×
20.11.2014
216.013.092d

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК КВАРЦЕВОГО МАЯТНИКОВОГО АКСЕЛЕРОМЕТРА (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и может быть использовано для определения параметров кварцевых маятниковых акселерометров. Согласно заявленному способу в одну из точек замкнутого контура акселерометра подают синусоидальные, калиброванные сигналы U Для всего требуемого диапазона частот и амплитуд сигналов U измеряют выходной сигнал смещения U и выходной сигнал U устройства обратной связи и по отношению их амплитуд к амплитуде сигнала U определяют динамические характеристики акселерометра. По первому варианту подают сигнал U в датчик силы либо через эталонную нагрузку, либо через дополнительный вход усилителя мощности цифрового устройства обратной связи, соединяя свободный вывод эталонной нагрузки с общей шиной, а сигналы U и U измеряют соответственно со стороны выходов следующих элементов цифрового устройства обратной связи: усилителя-преобразователя и интегро-дифференциирующего усилителя. По второму варианту подают сигнал U в датчик силы через эталонную нагрузку, а сигнал U измеряют со стороны выхода интегро-дифференциирующего усилителя устройства обратной связи и подают на активный фильтр, с выхода которого измеряют выходной сигнал . Сигнал U измеряют со стороны выхода усилителя-преобразователя устройства обратной связи. Технический результат - повышение точности измерения динамических характеристик акселерометра. 2 н.п. ф-лы, 3 ил.

Предлагаемое изобретение относится к измерительной технике, а именно к способам контроля путем измерения амплитудно-частотных (динамических) характеристик (АЧХ) компенсационных маятниковых акселерометров на этапах их изготовления и исследования.

В высокоточных приборах, предназначенных для измерения линейных ускорений движущихся объектов, находит применение пластина маятникового акселерометра, приведенная на фиг. 1а, б. Пластина включает в себя опорный (ОЭ) и чувствительный (ЧЭ) подвижные элементы, выполненные из наиболее совершенного упругого материала, в частном случае, из кварцевого стекла.

На фиг.1а чувствительный элемент 1 (ЧЭ) и опорный элемент 2 (ОЭ) разделены прорезью вдоль периметра пластины; подвес ЧЭ выполнен в виде упругих перемычек 3, связующих ОЭ и ЧЭ; ОЭ фиксируется в корпусе акселерометра консольно на двухсторонних трех выступах 4, расположенных с противоположной оси подвеса ЧЭ стороне; датчик смещения центра масс ЧЭ (емкостной датчик угла) выполнен в виде двухсторонних металлизированных площадок 5, напыленных на ЧЭ пластины и корпус акселерометра; двухсторонние катушки (обмотки) датчика силы, прикрепленные на площадках 5 по ц.м. ЧЭ, взаимодействуют с постоянными магнитами, установленными на корпусе акселерометра.

Подвижные элементы пластины (фиг.1б) по способу нагружения подобны консольным балкам, работающим на изгиб, предельные значения угла поворота (рабочая зона) которых ограничены прочностью упругого подвеса ЧЭ и «заделки» (подвеса) ОЭ.

На фиг.1б введены обозначения:

βчэ, βоэ - угловая деформация ЧЭ и ОЭ, рад;

βΔчэоэ - положение оси чувствительности ЧЭ относительно корпуса акселерометра, рад;

βΣчэ+ξβоэ - суммарная угловая деформация ЧЭ и ОЭ (подвижных элементов пластины), рад;

- (lчэ - расстояние между ц.м. ЧЭ и подвесом ЧЭ, см, l - расстояние между подвесами ОЭ и ЧЭ, lоэ - расстояние между ц.м. ОЭ и подвесом ОЭ, см);

- суммарное смещение ц.м. ЧЭ (расстояние ц.м. ЧЭ от подвеса ОЭ на фиг.1б), мкм;

- начальное смещение ц.м. ЧЭ от линии «0-0» на фиг.1б, мкм;

- смещение подвеса ОЭ (расстояние между подвесом ОЭ и линией «0-0» на фиг.1б), мкм;

- смещение ц.м. ЧЭ при измерении АЧХ, мкм;

Kвх - коэффициент преобразования цепи обратной связи акселерометра до входа формирователя сигнала обратной связи;

Uсм - сигнал смещения на входе формирователя при измерении АЧХ;

Δ1 - смещение подвеса ЧЭ от линии «0-0», мкм;

Δ2 - смещение края ЧЭ от линии «0-0», мкм;

lmax - расстояние между краем ЧЭ и подвесом ЧЭ;

2Δ - расстояние между противоположными сторонами рабочей зоны, мкм.

