×
10.07.2019
219.017.ac11

Результат интеллектуальной деятельности: СОСТАВ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА ДЛЯ МОНОКРИСТАЛЬНОГО ЛИТЬЯ (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, а именно к литейным жаропрочным никелевым сплавам, предназначенным для производства монокристальных рабочих и сопловых лопаток газотурбинных двигателей, длительное время работающих при температурах, превышающих 1000°С. Согласно первому варианту сплав имеет следующий состав, мас.%: хром 0,5-4,0, алюминий 4,0-7,0, вольфрам 12,0-16,0, тантал 3,0-12,0, рений ≤3,0, кобальт 4,0-9,0, иттрий 0,003-0,1, лантан 0,001-0,1, церий 0,003-0,1, никель - остальное. Сплав характеризуется высоким уровнем жаропрочности при сохранении его технологических характеристик, таких как литейные свойства и технологическая пластичность. Согласно второму варианту сплав имеет следующий состав, мас.%: хром 0,5-4,0, алюминий 4,0-7,0, титан ≤2,0, молибден ≤4,0, вольфрам 12,0-16,0, тантал 3,0-12,0, рений ≤3,0, кобальт 4,0-9,0, ниобий ≤2,0, иттрий 0,003-0,1, лантан 0,001-0,1, церий 0,003-0,1, углерод ≤0,1, никель - остальное. Кроме высокой жаропрочности и технологической пластичности, этот сплав характеризуется повышенной коррозионной стойкостью. 2 н.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к области металлургии, а именно к литейным жаропрочным никелевым сплавам, предназначенным, например, для производства монокристальных рабочих и сопловых лопаток газотурбинных двигателей, длительное время работающих при температурах, превышающих 1000°С.

Известен жаропрочный сплав ЖС-36, применяемый в качестве материала для монокристальных лопаток и представляющий собой безуглеродистый монокристальный рений, содержащий сплав (патент РФ №1513934, С22С 19/05, БИ №10 за 1995 г.) - аналог.

Сплав ЖС-36 имеет следующий состав (мас.%): хром 2,5-3,5, кобальт 5,0-9,5, алюминий 5,0-6,2, титан 0,7-1,5, молибден 1,0-4,0, вольфрам 10,5-13,0, тантал 0,01-4,0, рений 1,0-2,6, ниобий 0,7-1,5, иттрий 0,002-0,075, лантан 0,001-0,05, церий 0,001-0,05, празеодим 0,0002-0,01, неодим - 0,0002-0,005, скандий 0,0002-0,005, никель - остальное до 100%.

Известный сплав предназначен для литья лопаток с монокристальной структурой, однако для лопаток, например, имеющих внутреннюю полость охлаждения и кристаллографическую ориентацию [001], уровень характеристик сплава ЖС-36 недостаточно высок (предел сточасовой прочности при 1000°С равен 25 кгс/мм2).

Известен жаропрочный сплав CMSX - 4, который также применяется в качестве материала для монокристальных лопаток и представляет собой безуглеродистый монокристальный рений, содержащий сплав (патент США №4643782, МПК С22С 19/05, 17.02.1987) - прототип.

Известный сплав имеет следующий химический состав (мас.%): кобальт 9,3-10,0, хром 6,4-6,8, молибден 0,5-0,7, вольфрам 6,2-6,6, тантал 6,3-6,7, алюминий 5,45-5,75, титан 0,8-1,2, гафний 0,02-0,12, рений 2,8-3,2, никель - остальное до 100%.

Известный сплав, принятый за прототип, также имеет невысокую жаропрочность (предел сточасовой прочности при температуре 1000°С равен 26 кгс/мм2) и, кроме того, у него проявляется фазовая нестабильность, связанная с выделением топологически плотно упакованных (ТПУ) фаз.

Изделия, полученные из сплава CMSX-4, обладают недостаточным уровнем жаропрочности при длительной эксплуатации в температурном интервале 900-1100°С.

Техническим результатом, на достижение которого направлено изобретение по первому варианту, является разработка жаропрочного никелевого сплава для монокристального литья, например, лопаток газотурбинных двигателей с более высоким уровнем жаропрочности.

