×
03.06.2020
220.018.2331

Результат интеллектуальной деятельности: СПОСОБ СТАБИЛИЗАЦИИ СТРУКТУРНО НЕУСТОЙЧИВЫХ ОСЦИЛЛЯТОРОВ ЖИДКОСТИ РАКЕТ-НОСИТЕЛЕЙ

Вид РИД

Изобретение

Аннотация: Заявленное изобретение относится к способу стабилизации структурно неустойчивых осцилляторов жидкости ракет-носителей с помощью маршевого или управляющих двигателей. Для стабилизации осцилляторов измеряют параметры движения ракеты-носителя, применяют алгоритм стабилизации, основанный на использовании априорных данных о динамических свойствах ракеты-носителя, используют добавочный сигнал, характеризующий состояние неустойчивого осциллятора, полученный на основании его уравнения динамики. Обеспечивается асимптотическая устойчивость жидкостных осцилляторов. 2 ил.

Изобретение относится к ракетно-космической технике, а именно к способам управления движением жидкостных ракет-носителей (РН), обеспечивающих устойчивое угловое движение всего объекта во время работы маршевой двигательной установки.

Известен способ [1] стабилизации жидкостного осциллятора, состоящий в установке необходимого количества демпфирующих перегородок в бак, приводящий к невозможности возникновения неустойчивого жидкостного осциллятора. Однако при этом ухудшаются энерго-массовые характеристики РН и увеличивается стоимость изготовления. В результате конструктивный способ решения задачи стабилизации не рационален.

В космической технике применяется традиционный амплитудный способ [1] стабилизации неустойчивых жидкостных осцилляторов и известны два предложенных в литературе фазовых метода стабилизации выбранных в качестве аналогов:

- Способ стабилизации структурно неустойчивых осцилляторов жидкости ракет-носителей с использованием традиционного автомата стабилизации создающего фазовое опережение на частотах жидкостных осцилляторов, не обеспечивающего устойчивости «в малом», но, за счет нелинейного демпфирования в баке, обеспечивающего техническую устойчивость «в большом» (колебательный режим движения с допустимой амплитудой) [1];

- Способ стабилизации структурно неустойчивых осцилляторов жидкости ракет-носителей с добавлением к традиционному автомату стабилизации обратной связи по текущей координате неустойчивого осциллятора для переноса соответствующего корня характеристического уравнения в область устойчивости [2].

В качестве прототипа выбран способ стабилизации структурно неустойчивых осцилляторов жидкости ракет-носителей с помощью маршевого или управляющих двигателей, заключающийся в измерении параметров движения ракеты-носителя, применении традиционного алгоритма стабилизации, добавление алгоритма основанного на использовании априорных данных о динамических свойствах ракеты-носителя путем использования так называемых резонансных фильтров, выделяющих частотный диапазон вокруг собственной частоты, соответствующей неустойчивому осциллятору с последующим созданием в этом диапазоне необходимого сигнала для его фазовой стабилизации [3].

Сведения о практической реализации фазовых методов стабилизации структурно неустойчивых осцилляторов аналога и прототипа отсутствуют.

Первый аналог не обеспечивает асимптотической устойчивости и приводит к уменьшению запасов управляемости из-за загрузки органов управления колебательными перемещениями на частоте неустойчивого осциллятора. Также, обуславливает наличие вынужденных колебаний устойчивых осцилляторов, в том числе из расходуемых баков, что особенно опасно перед выключением маршевой двигательной установки. Допустимый уровень колебаний, наиболее часто, может быть получен только при совместном использовании с демпфирующими устройствами внутри бака с вытекающими уже описанными недостатками.

Второй аналог свободен от недостатков первого аналога, однако, имеет свои. Главный недостаток состоит в отсутствии прямого измерения колебаний жидкости в баке. Датчики, если их установить в баке, усложнят конструкцию РН. увеличат ее стоимость и уменьшат надежность. Предлагаемый алгоритм оценивания параметров колебаний в баке не обеспечивает точного оценивания из-за существенного упрощения уравнения динамики жидкостного осциллятора.