В отсутствие контроля полосы пропускания выходного сигнала акселерометра и амплитудно-частотной характеристики (АЧХ) колебаний центра масс чувствительного элемента (ц.м. ЧЭ) возможно, при эксплуатации, касание края ЧЭ (ц.м. ЧЭ) корпуса акселерометра и, следовательно, с учетом ограниченной прочности ЧЭ, появление на выходе ложного сигнала.

Известен способ контроля маятникового поплавкового компенсационного акселерометра, описанный в [1]. Способ осуществляется путем измерения выходных сигналов, коэффициента преобразования и положения измерительной оси акселерометра до и после механических воздействий. При этом устанавливают прибор маятником вниз, а механические воздействия проводят при разорванной обратной связи путем подачи в обмотку моментного датчика переменного тока с частотой собственных колебаний подвижной системы.

Способ [1], в отсутствие вибростенда и дополнительной обмотки, исключает измерение динамических характеристик при замкнутой обратной связи акселерометра.

Известен способ измерения динамических характеристик компенсационного акселерометра, принятый за прототип и описанный в [2].

Способ заключается в том, что через гальваническую развязку в датчик силы чувствительного элемента подают синусоидальный калиброванный по амплитуде и частоте электрический сигнал. По отношению амплитуды выходного сигнала датчика смещения ЧЭ и формирователя сигнала аналоговой обратной связи к амплитуде калиброванного электрического сигнала определяют динамическую характеристику акселерометра. При этом датчик силы через конденсатор развязан от источника синусоидального сигнала.

Недостатком способа, описанного в [2], является наличие ограничения на внутреннее сопротивление формирователя для снижения искажений результатов измерений из-за паразитного влияния источника на работу акселерометра.

Задачей изобретения является снижение искажений при измерении амплитудно-частотных (динамических) характеристик акселерометра с одним датчиком силы.

Технический результат достигается тем, что в датчик силы акселерометра подают синусоидальный, калиброванный по амплитуде и частоте, электрический сигнал и по отношению амплитуды сигналов со стороны входа и выхода формирователя сигнала обратной связи к амплитуде подаваемого сигнала определяют динамические характеристики акселерометра, при этом:

по первому варианту с цифровым устройством обратной связи: подают сигнал Uг в датчик силы, либо через эталонную нагрузку, либо через дополнительный вход усилителя мощности цифрового устройства обратной связи, соединяя свободный вывод эталонной нагрузки с общей шиной, а сигналы Uсм и Uвых измеряют соответственно со стороны выходов следующих элементов цифрового устройства обратной связи: усилителя-преобразователя и интегро-дифференциирующего усилителя;

по второму варианту с аналоговым устройством обратной связи: подают сигнал Uг в датчик силы через эталонную нагрузку, а сигнал Uвых измеряют со стороны выхода интегро-дифференциирующего усилителя устройства обратной связи и подают на активный фильтр, с выхода которого измеряют выходной сигнал , сигнал Uсм измеряют со стороны выхода усилителя-преобразователя устройства обратной связи.

Предлагаемый способ измерения динамических характеристик кварцевого маятникового акселерометра имеет следующие преимущества:

- повышается точность измерения динамических характеристик акселерометра с одним датчиком силы, при этом не регламентируется выходное сопротивление формирователя;

- возможно исследование акселерометров как с аналоговой, так и с цифровой обратной связью.

Предлагаемый способ измерения параметров акселерометра предусматривает проведение следующих операций:

в одну из точек замкнутого контура акселерометра подают синусоидальные, калиброванные по амплитуде и частоте, электрические сигналы Uг, для всего требуемого диапазона частот и амплитуд сигналов Uг измеряют выходной сигнал смещения Uсм и выходной сигнал Uвых устройства обратной связи и по отношению амплитуд выходных сигналов к амплитуде сигнала Uг определяют динамические характеристики акселерометра,

- по первому варианту способа подают сигнал Uг в датчик силы либо через эталонную нагрузку, либо через дополнительный вход усилителя мощности цифрового устройства обратной связи, соединяя свободный вывод эталонной нагрузки с общей шиной, а сигналы Uсм и Uвых измеряют соответственно со стороны выходов следующих элементов цифрового устройства обратной связи: усилителя-преобразователя и интегро-дифференциирующего усилителя;

- по второму варианту способа подают сигнал Uг в датчик силы через эталонную нагрузку, а сигнал Uвых измеряют со стороны выхода интегро-дифференциирующего усилителя аналогового устройства обратной связи и подают на активный фильтр, с выхода которого измеряют выходной сигнал , сигнал Uсм измеряют со стороны выхода усилителя-преобразователя аналогового устройства обратной связи.