Указанный технический результат достигается тем, что состав никелевого жаропрочного сплава для монокристального литья, содержащий никель, хром, алюминий, вольфрам, тантал, рений и кобальт, дополнительно содержит иттрий, лантан и церий при следующем соотношении компонентов (мас.%): хром 0,5-4,0, алюминий 4,0-7,0, вольфрам 12,0-16,0, тантал 3,0-12,0, рений 3,0, кобальт 4,0-9,0, иттрий 0,003-0,1, лантан 0,001-0,1, церий 0,003-0,1, никель - остальное до 100%.

Известен жаропрочный сплав ЖС-36, применяемый в качестве материала для монокристальных лопаток и представляющий собой безуглеродистый монокристальный ренийсодержащий сплав (патент РФ №1513934, С22С 19/05, БИ №10 за 1995 г.) - аналог.

Сплав ЖС-36 имеет следующий состав (мас.%): хром 2,5-3,5, кобальт 5,0-9,5, алюминий 5,0-6,2, титан 0,7-1,5, молибден 1,0-4,0, вольфрам 10,5-13,0, тантал 0,01-4,0, рений 1,0-2,6, ниобий 0,7-1,5, иттрий 0,002-0,075, лантан 0,001-0,05, церий 0,001-0,05. празеодим 0,0002-0,01, неодим 0,0002-0,005, скандий 0,0002-0,005, никель - остальное до 100%.

Легирование известного сплава большим количеством элементов с прямой ликвацией (W, Re) при относительно невысоком содержании в сплаве тантала (0,01-4,0%) ограничивает изготовление из этого сплава монокристальных отливок на литейном оборудовании с невысоким градиентом на фронте кристаллизации из-за возможности образования поверхностных дефектов типа "струйной ликвации," и, кроме того, предел сточасовой прочности известного сплава при 1000°С невысокий и равен 25 кгс/мм2.

Известен жаропрочный никелевый сплав CMSX-4, который также применяется в качестве материала для изготовления монокристальных лопаток и представляет собой безуглеродистый монокристальный ренийсодержащий сплав (патент США №4643782, МПК С22С 19/05, 17.02.1987) - прототип.

Известный сплав имеет следующий химический состав (мас.%): кобальт 9,3-10,0 хром 6,4-6,8, молибден 0,5-0,7, вольфрам 6,2-6,6, тантал 6,3-6,7, алюминий 5,45-5,75, титан 0,8-1,2, гафний 0,02-0,12, рений 2,8-3,2, никель - остальное до 100%.

Известный сплав, также имеет невысокую жаропрочность (предел сточасовой прочности при температуре 1000°С равен 26 кгс/мм2) и у него проявляется фазовая нестабильность, связанная с выделением ТПУ фаз.

Техническим результатом, на достижение которого направлено заявляемое изобретение по второму варианту, является повышение жаропрочности никелевых сплавов для монокристального литья, например, лопаток газотурбинных двигателей, улучшение литейных свойств сплава, его технологической пластичности и повышение коррозионной стойкости заявляемого сплава.

Указанный технический результат достигается тем, что состав жаропрочного никелевого сплава для монокристального литья, содержащего никель, хром, кобальт, молибден, вольфрам, алюминий, тантал, титан и рений, дополнительно содержит ниобий, иттрий, лантан и церий при следующем соотношении компонентов (мас.%): хром 0,5-4,0, алюминий 4,0-7,0, титан ≤2,0, молибден ≤4,0, вольфрам 12,0-16,0, тантал 3,0-12,0, рений ≤3,0, кобальт 4,0-9,0, ниобий ≤2,0, иттрий 0,003-0,1, лантан 0,001-0,1, церий 0,003-0,1, углерод ≤0,1, никель - остальное до 100%.

Как известно, успехи в разработке высокожаропрочных никелевых сплавов последних поколений в значительной мере связаны с легированием сплавов большим количеством рения, например 9,3 мас.% в сплаве ЖС-47, и/или рутения, например 6 мас.% в сплаве TMS-162 (Е.Н.Каблов, Н.В.Петрушин «Современные литые никелевые жаропрочные сплавы», Сборник трудов Международной технической конференции, М., ВИАМ, 2006 г., с.43). Развитие современных жаропрочных никелевых сплавов (ЖС) последних поколений связано главным образом с применением двух основных подходов в области материаловедения и технологии:

- введением в систему легирования тугоплавких металлов, например тантала и рения;

- использованием технологии направленной кристаллизации для получения монокристаллов.

