×
27.11.2014
216.013.0ad6

Результат интеллектуальной деятельности: СПОСОБ ЛЕГИРОВАНИЯ АЛЮМИНИЯ ИЛИ СПЛАВОВ НА ЕГО ОСНОВЕ

Вид РИД

Изобретение

№ охранного документа
0002534182
Дата охранного документа
27.11.2014
Аннотация: Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа. При этом используют порошковую смесь, состоящую из фторида калия, хлорида калия и фторида алюминия при следующем соотношении компонентов, мас.%: фторид калия 25÷45, хлорид калия 50÷65, фторид алюминия 5÷10, а в качестве легирующего компонента используют оксид соответствующего металла в количестве 10÷25 мас.% от общей массы порошковой смеси, при этом в качестве транспортирующего газа используют оксид углерода, который подают со скоростью 0,2-20 ндм/мин и под давлением 0,05-3,5 атм. В качестве легирующего компонента используют один или несколько оксидов из группы металлов, включающей скандий, иттрий, гафний, цирконий. Изобретение позволяет использовать легко доступные соединения легирующих металлов, сократить время операции по растворению легирующих компонентов, использовать невысокие температуры ведения процесса до 750°С. 1 з.п. ф-лы, 4 пр.

Изобретение относится к легированию алюминия и сплавов на его основе (как литейных, так и деформируемых), в частности к методам, которые могут быть использованы для введения в сплавы тугоплавких, рассеянных и редких металлов, с целью улучшения свойств (таких как жаростойкость, коррозионная стойкость, свариваемость, механическая прочность и др.), а конкретно легирование алюминия малыми добавками скандия, иттрия, циркония и гафния, с применением алюминотермических методов.

Известен способ введения порошков легирующих металлов в алюминий в определенной последовательности (Патент US №4832911, МПК С22С 1/02; С22С 021/00; С22С 1/026; 1989 год), с применением специального солевого флюса, используя ковш оригинальной конструкции.

Недостатками известного способа являются использование металлических порошков в качестве исходных ингредиентов, так как это усложняет технологический процесс в целом, поскольку возникает необходимость дополнительной операции по получению металлического порошка, и конструктивная сложность, обусловленная необходимостью использования специально сконструированного ковша.

Известен способ инжекционного структурирования (перемешивания) для равномерного распределения титана с одновременным рафинированием алюминиевых сплавов (заявка CN 20101615403, МПК С22С 1/02, С22С 21/00; 2010 год), где в качестве газа продувки применяется очищенный аргон или азот.

Этот способ имеет тот же недостаток, что и в предыдущем способе - применение порошка металла (титана), что усложняет весь технологический процесс, т.к. получение металлических порошков само по себе сложное производство. Для продувки расплавленного алюминия используется аргон или азот, но азот может образовывать прочные нитриды, что тоже является недостатком. И последнее - высокая температура процесса (950°С).

Известен способ легирования алюминия путем введения реакционной смеси в расплав алюминия инжекционным методом. Вводится соль легирующего компонента (например, гексафторцирконата калия - K2ZrF6) в виде газопорошковой смеси через сопло погруженной в алюминиевый расплав фурмы в струе высокоскоростного нейтрального газа, автономно подающегося в расплав через соосные отверстия фурмы при давлении не менее 8 атм (прототип) (Патент RU №2294976, МПК С22С 21/00; С22С 1/02; 2007 год).

Известный способ имеет следующие недостатки: во-первых, использование для легирования дорогостоящих солей (гексафторцирконат калия); во-вторых, необходимость держать повышенную температуру для расплавления K2ZrF6 (~900°C); в-третьих, применение высокоскоростного газа, автономно подающегося в расплав через соосные отверстия фурм; в-четвертых, необходимость подавать газ под давлением не менее 8 атм; в-пятых, использования специальных сопел.