На фиг.2а, б приведены устройства для реализации предлагаемого способа определения динамических параметров пластины кварцевого маятникового акселерометра.

На фиг.2а, б введены обозначения:

1 - пластина маятникового акселерометра;

2 - воспринимающая часть пластины;

3 - подвижная часть пластины;

4 - датчик смещения ц.м. ЧЭ;

5 - магнитоэлектрический датчик силы;

6 - устройство обратной связи (формирователь сигнала обратной связи);

7 - предварительный усилитель-преобразователь (последовательно соединенные предварительный усилитель и фазочувствительный выпрямитель);

8 - устройство коррекции сигнала обратной связи (интегро-дифференцирующий корректирующий контур, в частном случае, с эмиттерным повторителем по схеме Дарлингтона на выходе);

9 - источник синусоидального сигнала, калиброванного по амплитуде и частоте;

Mдм - момент датчика силы 5;

MΣ - суммарный момент дебаланса и тяжения пластины;

Mуп - упругий момент при угловой деформации подвижной части пластины;

βΣ - суммарная угловая деформация подвижной части пластины.

На фиг.2а дополнительно введены обозначения:

10 - эмиттерный повторитель по схеме Дарлингтона;

11 - суммирующий усилитель мощности;

Кл. - коммутатор сигнала Uг.

На фиг.2б дополнительно введены обозначения:

10 - активный фильтр

Подвижная часть 3 связана с датчиком 4, выход которого через устройство обратной связи (формирователь сигнала обратной связи) 6 связан с входным выводом датчика силы.

Устройство 6 для осуществления первого варианта способа содержит цепь из последовательно соединенных предварительного усилителя-преобразователя 7, устройства 8 и усилителя мощности 11. Усилитель мощности 11 содержит усилитель У1, инвертирующим входом через резистор R1 соединенный с выходом устройства 8. Выход усилителя У1 через усилитель 10 (эмитерный повторитель по схеме Дарлингтона) соединен с началом обмотки датчика 5, конец которой соединен через эталонную нагрузку Rн либо с общей шиной (при положении I коммутатора), либо с выходом источника 9 (при положении II коммутатора), а также через резистор R3 с инвертирующим входом усилителя У1. Устройство обратной связи исполнено на микросхеме и является цифровым (выполнено на базе процессора с ЦАП на выходе, при этом в усилитель-преобразователь вводится АЦП).

Устройство 6 для осуществления второго варианта способа является аналоговым и содержит цепь из последовательно соединенных предварительного усилителя-преобразователя 7, устройства 8. Усилитель мощности не используется. Выход устройства 8 связан с началом обмотки датчика момента, конец которой соединен через эталонную нагрузку Rн с выходом источника 9. Выход устройства 8 связан с входом активного фильтра 10.

На фиг.2а при нахождении Кл. в положении I подача Uг осуществляется на дополнительный вход усилителя мощности 11 (на инвертирующий вход усилителя У1 через резистор R2) или на эталонную нагрузку Rн (на фиг.2а Кл. в положении II).

На фиг.2б подача сигнала Uг осуществляется на эталонную нагрузку Rн. Измеряют сигналы Uсм, Uвых и соответственно со стороны выходов усилителя-преобразователя, интегро-дифференциирующего усилителя устройства обратной связи и активного фильтра

Сущность предлагаемого способа определения амплитудно-частотной характеристики (АЧХ) колебаний ц.м. ЧЭ и выходного сигнала акселерометра состоит в следующем.

