×
27.06.2014
216.012.d774

Результат интеллектуальной деятельности: ЖАРОПРОЧНЫЙ НИКЕЛЕВЫЙ СПЛАВ, ОБЛАДАЮЩИЙ ВЫСОКИМ СОПРОТИВЛЕНИЕМ К СУЛЬФИДНОЙ КОРРОЗИИ В СОЧЕТАНИИ С ВЫСОКОЙ ЖАРОПРОЧНОСТЬЮ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к никелевым сплавам, и может быть использовано при производстве сопловых и рабочих охлаждаемых лопаток газотурбинных двигателей и установок. Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью, содержит, мас.%: хром 9-16, кобальт 10-16, вольфрам 4-9, молибден 0,2-3,0, алюминий 1,8-4,5, титан 2,0-4,5, тантал 2,5-7,0, ниобий 0,01-1,5, бор 0,01-0,5, лантан 0,01-0,5, иттрий 0,01-0,2, церий 0,01-0,2, рений 0,5-5,0, гафний 0,1-1,0, марганец 0,05-1,0, кремний 0,05-1,0, магний 0,01-0,2, никель - остальное. Сплав обладает высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью. 1 табл.
Основные результаты: Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью, содержащий хром, кобальт, вольфрам, молибден, алюминий, титан, тантал, бор, иттрий, рений, отличающийся тем, что он дополнительно содержит ниобий, лантан, церий, гафний, марганец, кремний и магний при следующем соотношении компонентов, мас.%:

Изобретение относится к области металлургии и может быть использовано при производстве сопловых и рабочих охлаждаемых лопаток газотурбинных двигателей и установок.

Сплавы, имеющие никелевую матрицу с гранецентрированной кристаллической структурой, обладают высокой жаропрочностью вследствие наличия большого количества (до 70 объемных процентов) упрочняющей γ′ - фазы, которая образуется в процессе дисперсионного распада γ-твердого раствора при охлаждении сплава. Особенностью образования структуры, обеспечивающей высокую длительную прочность при температуре до (1000-1100)°C и выше, является близкий тип решетки γ и γ′ фаз, практически совпадающие размеры их кристаллических решеток, наличие когерентной связи на межфазных границах и высокая температурная устойчивость упрочняющей γ′-фазы. Указанные факторы определяют повышенную термодинамическую и структурную стабильность этих материалов, что, в свою очередь, обеспечивает их длительную работоспособность при рабочих температурах.

Вместе с тем детали авиационных ГТД и морских ГТУ, изготовленные из этих сплавов, работают в значительно отличающихся друг от друга условиях. В частности, в авиационных ГТД используется топливо высокой степени очистки, практически не содержащее вредных примесей. Основная работа авиационных двигателей приходится на большие высоты, где атмосфера практически не загрязнена. Поэтому основной причиной снижения работоспособности материала лопаток в этих условиях является высокотемпературная коррозия, протекающая со сравнительно невысокой скоростью.

Принципиально в других условиях работают лопатки морских ГТУ. В этом случае высокотемпературный воздушный поток, обтекающий поверхность пера лопатки, насыщен парами морской соли, содержащей большое количество соединений серы, натрия, хлора и других активных элементов, вызывающих появление и эффективное развитие сульфидной коррозии, которая на несколько порядков выше по сравнению с горячей коррозией на поверхности лопаток авиационных ГТД. Поэтому сплавы, предназначенные для морских ГТУ, значительно отличаются по уровню и характеру легирования от сплавов для авиационных ГТД прежде всего наличием высокой концентрации хрома, активно подавляющего сульфидную коррозию. Следует, однако, иметь ввиду, что дальнейшее повышение жаропрочности никелевых жаропрочных сплавов может быть обеспечено путем их легирования элементами, имеющими низкую диффузионную подвижность и высокую температуру плавления, в первую очередь W, Mo, Re и другие элементы. Однако в присутствии высокого содержания хрома эти элементы образуют пластинчатые топологически плотноупакованные фазы (ТПУ-фазы), резко снижающие работоспособность сплавов. Именно поэтому жаропрочные свойства сплавов для авиационных ГТД являются значительно более высокими по сравнению со свойствами сплавов для морских ГТУ, однако их стойкость к сульфидной коррозии на один - два порядка ниже.

Таким образом, создание сплавов, имеющих повышенную стойкость к сульфидной коррозии и при этом уровень жаропрочности, соответствующий сплавам для авиационных ГТД, представляет собой сложную многопараметрическую задачу, учитывающую комплекс термодинамических, структурных, физико-химических и прочностных факторов, и на этой основе обеспечивающую оптимальные составы новых сплавов.