Выбранный прототип свободен от недостатков первого и второго аналогов, однако имеет присущие ему недостатки, а именно:

- обеспечение алгоритмом прототипа синфазности выходного сигнала резонансного фильтра с колебаниями неустойчивого осциллятора не гарантировано, что может привести к неустойчивости;

- узкополосный частотный диапазон резонансного фильтра требует достоверных априорных знаний параметров неустойчивого осциллятора. Немалое (выходящее за пределы допустимого диапазона) отклонение тяги двигателя или неточность оценки частоты осциллятора приведет к неработоспособности всего алгоритма стабилизации;

- не проверена работоспособность предлагаемого способа в условиях имеющихся помех в оценках вторых производных параметров движения, поступающих на узкополосные резонансные звенья из-за помех дискретизации и других.

Задачей предлагаемого изобретения является обеспечение асимптотической устойчивости жидкостных осцилляторов.

Указанная задача выполняется за счет того, что в способе стабилизации структурно неустойчивых осцилляторов жидкости ракет-носителей с помощью маршевого или управляющих двигателей, заключающемся в измерении параметров движения ракеты-носителя, применении алгоритма стабилизации, основанного на использовании априорных данных о динамических свойствах ракеты-носителя, согласно изобретению, в алгоритме стабилизации используется добавочный сигнал характеризующий состояние неустойчивого осциллятора полученный на основании его уравнения динамики.

Таким образом, в управлении используется динамическое звено соответствующее уравнению неустойчивого осциллятора динамической схемы объекта и обеспечивающее получение необходимой оценки его параметров движения (формирования добавочного сигнала) без использования дополнительных датчиков колебаний жидкости внутри бака.

Уравнение осциллятора окислителя без учета упругости объекта в канале рыскания имеет вид (1)

, где s - обобщенная координата осциллятора,

ψ - угловое отклонение в канале рыскания от программного положения (параметр движения РН),

- угловое ускорение в канале рыскания (параметр движения РН),

ωs, εs - частота и коэффициент затухания осциллятора,

- коэффициенты динамической схемы РН описывающие влияние движения корпуса РН на динамику жидкости в баке имеющем структурную неустойчивость.

Откуда следует уравнение оценки отклонения неустойчивого осциллятора (2)

Так как координата z соответствует центру масс невозмущенной системы в программно-связанной системе координат, то необходим переход к величинам оцениваемым системой управления.

где: d1 - продольная координата гироприбора от центра масс;

- ускорение точки установки гироприбора по боковой оси связанной системы координат;

В результате добавочный сигнал после упрощений имеет вид (4):

Динамическое звено, описываемое выражением (ks - коэффициент усиления), является резонансным фильтром, настроенным на частоту ωs и с общим коэффициентом усиления на этой частоте. Такой фильтр имеет очень большой коэффициент усиления и узкую полосу пропускания определяемые малыми εs из динамической схемы объекта. Вследствие обычно назначенного в динамической схеме разбросана вместо εs следует выбрать величину ε из диапазона 0.02…0.05, в результате чего возмущенные ωs (с учетом разбросов на величину ) попадают в полосу усиления резонансного звена с достаточным коэффициентом усиления. В результате алгоритм оценивания приобретает свойство малой чувствительности к отклонениям параметров объекта от номинальных.

С учетом сказанного и после преобразований добавочный сигнал может быть представлен в виде (5).

где:

Kψ, Wкор - передаточные функции автомата стабилизации, определяются традиционным алгоритмом стабилизации.

Для учета возможных немалых отклонений продольного ускорения от программного, величина ωs корректируется на борту по оценке из системы наведения по формуле (6).

где: номинальное значение парциальной частоты неустойчивого осциллятора,

- реализованное кажущееся продольное ускорение,

- номинальное кажущееся продольное ускорение.

Для увеличения помехоустойчивости алгоритма в качестве входных сигналов лучше использовать первые производные от параметров движения, так как вторые производные, используемые в (5), из-за дискретности измерений или импульсного их характера содержат значительные шумы. Воспользуемся алгебраическим тождеством (7) с использованием переменной s как комплексной переменной преобразования Лапласа:

Тогда окончательно добавочный сигнал принимает вид (8) и суммируется с сигналами угловой и боковой стабилизации.

где:

- интеграл ускорения точки установки ГП по боковой оси связанной системы координат;

- угловая скорость вокруг оси OY1 связанной системы координат.

В результате алгоритм стабилизции приобретает свойство помехоустойчивости по отношению к шумам содержащимся во входных сигналах.

Формула (8) записана для бокового канала. Формула для нормального канала стабилизации аналогичнаей с учетом полярностей.