Известно [2], что при воздействии на акселерометр виброускорения в режиме полета или при задании его при помощи вибростенда в условиях испытаний, АЧХ «угол колебаний ц.м. ЧЭ - ускорение» и «выходной сигнал - ускорение» можно определить из передаточных функций и , которые в соответствии с обозначениями на фиг.2а, б принимают вид

Здесь W2(s)÷W8(s) - передаточные функции звеньев 2÷8 на фиг.2а, б, при этом:

- коэффициент преобразования цепи «сигнал Uсм - смещение ц.м. ЧЭ» соответствует выражению

Kвх=W4(s)*W7(s),

- ток iдм через обмотки датчика силы определяется из формулы iдм=W11(s)*Uвых,

- если формирователь 6 содержит усилитель мощности 11 (фиг.2а), тогда , при Rн<(R1=R3) имеем ;

- если формирователь 6 не содержит усилитель мощности 11 (фиг.2б), тогда , где Rвых и Rдм - внутреннее сопротивление контура 8 и обмотки датчика 5, кроме того, .

При подаче сигнала с источника 9 на дополнительный вход формирователя 6, АЧХ «угол колебаний ц.м. ЧЭ - задаваемый сигнал имитации» и «выходной сигнал - задаваемый сигнал имитации» можно определить из передаточных функций

,

.

При подаче сигнала с источника 9 в датчик силы через эталонную нагрузку Rн (фиг.2а) АЧХ «угол колебаний ц.м. ЧЭ - задаваемый сигнал имитации» и «выходной сигнал - задаваемый сигнал имитации» можно определить из передаточных функций

,

,

где , , , тогда .

При подаче сигнала с источника 9 в датчик силы через эталонную нагрузку Rн по фиг.26 АЧХ «угол колебаний ц.м. ЧЭ - задаваемый сигнал имитации» и «выходной сигнал - задаваемый сигнал имитации» можно определить из передаточных функций

,

,

где , , Rг, Rвых и Rдм - внутреннее сопротивление источника 9, звена 8 и обмотки датчика 5, при этом

В достаточно широком диапазоне частот вибровоздействий звено 2, датчик силы 5 и предусилитель 7, описываемые передаточными функциями W2(s), W5(s) и W7(s), а также передаточные функции W11(s), , , практически безинерционные.

Следовательно, частотные характеристики, соответствующие передаточным функциям , , и , , так же как и , , и , , будут практически идентичны друг другу при выборе «задаваемого сигнала имитации», равного

где q - амплитуда имитируемого ускорения,

- выходной сигнал при измерении ускорения силы тяжести.

АЧХ амплитуды смещения (колебаний) ц.м. ЧЭ, при измерении сигнала Uсм со стороны входа формирователя 6, определяется по формуле:

.

При оптимальном значении Kвх предусилитель 7 не должен быть в насыщении до момента касания края ЧЭ (ц.м. ЧЭ) корпуса акселерометра.

Предлагаемый способ в отличие от прототипа применим для акселерометров, у которых не регламентируется противоречивое соотношение внутренних сопротивлений датчика 5 и формирователя 6 (в прототипе требуется на порядок больше).

Результаты измерений могут быть искажены при подаче сигнала Uг на нагрузку с маломощного источника 9 с внутренним сопротивлением, соизмеримым с нагрузкой.

Подавая на дополнительный вход формирователя 6 или в датчик силы через эталонную нагрузку синусоидальный калиброванный сигнал Uг с амплитудой, выбранной по выражению (**), измеряя сигналы Uсм, Uвых и , определяя отношения амплитуд этих сигналов к амплитуде сигнала Uг, получаем амплитудно-частотные характеристики колебаний центра масс чувствительного элемента пластины и выходных сигналов Uвых и акселерометра, первая из которых позволяет оценить динамический коэффициент передачи акселерометра по приращению угла , определяющего погрешность акселерометра при воздействии вибрационных и ударных возмущений, а вторая - позволяет оценить показатель колебательности, третья - полосу пропускания акселерометра для сигнала .

Передаточная функция Ф(s) акселерометра, характеризующая показатель колебательности: Ф(s)=Wзамк/(1+Wразомк)=Uвых/Uг, где Wзамк, разомк - передаточные функции соответственно замкнутой и разомкнутой системы акселерометра.

При оценке полосы пропускания акселерометра для сигнала , формируемого по выражению (*), где может быть частотно-зависимой эталонной нагрузкой, измеряют сигнал с выхода технологического (активного) фильтра, входом соединяемого с выходом звена 8. При этом частотную характеристику фильтра формируют по выражению (*).