Однако в связи с тем, что рений и особенно рутений являются очень дорогими и дефицитными металлами, возникает вопрос о том, полностью ли исчерпаны возможности улучшения жаропрочных сплавов, в том числе и никелевых, путем их легирования традиционными, менее дорогими и более доступными элементами, например, такими как вольфрам, тантал и другими.

Авторами проведен анализ системы легирования жаропрочных никелевых сплавов с точки зрения значений энергии связи (энергии когезии) легирующих элементов. Рассматривая энергию связи элементов фундаментальным параметром, определяющим уровень механических свойств и эксплуатационных характеристик материала, установлено распределение легирующих элементов жаропрочных сплавов по значениям энергии связи для обобщенной системы легирования никелевых жаропрочных сплавов: Ni, Со, Cr, V, Ti, Al, Ru, Mo, Nb, Zr, Hf, Та, W, Re, Os, Ir.

Полученная диаграмма распределения легирующих элементов по значениями энергии связи (энергии когезии) приведена на чертеже.

При анализе приведенных на диаграмме данных будем предполагать, что вклад в энергию связи сплава конкретного легирующего элемента, например тантала, прямо пропорционален величине его собственной энергии связи и содержанию данного элемента в сплаве в атомных процентах. При этом обязательно наличие в сплаве основного γ'-образующего элемента - алюминия, причем его содержание позволяет обеспечивать образование необходимого количества упрочняющей γ'-фазы, выделяющейся при распаде пересыщенного твердого раствора.

С учетом вышеизложенного, базовой системой никелевых жаропрочных сплавов будем считать Ni-Al с возможностью замещения некоторого количества алюминия титаном.

Результаты, представленные на диаграмме, показывают, что первым элементом, способствующим наибольшему повышению энергии связи никеля, следует считать вольфрам. Поэтому базовая система никелевых жаропрочных сплавов в первую очередь должна содержать вольфрам, причем его количество целесообразно держать на максимально возможном высоком уровне, когда его предельное содержание ограничено величиной растворимости вольфрама в никелевом сплаве. При этом следует иметь в виду, что замена вольфрами танатлом или рением нецелесообразна, так как когезивная прочность сплава при такой замене повышаться не будет.

Следующий элемент для легирования никелевых жаропрочных сплавов - тантал. Тантал целесообразно вводить в жаропрочные сплавы на фоне высокого содержания вольфрама, контролируя возможность выделения в сплаве Та-содержащих промежуточных фаз.

Вслед за танталом идет рений, энергия связи которого также почти в два раза больше таковой для чистого никеля. Однако при введении в жаропрочный сплава рения за счет вольфрама не следует ожидать повышения когезивной прочности сплава.

Использование принципа многокомпонентного легирования в данном случае целесообразно потому, что это позволяет увеличить в жаропрочных сплавах суммарное содержание легирующих элементов с высокой когезивной прочностью, обеспечивая максимальное упрочнение всего сплава.

При анализе диаграммы, представленной на чертеже, обращает на себя внимание следующее: обязательный компонент последних модификаций жаропрочных сплавов - рутений, почти аналогичен молибдену. Среди γ'-образующих элементов, которые могут способствовать повышению когезивной прочности жаропрочных сплавов, кроме уже рассмотренного тантала, следует отметить титан и ниобий.

Основными отличиями заявляемого по первому варианту никелевого жаропрочного сплава для монокристального литья от сплава, принятого за прототип, являются:

повышенное содержание в нем вольфрама;

пониженное содержание кобальта и хрома;

наличие системы микролегирующих добавок, включающей иттрий, лантан и церий.

Особенностью заявляемого сплава по первому варианту (КС-2) является высокое содержание вольфрама в пределах от 12,0 до 16,0 мас.%. Верхний предел содержания вольфрама ограничивает область концентраций, при выходе за которую возрастает вероятность выделения вольфрама из твердого раствора в виде α-фазы, которая не является таким эффективным упрочнителем, как γ'-фаза на основе Ni3Al, а при содержании вольфрама ниже 12 мас.% его стабилизирующее воздействие на структуру ослабляется.