Результаты с использованием предлагаемого способа управления для гипотетической РН приведены на фиг. 1, 2. Параметры гипотетической ступени РН приняты близкими к существующим и проектируемым РН. Учитывались четыре колеблющегося осциллятора в баках и упругость конструкции РН.

На фиг. 1 показан годограф АФЧХ разомкнутой системы угловой стабилизации с традиционным алгоритмом стабилизации не обеспечивающим асимптотическую устойчивость для одного из характерных моментов полета ступени.

На фиг. 2 показан годограф АФЧХ разомкнутой системы угловой стабилизации с использованием описанного алгоритма, обеспечивающим асимптотическую устойчивость для того же момента времени.

Для проверки надежности получения технического результата были проведены расчеты для возмущенных параметров в пределах 5% разбросов. Асимптотическая устойчивость во всех случаях сохраняется.

Таким образом, заявлен способ стабилизации структурно неустойчивых осцилляторов жидкости ракет-носителей с помощью маршевого или управляющих двигателей, заключающийся в измерении параметров движения ракеты-носителя, применении алгоритма стабилизации, основанного на использовании априорных данных о динамических свойствах ракеты-носителя. Отличительная особенность способа заключается в том, что в алгоритме стабилизации используется добавочный сигнал δs характеризующий состояние неустойчивого осциллятора полученный на основании его уравнения динамики;

где:

s - обобщенная координата осциллятора,

- интеграл ускорения точки установки гироприбора по боковой оси связанной системы координат, - угловая скорость вокруг оси OY1 связанной системы координат,

d1 - продольная координата гироприбора от центра масс,

ωs, εs - частота и коэффициент затухания осциллятора,

- коэффициенты динамической схемы ракеты-носителя описывающие влияние движения корпуса ракеты носителя на динамику жидкости в баке имеющем структурную неустойчивость, ks - коэффициент усиления, Kψ, Wкор - передаточные функции автомата стабилизации определяемые традиционным алгоритмом стабилизации.

Техническим результатом изобретения является обеспечение асимптотической устойчивости жидкостных осцилляторов.

Источники информации:

1. К.С. Колесников. Динамика ракет. М.: «Машиностроение», 2003 г.

2. А.В. Бабин, А.И. Мытарев. Стабилизация структурно неустойчивых объектов РКТ с топливными баками на основе алгоритма с эталонной моделью. Космонавтика и ракетостроение, журнал №6 2015 г. стр. 136.

3. Патент на изобретение №2670328.


СПОСОБ СТАБИЛИЗАЦИИ СТРУКТУРНО НЕУСТОЙЧИВЫХ ОСЦИЛЛЯТОРОВ ЖИДКОСТИ РАКЕТ-НОСИТЕЛЕЙ
СПОСОБ СТАБИЛИЗАЦИИ СТРУКТУРНО НЕУСТОЙЧИВЫХ ОСЦИЛЛЯТОРОВ ЖИДКОСТИ РАКЕТ-НОСИТЕЛЕЙ
СПОСОБ СТАБИЛИЗАЦИИ СТРУКТУРНО НЕУСТОЙЧИВЫХ ОСЦИЛЛЯТОРОВ ЖИДКОСТИ РАКЕТ-НОСИТЕЛЕЙ
СПОСОБ СТАБИЛИЗАЦИИ СТРУКТУРНО НЕУСТОЙЧИВЫХ ОСЦИЛЛЯТОРОВ ЖИДКОСТИ РАКЕТ-НОСИТЕЛЕЙ
СПОСОБ СТАБИЛИЗАЦИИ СТРУКТУРНО НЕУСТОЙЧИВЫХ ОСЦИЛЛЯТОРОВ ЖИДКОСТИ РАКЕТ-НОСИТЕЛЕЙ
СПОСОБ СТАБИЛИЗАЦИИ СТРУКТУРНО НЕУСТОЙЧИВЫХ ОСЦИЛЛЯТОРОВ ЖИДКОСТИ РАКЕТ-НОСИТЕЛЕЙ
СПОСОБ СТАБИЛИЗАЦИИ СТРУКТУРНО НЕУСТОЙЧИВЫХ ОСЦИЛЛЯТОРОВ ЖИДКОСТИ РАКЕТ-НОСИТЕЛЕЙ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 85.
27.08.2013
№216.012.65dd