Таким образом, заявлено:

1. Способ измерения динамических характеристик кварцевого маятникового акселерометра, заключающийся в том, что в одну из точек замкнутого контура акселерометра подают синусоидальные, калиброванные по амплитуде и частоте, электрические сигналы Uг, для всего требуемого диапазона частот и амплитуд сигналов измеряют выходной сигнал смещения Uсм и выходной сигнал Uвых устройства обратной связи сигналы и по отношению их амплитуд к амплитуде сигнала Uг определяют динамические характеристики акселерометра. Отличительная особенность способа заключается в том, что подают сигнал Uг в датчик силы либо через эталонную нагрузку, либо через дополнительный вход усилителя мощности цифрового устройства обратной связи, соединяя свободный вывод эталонной нагрузки с общей шиной, а сигналы Uсм и Uвых измеряют соответственно со стороны выходов следующих элементов цифрового устройства обратной связи: усилителя-преобразователя и интегро-дифференциирующего усилителя.

2. Способ измерения динамических характеристик кварцевого маятникового акселерометра, заключающийся в том, что в одну из точек замкнутого контура акселерометра подают синусоидальные, калиброванные по амплитуде и частоте, электрические сигналы Uг, для всего требуемого диапазона частот и амплитуд сигналов Uг измеряют выходной сигнал смещения Uсм и выходной сигнал Uвых аналогового устройства обратной связи и по отношению амплитуд выходных сигналов к амплитуде Uг определяют динамические характеристики акселерометра. Отличительная особенность способа заключается в том, что подают сигнал Uг в датчик силы через эталонную нагрузку, а сигнал Uвых измеряют со стороны выхода интегро-дифференциирующего усилителя устройства обратной связи и подают на активный фильтр, с выхода которого измеряют выходной сигнал , сигнал Uсм измеряют со стороны выхода усилителя-преобразователя устройства обратной связи.

Источники информации

1. SU 1840726 A1. Опубл. 27.07.08.

2. SU 1839835 A1. Опубл. 10.08.05.

3. Распопов В.Я. Микромеханические приборы. - М.: Машиностроение. 2007.

4. Алексеенко А.Г., Шагурин И.И. Микросхемотехника. - М.: Радио и связь, 1982.


СПОСОБ ИЗМЕРЕНИЯ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК КВАРЦЕВОГО МАЯТНИКОВОГО АКСЕЛЕРОМЕТРА (ВАРИАНТЫ)
СПОСОБ ИЗМЕРЕНИЯ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК КВАРЦЕВОГО МАЯТНИКОВОГО АКСЕЛЕРОМЕТРА (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 81-89 из 89.
17.02.2020
№220.018.0315

Электромеханический привод

Изобретение относится к исполнительным устройствам приборов систем управления и предназначено для поворота управляемого звена на заданный угол, а также удержания заданного положения. Электромеханический привод состоит из электродвигателя, двух цилиндрических зубчатых передач, выходного вала...
Тип: Изобретение
Номер охранного документа: 0002714343
Дата охранного документа: 14.02.2020
20.02.2020
№220.018.0455

Планетарно-цевочный электропривод

Изобретение относится к приводным устройствам. Планетарно-цевочный электропривод содержит корпус, статор и ротор, установленный в стакан, который жестко связан с эксцентриковым входным валом электропривода. Входной вал имеет два оппозитно ориентированных эксцентриковых цилиндрических участка,...
Тип: Изобретение
Номер охранного документа: 0002714568
Дата охранного документа: 18.02.2020
23.02.2020
№220.018.05de

Контактирующее устройство

Изобретение относится к области контрольно-измерительной техники и используется при подключении к контрольно-измерительной аппаратуре интегральной схемы (ИС) в корпусе типа «грибок» с четырьмя выводами. Технический результат - возможность проведения четырехзондового метода измерения параметров...
Тип: Изобретение
Номер охранного документа: 0002714675
Дата охранного документа: 19.02.2020
31.05.2020
№220.018.2319

Способ стабилизации структурно неустойчивого осциллятора жидкости разгонных блоков и верхних ступеней ракет-носителей

Изобретение относится к управлению движением разгонного блока (РБ) и верхних ступеней (ВС) ракет-носителей (РН) во время работы маршевой жидкостной двигательной установки с отклоняемым двигателем. Отклонением маршевого двигателя реализуется программное движение РБ (ВС РН), его стабилизация, а...
Тип: Изобретение
Номер охранного документа: 0002722399
Дата охранного документа: 29.05.2020
03.06.2020
№220.018.2331

Способ стабилизации структурно неустойчивых осцилляторов жидкости ракет-носителей

