаций

Изобретение относится к области экспериментальных методов исследования механических напряжений и деформаций в деталях машин и элементах конструкций и может быть использовано для определения пластических деформаций изделия в машиностроении, авиастроении и других отраслях промышленности. Способ...
Тип: Изобретение
Номер охранного документа: 0002537105
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1719

Способ определения свойств деформирования

Изобретение относится к обработке металлов давлением, в частности к определению технологических параметров процессов, и может быть использовано при определении механических свойств листовых материалов. Плоский образец круглой формы нагружают эластичным пуансоном в круглой жесткой матрице в...
Тип: Изобретение
Номер охранного документа: 0002537341
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.171d

Способ изготовления электрода-проволоки

Изобретение относится к изготовлению пластичного проволочного электрода-инструмента, используемого при электроэрозионной, электрохимической, комбинированной прошивке глубоких отверстий малого диаметра в металлических материалах. Сначала с одного конца проволоки снижают ее диаметр на величину...
Тип: Изобретение
Номер охранного документа: 0002537345
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175b

Способ изготовления диффузионной сваркой стоистой тонкостенной конструкции из титановых листовых материалов

Изобретение может быть использовано при изготовлении слоистых тонкостенных титановых конструкций из листового материала, в частности, выпускных окон энергетических установок для вывода пучка электронов. Между технологическими листами размещают пакет, содержащий плоские решетки с мелкозернистой...
Тип: Изобретение
Номер охранного документа: 0002537407
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175c

Способ объемной штамповки на механическом прессе

Изобретение относится к обработке металлов давлением и может быть использовано при объемной штамповке на механических прессах. Устанавливают величину закрытой высоты пресса менее закрытой высоты штампа. Заготовку, расположенную на нижней половине штампа, деформируют верхней половиной штампа....
Тип: Изобретение
Номер охранного документа: 0002537408
Дата охранного документа: 10.01.2015
+ добавить свой РИД