Известен литейный жаропрочный сплав на основе никеля CMSX-11B (патент US 5489346, C22C 19/05; дата публикации 06.02.1996) при следующем соотношении компонентов, %:

Хром Cr 12,5
Кобальт Co 7
Молибден Mo 0,5
Вольфрам W 5
Тантал Ta 5
Ниобий Nb 0,1
Алюминий Al 3,6
Титан Ti 4,2
Гафний Hf 0,04
Никель Ni Остальное

Наиболее близким по технической сущности и достигаемому результату к заявленному жаропрочному никелевому сплаву является жаропрочный сплав на основе никеля (Патент РФ 2215804 C2; дата публикации 20.06.2003; МПК C22C 19/05), при следующем соотношении компонентов, %:

Хром Cr 12,5-14,5
Кобальт Co 8,0-10,0
Молибден Mo 0,8-2,2
Вольфрам W 3,5-5,5
Тантал Ta 0,5-2,5
Иттрий Y 0,005-0,05
Алюминий Al 3,5-4,8
Бор B 0,001-0,02
Титан Ti 3.4-4.3
Рений Re 0,8-2,0
Углерод C 0,005-0,07
Никель Ni Остальное

Описанные сплавы обладают недостаточным уровнем свойств для использования в перспективных газотурбинных установках, в том числе эксплуатируемых в условиях воздействия морской среды, а именно высоким показателем жаропрочности и стойкости к сульфидной коррозии. Достигнутый уровень свойств в указанных сплавах не позволяет обеспечить требования по ресурсу и надежности, предъявляемые к новым перспективным ГТУ. Кроме того, описанные сплавы не могут быть использованы в конструкциях авиационных ГТД и двигателей экранопланов, требования к материалам которых по жаропрочности значительно выше, чем у материалов ГТУ.

Техническим результатом, на достижение которого направлено изобретение, является разработка жаропрочного никелевого сплава, обладающего высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью, что обеспечивает применение этого сплава в перспективных газотурбинных установках, в том числе эксплуатируемых в условиях воздействия морской солевой среды, а также в конструкциях авиационных ГТД и двигателей экранопланов.

Указанный технический результат достигается тем, что жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью, содержащий хром, кобальт, вольфрам, молибден, алюминий, титан, тантал, бор, иттрий, рений, отличается тем, что дополнительно содержит ниобий, лантан, церий, гафний, марганец, кремний, магний при следующем соотношении компонентов, мас.%:

Хром Cr 9-16
Кобальт Co 10-16
Вольфрам W 4-9
Молибден Mo 0,2-3,0
Алюминий Al 1,8-4,5
Титан Ti 2,0-4,5
Тантал Ta 2,5-7,0
Ниобий Nb 0,01-1,5
Бор B 0,01-0,5
Лантан La 0,01-0,5
Иттрий Y 0,01-0,2
Церий Ce 0,01-0,2
Рений Re 0,5-5,0
Гафний Hf 0,1-1,0
Марганец Mn 0,05-1,0
Кремний Si 0,05-1,0
Магний Mg 0,01-0,2
Никель Ni Остальное

Повышение жаропрочности никелевого сплава обеспечивается наибольшим содержанием тугоплавких элементов, таких как вольфрам, тантал и рений в сравнении с аналогами. Углерод, снижающий ликвидус и солидус сплава, в состав предлагаемого сплава не вводится. Повышенная стойкость к сульфидной коррозии достигается высоким содержанием хрома и оптимальным соотношением основных элементов, влияющих на коррозионную стойкость. Соотношение не превышает 0,2 (Гецов Л.Б. Материалы и прочность деталей газовых турбин, книга 1, Рыбинск - 2010, с.470-471).

Также дополнительное положительное влияние на сопротивление сульфидной коррозии оказывает введение ниобия, гафния, кремния и оптимального соотношения лантана, церия, иттрия, марганца, бора и магния.

Для подтверждения эффективности предлагаемого жаропрочного никелевого сплава были проведены экспериментальные исследования стойкости к сульфидной коррозии в «Европейской среде» (удельная потеря массы в среде 25% NaCl+75% Na2SO4 при температуре 900°) и жаропрочности (длительная прочность ) с разной концентрацией рения. Результаты испытаний представлены в таблице 1.