Заявленное изобретение относится к способу стабилизации структурно неустойчивых осцилляторов жидкости ракет-носителей с помощью маршевого или управляющих двигателей. Для стабилизации осцилляторов измеряют параметры движения ракеты-носителя, применяют алгоритм стабилизации, основанный на...
Тип: Изобретение
Номер охранного документа: 0002722519
Дата охранного документа: 01.06.2020
04.06.2020
№220.018.2419

Способ управления программным разворотом разгонного блока

Изобретение относится к управлению ориентацией жидкостного разгонного блока (РБ) во время работы продольно установленных двигателей поджатия топлива (или маршевой двигательной установки). Априорная информация (известная до полета РБ) о параметрах колебаний жидкости в баке РБ имеет достаточную...
Тип: Изобретение
Номер охранного документа: 0002722628
Дата охранного документа: 02.06.2020
14.05.2023
№223.018.5665

Способ компенсации потери тяги двигателями ориентации разгонного блока

Изобретение относится к ракетно-космической технике. В способе компенсации потери тяги двигателями ориентации разгонного блока используют алгоритм диагностики отказов двигателей ориентации и при критической потере тяги двигателями ориентации в канале тангажа или рысканья используют двигатели...
Тип: Изобретение
Номер охранного документа: 0002739645
Дата охранного документа: 28.12.2020
15.05.2023
№223.018.5c6d

Перестраиваемое мажоритарное устройство

Изобретение относится к автоматике и вычислительной технике и может быть использовано при разработке высоконадежных устройств и систем, применяющих мажоритарное резервирование. Технический результат - повышение надежности устройства, а именно: парирование трех неисправностей в пятиканальных...
Тип: Изобретение
Номер охранного документа: 0002759700
Дата охранного документа: 17.11.2021
15.05.2023
№223.018.5cb0

Устройство для формирования установочного импульса

Изобретение относится к области автоматики и импульсной техники и может быть использовано для формирования импульсов при включении питания. Достигаемым техническим результатом заявляемого устройства является повышение надежности за счет повышения стабильности выходного импульса при устранении...
Тип: Изобретение
Номер охранного документа: 0002759754
Дата охранного документа: 17.11.2021
Показаны записи 61-65 из 65.
10.04.2019
№219.017.06ec

Проволока-присадка, способ ее изготовления и применения

Изобретение относится к металлургии и может быть использовано при создании реагента в виде проволоки, содержащей кальций, алюминий и активные компоненты для обработки металлургических расплавов, обладающей комплексом свойств, позволяющих использовать проволоку в качестве средства для...
Тип: Изобретение
Номер охранного документа: 0002424326
Дата охранного документа: 20.07.2011
11.04.2019
№219.017.0b48

Двухосный поворотный стенд

Изобретение относится к области измерительной техники, в частности к испытательному оборудованию, и предназначено для аттестации и верификации преобразователей инерциальной информации (ДУС, акселерометров, гироскопических устройств различного назначения), систем навигации (платформенных,...
Тип: Изобретение
Номер охранного документа: 0002684419
Дата охранного документа: 09.04.2019
31.05.2019
№219.017.7136

Способ изготовления склеивающей прокладки

Изобретение относится к способу получения прокладок, склеивающих на основе эпоксидных смол и стеклотканей, применяемых для изготовления многослойных печатных плат, в том числе гибко-жестких. Для изготовления склеивающей прокладки осуществляют смешивание в мешалке растворителей - смеси толуола...
Тип: Изобретение
Номер охранного документа: 0002689593
Дата охранного документа: 28.05.2019
01.06.2019
№219.017.725f

Бесплатформенный инерциальный блок

Изобретение относится к области измерительной техники и приборостроения и может быть использовано в летательных аппаратах, наземных и морских транспортных средствах для измерения векторов линейного ускорения и угловой скорости. Технический результат - повышение точности и надёжность. Для этого...
Тип: Изобретение
Номер охранного документа: 0002690004
Дата охранного документа: 30.05.2019
22.01.2020
№220.017.f8b5

Устройство базирования многогранных призм

Устройство может быть использовано в метрологии и приборостроении. Устройство имеет корпус, опорную шайбу, прижимную шайбу и винт. Корпус имеет присоединительную поверхность для установки на угломерные приборы и опорную плоскость для многогранной призмы (МП). Опорная шайба выполнена с...
Тип: Изобретение
Номер охранного документа: 0002711610
Дата охранного документа: 17.01.2020
+ добавить свой РИД