Заявляемое количество тантала вводится в состав никелевого жаропрочного сплава на фоне высокого содержания вольфрама. Система легирования заявляемого сплава (КС-2) сбалансирована таким образом, чтобы в сплаве не происходило выделения α -фазы несмотря на то, что тантал, так же как и вольфрам, имеет ОЦК решетку.

Влияние тантала на свойства заявляемого сплава во многом сходно с влиянием вольфрама, тантал также характеризуется высокой когезивной прочностью, что характерно и для заявляемого в заданном соотношении компонентов сплава. Тантал распределяется между γ-матрицей и упрочняющей γ'-фазой, стабилизируя и упрочняя обе основные фазы жаропрочного сплава. При содержании тантала больше 12,0 мас.% возрастает вероятность его выпадения из твердого раствора в виде α-фазы с ОЦК решеткой, а при содержании меньше 3,0 мас.% его воздействие на свойства практически отсутствует.

Наличие в заявляемом сплаве рения в заявляемом количестве обусловлено следующим.

Основные трудности, возникающие при разработке сплавов с достаточно выоским содержанием рения, связаны с созданием сплавов, сбалансированных по отношению к выделению неблагоприятных ТПУ фаз, которые с одной стороны охрупчивают сплав, а с другой резко разупрочняют твердый раствор в результате удаления из него элементов, его упрочняющих. Структурная стабильность содержащих рений сплавов относительно образования ТПУ фаз определяется соотношением содержания в сплаве элементов шестой группы - хрома, молибдена, вольфрама и рения. Эти элементы являются упрочнителями твердого раствора, причем наиболее эффективным является именно рений, который преимущественно распределен в γ-твердом растворе. Обладая наименьшим коэффициентом диффузии в никеле, рений тормозит процессы коагуляции упрочняющей γ'-фазы, тем самым повышая ее термическую стабильность.

Введение в заявляемый состав жаропрочного сплава указанного количества хрома обусловлено необходимостью повышения его жаростойкости. При увеличении содержания хрома выше 4 мас.% возрастает вероятность образования топологически плотноупакованной (ТПУ) фазы на основе хрома, которая охрупчивает сплав, кроме того, в сплавах с довольно высоким содержанием рения содержание хрома может быть снижено до 4,0%, так как рений относится к элементам, повышающим сопротивление сплава газовой коррозии.

Легирование сплава кобальтом в заявляемых количествах обусловлено необходимостью улучшения технологических характеристик сплава - технологической пластичности и литейных свойств.

Система микролегирующих добавок, а именно совместное использование лантана, иттрия и церия в заявляемых количествах, обеспечивает стабилизацию структурных дефектов в монокристаллах заявляемого сплава, а совместно с остальными компонентами состава сплава обеспечивает повышение жаропрочности по сравнению с прототипом.

Особенностью заявляемого сплава по второму варианту является аналогичность влияния рения, вольфрама, тантала, кобальта и системы микролегирующих добавок (иттрий, лантан и церий), но кроме этого на свойства заявляемого сплава по второму варианту влияет наличие в его составе титана, молибдена, ниобия и, возможно, углерода.

Титан - это один из основных γ'-образующих элементов, количество которого с одной стороны обеспечивает образование необходимого содержания упрочняющей γ'-фазы, а с другой стороны, ограничивает объем избыточной эвтектики (γ'+γ).

Ниобий и молибден обеспечивают повышение долговечности материала в области температур ≈1000°С. Молибден является упрочнителем твердого раствора, однако наиболее существенно его вклад проявляется в изменении параметра γ-твердого раствора и, как следствие, морфологии упрочняющей вторичной γ'-фазы, делая ее кубической и тем самым, обеспечивая высокое сопротивление ползучести жаропрочных сплавов.

В состав сплава может вводиться углерод для образования второй упрочняющей фазы жаропрочных сплавов - карбидов. Суммарное содержание в заявляемом сплаве углерода и карбидообразующих элементов обеспечивает отсутствие охрупчивающих ТПУ фаз.