Многоканальный преобразователь напряжений в шим-сигналы

Изобретение относится к области автоматики и вычислительной техники и может быть использовано в системах автоматического управления. Техническим результатом является уменьшение уровня импульсных помех и обеспечение равномерной загрузки источника питания. Технический результат достигается с...
Тип: Изобретение
Номер охранного документа: 0002491714
Дата охранного документа: 27.08.2013
27.10.2013
№216.012.7ab7

Волоконно-оптический измеритель угловой скорости

Изобретение относится к гироскопической и контрольно-измерительной технике и может быть использовано при разработке волоконно-оптических измерителей угловой скорости (ВОИУС). Измеритель содержит два усилителя-преобразователя (УП1 и УП2), формирователь синхронизирующих импульсов (ФСИ),...
Тип: Изобретение
Номер охранного документа: 0002497077
Дата охранного документа: 27.10.2013
20.01.2014
№216.012.987b

Способ определения параметров модели погрешностей измерений акселерометров инерциальной навигационной системы по измерениям спутниковой навигации

Изобретение относится к области приборостроения и может быть использовано в инерциальных навигационных системах (ИНС) управления для определения навигационных параметров управляемых подвижных объектов. Технический результат - расширение функциональных возможностей. Для этого в ходе определения...
Тип: Изобретение
Номер охранного документа: 0002504734
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9c8f

Способ определения параметров модели погрешностей измерений акселерометров ведомой инерциальной навигационной системы по измерениям эталонной инерциальной навигационной системы

Изобретение относится к области приборостроения и может быть использовано в инерциальных систем управления для определения навигационных параметров управляемых подвижных объектов. Технический результат - повышение точности. Для этого в ходе движения осуществляют определение параметров модели...
Тип: Изобретение
Номер охранного документа: 0002505785
Дата охранного документа: 27.01.2014
10.04.2014
№216.012.b291

Приемопередатчик последовательного интерфейса с элементом гальванической развязки

Изобретение относится к области электроники, в частности к устройствам приема и передачи информации по проводным линиям связи. Технический результат заключается в создании простого и надежного устройства приемопередатчика с элементом гальванической развязки и малым током потребления....
Тип: Изобретение
Номер охранного документа: 0002511429
Дата охранного документа: 10.04.2014
10.06.2014
№216.012.cfd4

Стенд для измерения вибрационных реактивных моментов гиромотора

Изобретение относится к измерительной технике, а именно к средствам измерения вибрационных реактивных моментов гиромоторов. Стенд содержит подвес, камеру, допускающую закрепление гиромотора экваториальной либо полярной осями вдоль оси подвеса, средство измерения вибраций в виде первого...
Тип: Изобретение
Номер охранного документа: 0002518975
Дата охранного документа: 10.06.2014
10.09.2014
№216.012.f359

Термоинвариантный измеритель линейного ускорения

Изобретение относится к измерительной технике, а именно к средствам измерения линейных ускорений в системах управления движущимися объектами, например к средствам измерения линейного ускорения в бесплатформенных инерциальных навигационных системах управления космическими объектами. Целью...
Тип: Изобретение
Номер охранного документа: 0002528119
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f36e

Формирователь временных интервалов

Изобретение относится к области автоматики и вычислительной техники. Технический результат - упрощение конструкции устройства. Формирователь временных интервалов содержит блок регистров, блок коммутаторов, блок памяти, блок делителей частоты, блок формирователей команд, блок формирователей...
Тип: Изобретение
Номер охранного документа: 0002528141
Дата охранного документа: 10.09.2014
20.11.2014
№216.013.083f

Порошковый композиционный материал акп-1пк и способ его получения

Изобретение относится к порошковой металлургии, в частности к созданию легких материалов с низким коэффициентом линейного расширения, и может быть использовано в качестве конструкционного материала при создании командных приборов систем управления летательных аппаратов с высокими...
Тип: Изобретение
Номер охранного документа: 0002533512
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.092d

Способ измерения динамических характеристик кварцевого маятникового акселерометра (варианты)

Изобретение относится к измерительной технике и может быть использовано для определения параметров кварцевых маятниковых акселерометров. Согласно заявленному способу в одну из точек замкнутого контура акселерометра подают синусоидальные, калиброванные сигналы U Для всего требуемого диапазона...
Тип: Изобретение
Номер охранного документа: 0002533750
Дата охранного документа: 20.11.2014
Показаны записи 1-10 из 13.
10.02.2013
№216.012.2337