Таким образом, перед авторами была поставлена задача - разработать простой, универсальный и надежный способ введения малых легирующих или модифицирующих добавок скандия, иттрия, циркония и гафния как индивидуально, так и комплексно в алюминий и сплавы на его основе.

Поставленная задача решена в предлагаемом способе легирования алюминия или сплавов на его основе, включающем введение в расплав легирующего компонента в составе порошковой смеси путем продувки смеси в струе транспортирующего газа, в котором используют порошковую смесь, состоящую из фторида калия, хлорида калия и фторида алюминия при следующем соотношении компонентов, масс.%:

фторид калия 25÷45
хлорид калия 50÷65
фторид алюминия 5÷10,

а в качестве легирующего компонента используют оксид соответствующего металла в количестве 10÷25 масс.% от общей массы порошковой смеси, при этом в качестве транспортирующего газа используют оксид углерода, который подают со скоростью 0,2-20 ндм3/мин и под давлением 0,05-3,5 атм.

При этом в качестве легирующего компонента может быть использован один или несколько оксидов из группы металлов, включающей скандий, иттрий, гафний, цирконий.

Предлагаемый способ позволяет осуществить легирование алюминия и сплавов на его основе скандием, иттрием, цирконием и гафнием с использованием солевого состава из смеси хлорида калия и фторидов калия и алюминия, содержащего оксиды соответствующих металлов путем подачи их в струе транспортирующего газа в расплавленный алюминий. В ходе проведенных исследований авторами установлено, что измельченные смеси этих солей при плавлении растворяют оксиды, образуя сложные комплексные соединения, которые легко взаимодействуют с расплавленным алюминием, легируя его скандием, иттрием, цирконием и гафнием, что позволяет получать сплавы нового поколения (например, такие как 1570, 1975 и др.). После продувки газопорошковой смесью расплава алюминия шлак легко удаляется и готовый продукт можно разливать в изложницы и формы.

Экспериментальные исследования, осуществленные авторами в лабораторных условиях, позволили установить, что предлагаемым способом могут быть получены алюминиевые сплавы с нужным содержанием легирующих добавок: скандия, иттрия, циркония и гафния в различных соотношениях. При этом способе вводимые металлы равномерно распределяются по всему объему сплава, время операции можно значительно сократить относительно известного способа легирования (в два и более раза), используются доступные соли в небольших количествах, при этом часть примесей выводится в шлак. Так, экспериментально установлено снижение содержания натрия на 15%, кремния на 25%, а меди почти на 80%. Авторами экспериментально установлено, что для легирования алюминия допантами в необходимых пределах необходимо в солевой смеси выдерживать концентрации соединений вводимых металлов, с учетом выхода легирующих металлов в сплав при температуре ведения процесса. В случае отклонения концентрации солей восстанавливаемых алюминотермическим методом металлов, не удастся добиться нужных соотношений в сплаве. Так, при содержании в порошковой смеси хлорида калия менее 50 масс.%, а фторида калия более 45 масс.% и фторида алюминия более 10 масс.% наблюдается сгущение флюса, препятствующее протеканию высокотемпературной обменной реакции и отделению шлака от металла. При содержании в порошковой смеси хлорида калия более 65 масс.%, а фторида калия менее 25 масс.% и фторида алюминия менее 5 масс.% наблюдается снижение растворимости оксидов и ухудшение слияния отдельных капель алюминия, застревающих в шлаке. Также существенное влияние на конечный результат оказывает количество оксида в порошковой смеси: содержание оксида менее 10 масс.% ведет к неоправданному увеличению расхода реагентов; содержание оксида более 25 масс.% ведет к образованию вязкой пастообразной консистенции шлака. Соблюдение параметров проведения процесса также является необходимым условием легирования алюминия. При скорости транспортирующего газа более 20 ндм3/мин и его давлении более 3,5 атм наблюдается разбрызгивание металла и шлака в печи; при скорости транспортирующего газа менее 0,2 ндм3/мин и его давлении менее 0,05 атм наблюдается отсутствие барботирования при углублении сопла в расплав.