Заявляемый состав жаропрочного никелевого сплава по второму варианту в количественном и качественном составе обеспечивает, наряду с повышением жаропрочности, улучшением литейных свойств сплава и его технологической пластичности, повышение коррозионной стойкости.

Примеры конкретного выполнения.

Пример для сплава по первому варианту.

Для апробации результатов были отлиты сплавы по первому и второму вариантам. Отливка сплавов осуществлялась в вакуумно-индукционной печи «Кристалл» емкостью 5-10 кг. Порядок введения компонентов заявляемых составов сплавов является стандартным: никель, хром, кобальт, вольфрам, рений, молибден, тантал, углерод, плавление, раскисление углеродом, последующее введение титана, алюминия и микролегирующих добавок (элементы с высокой активностью к кислороду) и разливка.

Для апробации сплава по первому варианту были выплавлены два состава сплава (один заявляемый и один сплав прототип CMSX-4), содержащие компоненты (в мас.%), приведенные в Таблице 1.

Монокристальная структура, ориентация оси роста [001].

Таблица 1.
№ п/пКомпоненты состава сплавов
CrAlWТаСоReYLaСеNi
Заявляемый сплав3,35,1915,06,36,02,00,020,020,02Ост.
CMSX-46,55,66,46,59,53,0Ост.

После чего литые образцы подвергались высокотемпературному газостатическому уплотнению (заявляемый сплав) и термической обработке и испытывались.

Результаты испытаний:

Сплав CMSX-4 (прототип):

Т=1000°С, σ 100=260 МПа

Заявляемый сплав:

Т=1000°С, σ100=270 МПа

Для апробации сплава по второму варианту были выплавлены два состава сплава (один заявляемый и один сплав прототип CMSX-4), содержащие компоненты (в мас.%), приведенные в Таблице 2.

№ п/пКомпоненты состава сплавов
CrAlWТаСоYLaСеTiСМNbReNi
КС-22,35,215,06,74,90,020,020,020,50,010,10,3Ост.
CMSX-46,55,66,56,49,5---1,0-0,6-3,0Ост.

После чего литые образцы подвергались высокотемпературному газостатическому уплотнению (заявляемый сплав) и термической обработке и испытывались.

Результаты испытаний:

Сплав CSX-4 (прототип):

Т=1000°С, σ100=260 МПа

Заявляемый сплав:

Т=1000°С, σ100=280 МПа

Введение дополнительных легирующих элементов в заявляемый сплав по второму варианту приводит к уменьшению количества литейных микропор в дендритной структуре на 20-30% по сравнению с прототипом. Наблюдаемое улучшение микроструктуры может оказаться существенным, особенно в условиях знакопеременного нагружения деталей и усталостного характера разрушения.

Приведенные результаты испытаний показывают, что по сравнению с прототипом заявляемые сплавы по первому и второму вариантам обеспечивают достижение технического результата.

хром0,5-4,0алюминий4,0-7,0вольфрам12,0-16,0тантал3,0-12,0рений≤3,0кобальт4,0-9,0иттрий0,003-0,1лантан0,001-0,1церий0,003-0,1никельостальноеc0c1211none577хром0,5-4,0алюминий4,0-7,0титан≤2,0молибден≤4,0вольфрам12,0-16,0тантал3,0-12,0рений≤3,0кобальт4,0-9,0ниобий≤2,0иттрий0,003-0,1лантан0,001-0,1церий0,003-0,1углерод≤0,1никельостальноеc0c1211none7791.Составжаропрочногоникелевогосплавадлямонокристальноголитья,содержащийникель,хром,алюминий,вольфрам,тантал,ренийикобальт,отличающийсятем,чтодополнительносодержититтрий,лантаницерийприследующемсоотношениикомпонентов,мас.%:12.Составжаропрочногоникелевогосплавадлямонокристальноголитья,содержащийникель,хром,кобальт,молибден,вольфрам,алюминий,тантал,титанирений,отличающийсятем,чтоондополнительносодержитниобий,иттрий,лантан,церийиуглеродприследующемсоотношениикомпонентов,мас.%:2
Источник поступления информации: Роспатент