Способ подавления упругих колебаний конструкции ракеты пакетной схемы

Изобретение относится к ракетно-космической технике и может быть использовано для подавления упругих колебаний конструкций ракет космического назначения (РКН) пакетной схемы. Позиционные гироскопы установлены в трехстепенных подвесах и измеряют угловое положение ракеты. Скоростные гироскопы...
Тип: Изобретение
Номер охранного документа: 0002474517
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.26b4

Способ управления угловым движением ракеты космического назначения

Изобретение относится к управлению движением изделий ракетно-космической техники. Способ осуществляется отклонением установленных по крестообразной схеме камер сгорания, расположенных в плоскостях стабилизации I, II, III и IV. При этом вырабатывают командные сигналы , , по тангажу, рысканию и...
Тип: Изобретение
Номер охранного документа: 0002475428
Дата охранного документа: 20.02.2013
10.05.2013
№216.012.3d40

Способ выведения на орбиту ракеты космического назначения пакетной схемы на участке полета до отделения боковых блоков

Изобретение относится к ракетно-космической технике и может быть использовано в ракетах космического назначения (РКН) пакетной схемы. На участке полета до отделения боковых блоков выполняют программный разворот по крену на соответствующий азимуту прицеливания начальный угол для совмещения...
Тип: Изобретение
Номер охранного документа: 0002481247
Дата охранного документа: 10.05.2013
10.08.2013
№216.012.5c9c

Ракета-носитель

Изобретение относится к ракетно-космической технике, а именно к ракетам-носителям для выведения в космос космических аппаратов. Ракета-носитель содержит один маршевый двигатель в карданном подвесе и отделяемую первая ступень. Первая ступень содержит аэродинамические рули с гидравлическими...
Тип: Изобретение
Номер охранного документа: 0002489329
Дата охранного документа: 10.08.2013
20.10.2013
№216.012.75bc

Способ управления движением ракеты-носителя на начальном участке полета

Изобретение относится к ракетно-космической технике. Способ управления движением ракеты-носителя на начальном участке полета заключается в отклонении качающейся части маршевого двигателя в заданной плоскости увода струи с учетом периодического вычисления командного сигнала на отклонение...
Тип: Изобретение
Номер охранного документа: 0002495800
Дата охранного документа: 20.10.2013
27.06.2014
№216.012.d82b

Способ защиты от аварии многоканальных систем управления ракет

Изобретение относится к ракетно-космической технике и может быть использовано в автоматах стабилизации ракет, управление угловым движением которых осуществляется путем поворота нескольких камер сгорания двигателей с помощью рулевых приводов. Способ защиты от аварии многоканальных систем...
Тип: Изобретение
Номер охранного документа: 0002521117
Дата охранного документа: 27.06.2014
10.02.2015
№216.013.24e5

Способ управления запуском жидкостных реактивных двигателей ракеты космического назначения

Изобретение относится к способам управления запуском жидкостных реактивных двигателей ракеты космического назначения на стартовой позиции. Способ включает зажигание топлива в камерах сгорания двигателей, выход на режим предварительной ступени, проверку работоспособности на этом режиме и выдачу...
Тип: Изобретение
Номер охранного документа: 0002540898
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2787

Способ управления программным разворотом разгонного блока

Изобретение относится к ракетно-космической технике и может быть использовано для управления программным разворотом разгонного блока (РБ) с помощью неподвижных двигателей ориентации постоянной тяги. Набирают угловую скорость при разгоне и движении по инерции, уменьшают угловую скорость до нуля...
Тип: Изобретение
Номер охранного документа: 0002541576
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3cba

Способ управления движением жидкостной ракеты космического назначения после команды на выключение маршевого двигателя отработавшей ступени

Изобретение относится к ракетно-космической технике и может быть использовано для управления движением жидкостной ракеты космического назначения (РКН). После команды на выключение маршевого двигателя (МД) отработавшей ступени переводят МД на режим пониженной тяги и окончательно выключают МД,...
Тип: Изобретение
Номер охранного документа: 0002547034
Дата охранного документа: 10.04.2015
26.08.2017
№217.015.d7c8

Способ управления угловым движением ракеты космического назначения

Изобретение относится к способам управления движением ракет космического назначения (РКН). Способ управления угловым движением РКН заключается в управлении углами тангажа и рыскания путем отклонения в двух взаимно-перпендикулярных плоскостях установленной в карданном подвесе камеры сгорания...
Тип: Изобретение
Номер охранного документа: 0002622427
Дата охранного документа: 19.06.2017
+ добавить свой РИД