Предлагаемый способ может быть осуществлен следующим образом.

Предварительно готовят смесь солей (50÷65 масс.% KCl, 25÷45 масс.% KF, 5÷10 масс.% AlF3): сушат при температуре 150°С, смешивают в указанных выше соотношениях, вводят расчетное количество оксидов легирующей добавки (10-25% от общей массы полученной смеси), измельчают с одновременным перемешиванием и загружают в инжекционную установку (например, такую как НТМ-01-2, выпускаемую ЗАО УРАЛТЕХМАРКЕТ, г. Екатеринбург). Необходимое количество реагентов берется из расчета избытка 5÷20%.

Легируемый алюминий (или сплав на его основе) в необходимом количестве расплавляют в печи любого типа до температуры регламентируемой технологической инструкции для конкретного сплава. Для чистого алюминия - 750÷800°С.

Продувку порошковой смеси в алюминиевый расплав осуществляют углекислым газом при скорости потока 0,2-20 ндм3/мин и давлении 0,05-3,5 атм до тех пор, пока вся порошковая смесь не будет израсходована. Продувку газом ведут еще 0,5-5 минут, после дают отстояться шлаку и преступают к его сливу или разливу металла или другим операциям, предусмотренным регламентом и технологической инструкцией. Полученный продукт аттестуется химическим и структурным анализами.

Предлагаемый способ иллюстрируется следующими примерами конкретного исполнения, произведенными в лабораторной муфельной печи «Nobertherm» модели L-9/11/В180 и лабораторной инжекционной установке.

Пример 1. Легирование алюминия скандием.

100 грамм алюминиевых гранул марки А85 загружали в алундовый тигель, засыпали сверху покровным флюсом из смеси KF-KCl (1:2) 9 грамм и помещали тигель в муфельную печь. Алюминий плавили и нагревали до температуры 750°С.

Просушенные при 150°С порошки солей и оксида брали в следующем количестве, г.: 4.55 (65 масс.%) KCl, 1.75 (25 масс.%) KF, 0.7 (10 масс.%) AlF3, 0.7 (10 масс.% от общей массы порошковой смеси) Sc2O3. Порошки солей и оксида смешивали, измельчали в чугунной ступке и просеивали через сито. Подготовленная смесь вдувалась в расплавленный алюминий углекислым газом при давлении 0,05 атм со скоростью 0,2 ндм3/мин. После того как смесь закончилась, около 30 секунд шла продувка расплава углекислым газом, полученный сплав и шлак сливались в чугунную изложницу.

Полученный сплав отмывали в виброванне, просушивали и отбирали усредненную пробу на анализ.

Полученный сплав имел состав: 0.43 масс.% скандия, остальное алюминий.

Пример 2. Легирование алюминия иттрием.

500 грамм алюминиевых гранул марки А85 загружали в алундовый тигель, засыпали сверху покровным флюсом из смеси KF-KCl (1:2) 15 грамм и помещали тигель в муфельную печь. Алюминий плавили и нагревали до температуры 750°С.

Просушенные при 150°С порошки солей и оксида брали в следующем количестве, г.: 20,0 (60,6 масс.%) KCl, 10,0 (30,3 масс.%) KF, 3,0 (9,1 масс.%) AlF3, 5,0 (15 масс.% от общей массы порошковой смеси) Y2O3. Порошки солей и оксида смешивали, измельчали в чугунной ступке и просеивали через сито. Подготовленная смесь вдувалась в расплавленный алюминий углекислым газом при давлении 0,05 атм со скоростью 0,5 ндм3/мин. После того как смесь закончилась, около 30 секунд шла продувка расплава углекислым газом, полученный сплав и шлак сливались в чугунную изложницу.

Полученный сплав отмывали в виброванне, просушивали и отбирали усредненную пробу на анализ.