Вариант 1. Состав исследуемого сплава, при следующем соотношении компонентов, %:

Хром Cr 9-16
Кобальт Co 10-16
Вольфрам W 4-9
Молибден Mo 0,2-3,0
Алюминий Al 1,8-4,5
Титан Ti 2,0-4,5
Тантал Ta 2,5-7,0
Ниобий Nb 0,1-1,5
Бор B 0,01-0,5
Лантан La 0,01-0,5
Иттрий Y 0,01-0,2
Церий Ce 0,01-0,2
Рений Re 0,5-1,5
Гафний Hf 0,1-1,0
Марганец Mn 0,05-1,0
Кремний Si 0,05-1,0
Магний Mg 0,01-0,2
Никель Ni Остальное

По окончании исследований получены результаты:

- Критерий (отношение концентраций легирующих элементов алюминия, хрома, титана), определяющий коррозионную стойкость сплава, не превышает допустимого значения 0,2;

- сплав с содержанием рения (Re) от 0,5 до 1,5 в расплаве солей 25% NaCl+75% Na2SO4 при температуре 900°C имеет удельную потерю массы за 1 час меньше, чем приведенные аналог и прототип, а именно 0,7-10-4 г/см2;

- длительная прочность при сточасовой выдержке при температуре 1000°C не уступает прототипу и равна 185-196 MПa.

Вариант 2. Состав исследуемого сплава, при следующем соотношении компонентов, %:

Хром Cr 9-16
Кобальт Co 10-16
Вольфрам W 4-9
Молибден Mo 0,2-3,0
Алюминий Al 1,8-4,5
Титан Ti 2,0-4,5
Тантал Ta 2,5-7,0
Ниобий Nb 0,1-1,5
Бор B 0,01-0,5
Лантан La 0,01-0,5
Иттрий Y 0,01-0,2
Церий Ce 0,01-0,2
Рений Re 1,5-3,0
Гафний Hf 0,1-1,0
Марганец Mn 0,05-1,0
Кремний Si 0,05-1,0
Магний Mg 0,01-0,2
Никель Ni Остальное

По окончании исследований получены результаты:

- Критерий также не превышает допустимого значения 0,2;

- сплав с содержанием рения (Re) от 1,5 до 3,0 в расплаве солей 25% NaCl+75% Na2SO4 при температуре 900°C имеет удельную потерю массы за 1 час меньше, чем приведенные аналог и прототип, а именно 0,87·10-4 г/см2;

- длительная сточасовая прочность при температуре 1000°C превышает показатели прототипа и изменяется от 200-212 MПa.

Вариант 3. Состав исследуемого сплава, при следующем соотношении компонентов. %:

Хром Cr 9-16
Кобальт Co 10-16
Вольфрам W 4-9
Молибден Mo 0,2-3,0
Алюминий Al 1,8-4,5
Титан Ti 2,0-4,5
Тантал Ta 2,5-7,0
Ниобий Nb 0,1-1,5
Бор B 0,01-0,5
Лантан La 0,01-0,5
Иттрий Y 0,01-0,2
Церий Ce 0,01-0,2
Рений Re 3,0-5,0
Гафний Hf 0,1-1,0
Марганец Mn 0,05-1,0
Кремний Si 0,05-1,0
Магний Mg 0,01-0,2
Никель Ni Остальное

По окончании исследований получены результаты:

- Критерий не превышает допустимого значения 0.2;

- сплав с содержанием рения (Re) от 3,0 до 5,0 в расплаве солей 25% NaCl+75% Na2SO4 при температуре 900°C имеет удельную потерю массы за 1 час меньше, чем приведенные аналог и прототип, а именно 0,9·10-5 г/см2;

- длительная сточасовая прочность при температуре 1000°C значительно превышает показатели прототипа и равна 230-240 MПa.

В таблице 1 представлены результаты исследований.

Таблица 1
Стойкость к сульфидно-оксидной коррозии Жаропрочность Удельная потеря массы в среде 25% NaCl+75% Na2SO4 при 900°C, г/см2
CMSX-11B(аналог) 0,24 183,7 0,3·10-3 при (850°C)
Патент № 2215804 (прототип) 0,28 190-195 0,2·10-3
Предлагаемый сплав 1 вариант 0,2 185-196 0,7·10-4
2 вариант 0,2 200-212 0,87·10-4
3 вариант 0,2 230-240 0,9·10-5

Анализ полученных результатов позволил установить, что рений является одним из наиболее эффективных легирующих элементов в жаропрочных никелевых сплавах. Положительное влияние рения на жаропрочность никелевых сплавов обусловлено увеличением при его присутствии в сплаве температуры солидуса, повышенными температурами начала и полного растворения γ′-фазы в никелевом γ-твердом растворе и увеличением периода его кристаллической решетки, снижением коэффициента диффузии легирующих элементов.