Показаны записи 1-10 из 52.
20.02.2019
№219.016.c0e3

Турбореактивный двухконтурный двигатель с форсажной камерой

Изобретение относится к авиастроению, в частности к турбореактивным двухконтурным двигателям с форсажной камерой. Турбореактивный двухконтурный двигатель с форсажной камерой включает компрессор высокого давления, турбину высокого давления и турбину низкого давления. Двигатель выполнен со...
Тип: Изобретение
Номер охранного документа: 0002369765
Дата охранного документа: 10.10.2009
01.03.2019
№219.016.ca2d

Способ обработки металлического сплава давлением

Изобретение относится к обработке давлением металлических сплавов, преимущественно, в виде слитков и может быть использовано при изготовлении изделий, в том числе ответственного назначения, в различных областях техники, например, в авиации, машиностроении. Сплав нагревают и деформируют за...
Тип: Изобретение
Номер охранного документа: 0002255122
Дата охранного документа: 27.06.2005
11.03.2019
№219.016.d67e

Способ изготовления колец

Изобретение относится к обработке металлов давлением и может быть использовано в металлургической и авиационной промышленности при изготовлении деталей ответственного назначения, преимущественно деталей газотурбинных двигателей. Производят поперечную осадку заготовки с получением пластины....
Тип: Изобретение
Номер охранного документа: 0002286862
Дата охранного документа: 10.11.2006
11.03.2019
№219.016.d6fa

Щеточное уплотнение

Изобретение относится к области машиностроения, в частности к устройствам для уплотнения зазора между подвижными относительно одна другой деталями, а именно к щеточным уплотнениям. Щеточное уплотнение зазора между выполненными с возможностью перемещения одна относительно другой деталями...
Тип: Изобретение
Номер охранного документа: 0002293894
Дата охранного документа: 20.02.2007
11.03.2019
№219.016.d6fc

Узел опоры газотурбинного двигателя

Изобретение относится к энергетическому и транспортному машиностроению, в частности к системам смазки подшипниковых опор газотурбинных двигателей, и может быть использовано для подачи масла в подшипники, например межроторные подшипники высокотемпературных авиационных газотурбинных двигателей....
Тип: Изобретение
Номер охранного документа: 0002293193
Дата охранного документа: 10.02.2007
11.03.2019
№219.016.d716

Способ безоблойной штамповки детали

Изобретение относится к обработке металлов давлением и может быть использовано при штамповке деталей типа корпусов арматуры газотурбинных двигателей. Деталь, имеющую внутреннюю полость, уступы и отростки с приливами, штампуют безоблойным методом по меньшей мере за два перехода. При этом...
Тип: Изобретение
Номер охранного документа: 0002292979
Дата охранного документа: 10.02.2007
11.03.2019
№219.016.d7c8

Обтекаемая конструкция

Изобретение относится к области прикладной гидрогазодинамики, в частности к системам для управления пограничным слоем, и может быть использовано, например, на летательных аппаратах, а также на судах и в трубопроводах. Техническим результатом изобретения является снижение гидравлического...
Тип: Изобретение
Номер охранного документа: 02218490
Дата охранного документа: 10.12.2003
11.03.2019
№219.016.d985

Способ изготовления крупногабаритной полимерной оснастки

Изобретение относится к способам изготовления крупногабаритной и другой оснастки из неметаллических материалов для производства на ней лемнискатных входов, коков обтекателей, обшивок, мотогондолл и т.д. Техническим результатом заявленного изобретения является снижение металлоемкости,...
Тип: Изобретение
Номер охранного документа: 0002375185
Дата охранного документа: 10.12.2009
11.03.2019
№219.016.da8f

Способ изготовления теплоизолирующего покрытия и композиционный материал для его осуществления

Изобретение относится к теплоизолирующим покрытиям. Описан способ изготовления теплоизолирующего покрытия элемента изделия, заключающийся в нанесении на поверхность элемента композиционного материала в виде суспензии фрагментов холста базальтового в водном геле и термообработке нанесенного...
Тип: Изобретение
Номер охранного документа: 0002364612
Дата охранного документа: 20.08.2009
10.04.2019
№219.017.0191