Полученный сплав имел состав: 0.52 масс.% иттрия, остальное алюминий.

Пример 3. Легирование алюминия скандием и цирконием.

150 грамм алюминиевых гранул марки А85 загружали в алундовый тигель, засыпали сверху покровным флюсом из смеси KF-KCl (1:2) 9 грамм и помещали тигель в муфельную печь. Алюминий плавили и нагревали до температуры 750°С.

Просушенные при 150°С порошки солей и оксида брали в следующем количестве, г.: 5.5 (52,4 масс.%) KCl, 4.0 (38,1 масс.%) KF, 1,0 (9,5 масс.%) AlF3, 1.5 Sc2O3, 0,75 ZrO2 (Sc2O3+ZrO2 составляют 21 масс.% от общей массы порошковой смеси). Порошки солей и оксида смешивали, измельчали в чугунной ступке и просеивали через сито. Подготовленная смесь вдувалась в расплавленный алюминий углекислым газом при давлении 0,05 атм со скоростью 0,2 ндм3/мин. После того как смесь закончилась, около 30 секунд шла продувка расплава углекислым газом, полученный сплав и шлак сливались в чугунную изложницу.

Полученный сплав отмывали в виброванне, просушивали и отбирали усредненную пробу на анализ.

Полученный сплав имел состав: 0.61 масс.% скандия, 0.35 масс.% циркония, остальное алюминий.

Пример 4. Легирование алюминия скандием, цирконием и гафнием.

200 грамм алюминиевых гранул марки А85 загружали в алундовый тигель, засыпали сверху покровным флюсом из смеси KF-KCl (1:2) 12 грамм и помещали тигель в муфельную печь. Алюминий плавили и нагревали до температуры 750°С.

Просушенные при 150°С порошки солей и оксида брали в следующем количестве, г.: 6,5 (50 масс.%) KCl, 5,85 (45 масс.%) KF, 0,65 (5 масс.%) AlF3, 1.25 Sc2O3, 1,0 ZrO2, 1,0 HfO2 (Sc2O3+ZrO2+HfO2 составляют 25 масс.% от общей массы порошковой смеси). Порошки солей и оксида смешивали, измельчали в чугунной ступке и просеивали через сито. Подготовленная смесь вдувалась в расплавленный алюминий углекислым газом при давлении 0,05 атм со скоростью 0,2 ндм3/мин. После того как смесь закончилась, около 30 секунд шла продувка расплава углекислым газом, полученный сплав и шлак сливались в чугунную изложницу.

Полученный сплав отмывали в виброванне, просушивали и отбирали усредненную пробу на анализ.

Полученный сплав имел состав: 0.37 масс.% скандия, 0.33 масс.% циркония, 0.37 масс.% гафния, остальное алюминий.

Итак, предлагаемый способ легирования алюминия или сплавов на его основе по сравнению с известным способом имеет следующие преимущества:

1. Используются дешевые, легко доступные соединения (оксиды) легирующих металлов.

2. Сокращение времени операции по растворению легирующих компонентов.

3. Невысокие температуры ведения процесса (750°С).

4. Не нужно создавать избыточно высокое давление транспортирующего газа.

5. Использование легкодоступного углекислого газа.

Источник поступления информации: Роспатент

Показаны записи 41-50 из 106.
29.12.2017
№217.015.fd73

Способ обнаружения усталостных поверхностных трещин в электропроводящем изделии

Использование: для обнаружения и регистрации в электропроводящих изделиях усталостных поверхностных трещин с использованием метода акустической эмиссии (АЭ). Сущность изобретения заключается в том, что инициируют акустическую эмиссию в контролируемом изделии путем его нагружения, выполняют...
Тип: Изобретение
Номер охранного документа: 0002638395
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.02c5