Предлагаемый сплав превосходит сплав-прототип по характеристикам жаропрочности на величину до 20%, а по сопротивлению к сульфидной коррозии в от 3 до 22 раз в зависимости от варианта сплава.

Таким образом, применение предлагаемого сплава позволит значительно повысить комплекс свойств деталей ГТУ, существенно увеличить ресурс и надежность перспективных изделий. Кроме того, высокие характеристики длительной прочности по сравнению с другими сплавами для ГТУ (на уровне широко применяемого в авиации сплава ЖС32) позволяют использовать его как материал для лопаток турбин ГТД самолетов и вертолетов морской авиации.

Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью, содержащий хром, кобальт, вольфрам, молибден, алюминий, титан, тантал, бор, иттрий, рений, отличающийся тем, что он дополнительно содержит ниобий, лантан, церий, гафний, марганец, кремний и магний при следующем соотношении компонентов, мас.%:
Источник поступления информации: Роспатент

Показаны записи 71-80 из 110.
01.03.2019
№219.016.ca7c

Способ испытаний газотурбинного двигателя

Изобретение относится к авиадвигателестроению, а именно к стендовым испытаниям авиационных двигателей, оборудованных соплами с управляемым вектором тяги. Способ испытаний ГТД осуществляют на стенде с силоизмерительным устройством, которое предварительно нагружает осевой, вертикальной и боковой...
Тип: Изобретение
Номер охранного документа: 02238533
Дата охранного документа: 20.10.2004
11.03.2019
№219.016.da5e

Устройство для диагностики автоколебаний рабочего колеса турбомашины

Изобретение относится к авиадвигателестроению и энергомашиностроению и может быть использовано при прочностной доводке компрессоров газотурбинных двигателей, а также при диагностике автоколебаний в процессе их стендовых испытаний и эксплуатации. Технический результат - повышение эффективности и...
Тип: Изобретение
Номер охранного документа: 0002308693
Дата охранного документа: 20.10.2007
29.03.2019
№219.016.eed5

Способ обработки фасонных поверхностей точением

Изобретение относится к области обработки резанием, обработке на токарных станках. Способ включает стабилизацию температуры резания. Для повышения производительности обработки и повышения качества поверхностного слоя обработанной поверхности, а также снижения интенсивности износа инструмента...
Тип: Изобретение
Номер охранного документа: 0002266175
Дата охранного документа: 20.12.2005
29.03.2019
№219.016.efd7

Устройство для подачи смазочно-охлаждающей жидкости

Изобретение относится к области машиностроения, устройствам для охлаждения режущего инструмента. Устройство содержит дисковую фрезу, в корпусе которой выполнена кольцевая проточка, сообщенная радиальными каналами с зубьями фрезы, две заслонки, перекрывающие проточку, и два диска, установленных...
Тип: Изобретение
Номер охранного документа: 02203165
Дата охранного документа: 27.04.2003
29.03.2019
№219.016.f2c9

Способ установления ресурса деталей газотурбинного двигателя

Изобретение относится к способам установления ресурса деталей газотурбинного двигателя и может найти применение в авиадвигателестроении. Техническим результатом, на достижение которого направлен данный способ, является увеличение ресурса деталей при накоплении ими малоцикловой усталости в зонах...
Тип: Изобретение
Номер охранного документа: 0002373508
Дата охранного документа: 20.11.2009
29.03.2019
№219.016.f36f

Радиальный лепестковый газодинамический подшипник

Изобретение относится к области машиностроения, а именно к радиальным лепестковым газодинамическим подшипникам, и может быть использовано в радиальных опорах с газовой смазкой. Радиальный лепестковый газодинамический подшипник содержит корпус с осевыми гнездами и лепестки с хвостовиками,...
Тип: Изобретение
Номер охранного документа: 0002309304
Дата охранного документа: 27.10.2007
29.03.2019
№219.016.f3b5

Способ изготовления гнутых изделий

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении многоколенных гнутых изделий из труб. Трубную заготовку размещают в штампе, создают в полости трубной заготовки давление за счет ее заполнения наполнителем. С обоих торцов трубной заготовки...
Тип: Изобретение
Номер охранного документа: 0002368445
Дата охранного документа: 27.09.2009
10.04.2019
№219.016.ff33

Устройство для контроля толщины покрытий в процессе нанесения их в вакууме

Изобретение относится к средствам наблюдения за процессом нанесения покрытий, в частности к устройству для контроля толщины покрытий в процессе нанесении их в вакууме, и может быть использовано в приборостроении, электронной промышленности и машиностроении для контроля толщины покрытий при...
Тип: Изобретение
Номер охранного документа: 0002274676
Дата охранного документа: 20.04.2006
10.04.2019
№219.016.ff39