Способ получения композита триоксид молибдена/углерод

Изобретение относится к химической промышленности и электротехнике и может быть использовано при изготовлении электродных материалов в химических источниках тока. Для получения композита триоксид молибдена/углерод состава MoO/С порошок молибдена добавляют к пероксиду водорода в соотношении...
Тип: Изобретение
Номер охранного документа: 0002630140
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.1a27

Способ получения галлия из щелочно-алюминатных растворов глиноземного производства

Изобретение относится к способу электрохимического выделения галлия из щелочно-алюминатных растворов глиноземного производства процесса Байера. Предлагается способ получения галлия из щелочно-алюминатных растворов глиноземного производства, включающий подготовку исходной смеси из маточного и...
Тип: Изобретение
Номер охранного документа: 0002636337
Дата охранного документа: 22.11.2017
13.02.2018
№218.016.219e

Способ получения нанокристаллического порошка оксикарбида молибдена

Изобретение относится к химической технологии получения оксикарбида молибдена и может быть использовано в углекислотной конверсии природного газа в качестве катализатора. Способ получения нанокристаллического порошка оксикарбида молибдена включает испарение кислородсодержащего соединения...
Тип: Изобретение
Номер охранного документа: 0002641737
Дата охранного документа: 22.01.2018
10.05.2018
№218.016.4cf5

Способ получения суспензии апатита

Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов, которые могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани. Способ получения суспензии апатита включает взаимодействие гидроксида...
Тип: Изобретение
Номер охранного документа: 0002652193
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4d86

Биорезорбируемый материал и способ его получения

Группа изобретений относится к медицине. Описан биорезорбируемый материал, включающий гидроксиапатит и монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего. Описан способ получения биорезорбируемого материала, включающий получение исходной смеси...
Тип: Изобретение
Номер охранного документа: 0002652429
Дата охранного документа: 26.04.2018
18.05.2018
№218.016.5071

Способ получения композита триоксид ванадия/углерод

Изобретение может быть использовано для получения электродного материала литиевых источников тока. Способ получения композита триоксид ванадия/углерод VO/C включает растворение в воде карбоновой кислоты, добавление оксидного соединения ванадия, сушку и последующий отжиг. В качестве карбоновой...
Тип: Изобретение
Номер охранного документа: 0002653020
Дата охранного документа: 04.05.2018
29.05.2018
№218.016.53d3

Способ получения наноструктурированных порошков ферритов и установка для его осуществления

Изобретение может быть использовано в химической промышленности. Способ получения наноструктурированных порошков ферритов включает получение смеси соли азотной кислоты и по крайней мере одного оксидного соединения металла, ультразвуковую обработку, термообработку и фильтрацию. Получают смесь...
Тип: Изобретение
Номер охранного документа: 0002653824
Дата охранного документа: 14.05.2018
09.06.2018
№218.016.5e01

Способ получения композита диоксид молибдена/углерод

Изобретение относится к способу получения композитов в мелкодисперсном состоянии, в частности композита диоксид молибдена/углерод MoO/C, который может быть использован в качестве эффективного анодного материала литиевых источников тока. Способ включает растворение порошка металлического...
Тип: Изобретение
Номер охранного документа: 0002656466
Дата охранного документа: 05.06.2018
20.06.2018
№218.016.6538

Способ получения наноструктурированного углерода

Изобретение относится к химической технологии и может быть использовано при изготовлении сорбентов, катализаторов и носителей для катализаторов, сенсоров, газовых накопителей, конструкционных, футеровочных, оптических материалов и электродов для высокоёмких источников тока и энергетических...
Тип: Изобретение
Номер охранного документа: 0002658036
Дата охранного документа: 19.06.2018
Показаны записи 41-50 из 55.
29.12.2017
№217.015.fd73

Способ обнаружения усталостных поверхностных трещин в электропроводящем изделии

Использование: для обнаружения и регистрации в электропроводящих изделиях усталостных поверхностных трещин с использованием метода акустической эмиссии (АЭ). Сущность изобретения заключается в том, что инициируют акустическую эмиссию в контролируемом изделии путем его нагружения, выполняют...
Тип: Изобретение
Номер охранного документа: 0002638395
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.02c5