Газотурбинный двигатель

Изобретение относится к области турбостроения и может быть использовано в газотурбинных двигателях и установках, преимущественно малоразмерных. Газотурбинный двигатель содержит входное устройство с обтекателем, диск вентилятора, электрический генератор, включающий статор, закрепленный внутри...
Тип: Изобретение
Номер охранного документа: 0002272152
Дата охранного документа: 20.03.2006
10.04.2019
№219.016.ff9e

Способ приготовления формовочной смеси для магниевых сплавов

Изобретение может быть использовано при изготовлении отливок из магниевых сплавов литьем в песчано-глинистые формы. В формовочную смесь вводят защитную присадку, состоящую из мочевины, борной кислоты и сульфата алюминия. Мочевину и сульфат алюминия предварительно измельчают до порошкообразного...
Тип: Изобретение
Номер охранного документа: 0002264884
Дата охранного документа: 27.11.2005
Показаны записи 71-78 из 78.
20.06.2019
№219.017.8c94

Литейный никелевый сплав

Изобретение относится к области металлургии, а именно к сплавам на основе никеля, и может быть использовано в газоперекачивающих, энергетических и морских газотурбинных установках (ГТУ) с длительной наработкой, в частности для литья охлаждаемых рабочих и сопловых лопаток с равноосной...
Тип: Изобретение
Номер охранного документа: 0002691790
Дата охранного документа: 18.06.2019
10.07.2019
№219.017.ac0d

Состав жаропрочного никелевого сплава для монокристального литья (варианты)

Изобретение относится к металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для деталей с монокристаллической структурой, например лопаток турбин, работающих при высоких температурах. Сплав по первому варианту содержит, мас.%: хром - 0,5-4,0, алюминий - 4,0-7,0,...
Тип: Изобретение
Номер охранного документа: 0002348724
Дата охранного документа: 10.03.2009
10.07.2019
№219.017.ac11

Состав жаропрочного никелевого сплава для монокристального литья (варианты)

Изобретение относится к металлургии, а именно к литейным жаропрочным никелевым сплавам, предназначенным для производства монокристальных рабочих и сопловых лопаток газотурбинных двигателей, длительное время работающих при температурах, превышающих 1000°С. Согласно первому варианту сплав имеет...
Тип: Изобретение
Номер охранного документа: 0002348725
Дата охранного документа: 10.03.2009
10.07.2019
№219.017.ad5e

Состав жаропрочного никелевого сплава (варианты)

Изобретение относится к металлургии и может быть использовано для производства монокристаллических рабочих и сопловых лопаток газотурбинных двигателей, длительное время работающих при температурах выше 1000°С. Сплав по первому варианту содержит, мас.%: хром 1,0-4,0, алюминий 4,5-7,0, вольфрам...
Тип: Изобретение
Номер охранного документа: 0002353691
Дата охранного документа: 27.04.2009
23.07.2019
№219.017.b71c

Деформируемый жаропрочный сплав на основе никеля

Изобретение относится к области металлургии, в частности к жаропрочным сплавам на никелевой основе, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и установок, предназначенных для работы в условиях активного воздействия высоких термических напряжений,...
Тип: Изобретение
Номер охранного документа: 0002695097
Дата охранного документа: 19.07.2019
20.08.2019
№219.017.c199

Жаропрочный никелевый сплав

Предлагаемое изобретение относится к области металлургии, в частности, к жаропрочным никелевым сплавам, получаемым методом металлургии гранул и используемым для производства деталей роторов газовых турбин, подвергаемых высоким статическим и динамическим нагрузкам в условиях работы до...
Тип: Изобретение
Номер охранного документа: 0002697674
Дата охранного документа: 16.08.2019
02.10.2019
№219.017.d08a

Никелевый жаропрочный сплав для монокристаллического литья

Изобретение относится к области металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для литья деталей с монокристаллической структурой, например лопаток турбин, работающих при температурах 1050°С и выше. Никелевый жаропрочный сплав для монокристаллического литья...
Тип: Изобретение
Номер охранного документа: 0002700442
Дата охранного документа: 17.09.2019
17.06.2020
№220.018.2717

Опора ротора с консистентной смазкой

Изобретение относится к газотурбинному двигателестроению, и может найти применение в двигателях, имеющих жесткие ограничения по габаритным размерам и массе. Опора ротора с консистентной смазкой содержит корпус, полый вал, внутри которого расположен порционер, в виде полого цилиндра, с...
Тип: Изобретение
Номер охранного документа: 0002723515
Дата охранного документа: 11.06.2020
+ добавить свой РИД