Способ получения композита триоксид молибдена/углерод

Изобретение относится к химической промышленности и электротехнике и может быть использовано при изготовлении электродных материалов в химических источниках тока. Для получения композита триоксид молибдена/углерод состава MoO/С порошок молибдена добавляют к пероксиду водорода в соотношении...
Тип: Изобретение
Номер охранного документа: 0002630140
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.1a27

Способ получения галлия из щелочно-алюминатных растворов глиноземного производства

Изобретение относится к способу электрохимического выделения галлия из щелочно-алюминатных растворов глиноземного производства процесса Байера. Предлагается способ получения галлия из щелочно-алюминатных растворов глиноземного производства, включающий подготовку исходной смеси из маточного и...
Тип: Изобретение
Номер охранного документа: 0002636337
Дата охранного документа: 22.11.2017
13.02.2018
№218.016.219e

Способ получения нанокристаллического порошка оксикарбида молибдена

Изобретение относится к химической технологии получения оксикарбида молибдена и может быть использовано в углекислотной конверсии природного газа в качестве катализатора. Способ получения нанокристаллического порошка оксикарбида молибдена включает испарение кислородсодержащего соединения...
Тип: Изобретение
Номер охранного документа: 0002641737
Дата охранного документа: 22.01.2018
10.05.2018
№218.016.4cf5

Способ получения суспензии апатита

Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов, которые могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани. Способ получения суспензии апатита включает взаимодействие гидроксида...
Тип: Изобретение
Номер охранного документа: 0002652193
Дата охранного документа: 25.04.2018
25.06.2018
№218.016.66b0

Способ разделения скандия и сопутствующих металлов

Изобретение относится к технологии неорганических веществ, а именно к гидрометаллургии скандия. Способ разделения скандия и сопутствующих металлов заключается в обработке скандийсодержащего раствора серной кислотой в присутствии соли, содержащей ионы аммония, при нагревании с последующими...
Тип: Изобретение
Номер охранного документа: 0002658399
Дата охранного документа: 21.06.2018
21.02.2019
№219.016.c51a

Способ получения лигатуры на основе алюминия

Изобретение относится к области металлургии и может быть использовано для производства алюминиевых лигатур, применяемых для модифицирования сплавов. Способ включает приготовление и расплавление смеси, содержащей фторид натрия, фторид калия, соединение редкого металла и алюминий,...
Тип: Изобретение
Номер охранного документа: 0002680330
Дата охранного документа: 19.02.2019
29.03.2019
№219.016.ede3

Способ получения магнетита

Изобретение относится к области металлургии и может быть использовано для получения магнетита в целях повышения эффективности переработки красных шламов, являющихся отходами глиноземного производства. Способ получения магнетита включает обработку красного шлама в присутствии гидроксида кальция,...
Тип: Изобретение
Номер охранного документа: 0002683149
Дата охранного документа: 26.03.2019
30.03.2019
№219.016.f909

Биоактивный композиционный материал для замещения костных дефектов и способ его получения

Изобретение относится к области биологически активных фармацевтических и медицинских материалов с повышенной механической прочностью, такие материалы могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани, а также в качестве носителя...
Тип: Изобретение
Номер охранного документа: 0002683255
Дата охранного документа: 27.03.2019
16.05.2019
№219.017.5221

Способ извлечения оксида алюминия из отходов глиноземного производства

Изобретение может быть использовано при переработке отвальных красных шламов глиноземного производства в частности из красного шлама в процессе Байера. Способ извлечения оксида алюминия из отходов глиноземного производства включает автоклавное выщелачивание отходов при повышенных температуре и...
Тип: Изобретение
Номер охранного документа: 0002687470
Дата охранного документа: 13.05.2019
+ добавить свой РИД