Смазка для заготовок при горячей или полугорячей обработке металлов давлением

Сущность: смазка содержит, мас. %: графит 12,5-25,0, оксид металла 7,5-12,0, натриевая соль фосфорной кислоты 3-7, силикат щелочного металла 2-5, карбонат щелочного металла 0,5-3, лигносульфонат 0,2-0,5, водорастворимый целлюлозный полимер 0,3-1,5, оксиэтилированный алкилфенол 0,5-2,0, вода...
Тип: Изобретение
Номер охранного документа: 02224011
Дата охранного документа: 20.02.2004
Показаны записи 1-10 из 87.
10.06.2013
№216.012.489b

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству сплавов на основе интерметаллида NiАl и изделиям, получаемым из них методом направленной кристаллизации, с монокристаллической или столбчатой структурами, например лопаток газовых турбин, работающих при температурах до 1200°С....
Тип: Изобретение
Номер охранного документа: 0002484167
Дата охранного документа: 10.06.2013
27.06.2013
№216.012.50cc

Способ формирования покрытия на рабочей охлаждаемой лопатке газовой турбины из никелевого сплава

Изобретение относится к технологии нанесения покрытий на лопатки газовых турбин из никелевых сплавов и может быть использовано в авиационной промышленности, машиностроении, энергетике и других отраслях промышленности. Предварительно обезжиренную лопатку размещают в камере промышленной...
Тип: Изобретение
Номер охранного документа: 0002486277
Дата охранного документа: 27.06.2013
10.11.2013
№216.012.7ce4

Способ изготовления щеточного уплотнения роторов

Изобретение может быть использовано в процессах изготовления щеточных уплотнений методами пайки с помощью электронного луча. Кольцевое основание и кольцевые опорные пластины собирают в кольцевую оправку, на которую наматывают проволоку и прижимают ее к оправке прижимными кольцевыми пластинами....
Тип: Изобретение
Номер охранного документа: 0002497645
Дата охранного документа: 10.11.2013
20.02.2014
№216.012.a174

Способ изготовления сварной тонкостенной конической обечайки с продольными гофрами

Изобретение относится к области сварочного производства и может быть использовано в процессах изготовления методами сварки тонкостенных обечаек с элементами жесткости в виде продольных гофр, используемых, например, в качестве теплового экрана сопла ГТД. Способ заключается в том, что производят...
Тип: Изобретение
Номер охранного документа: 0002507047
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.afab

Способ изготовления сварных тонкостенных конических обечаек с ребрами жесткости

Способ предназначен для изготовления тонкостенных конических обечаек с ребрами жесткости методом сварки. Производят формирование сегментов обечайки. Отгибают продольные кромки сегментов для получения ребер жесткости, размещают сегменты на съемных опорных пластинах, установленных на основании...
Тип: Изобретение
Номер охранного документа: 0002510686
Дата охранного документа: 10.04.2014
10.06.2014
№216.012.ceca

Щеточное уплотнение роторов, способ и устройство для его изготовления

Группа изобретений относится к уплотнительной технике. Щеточное уплотнение роторов выполнено в виде прижимной щеки и последовательно состыкованных с ней элементов - кольцевой проволочной щетки и опорной щеки. Устройство снабжено технологическим кольцом. Прижимная щека выполнена с торцевым...
Тип: Изобретение
Номер охранного документа: 0002518709
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d774

Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью

Изобретение относится к области металлургии, в частности к никелевым сплавам, и может быть использовано при производстве сопловых и рабочих охлаждаемых лопаток газотурбинных двигателей и установок. Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании...
Тип: Изобретение
Номер охранного документа: 0002520934
Дата охранного документа: 27.06.2014
20.10.2014
№216.012.fe34

Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на никелевой основе. Сплав, мас.%: хром - 4,0-6,0; кобальт - 8,0-11,0; молибден - 2,5-3,5; вольфрам - 6,0-8,0; алюминий - 5,4-6,2; углерод 0,05-0,16; бор - 0,008-0,04; цирконий - 0,01-0,05; титан -...
Тип: Изобретение
Номер охранного документа: 0002530932
Дата охранного документа: 20.10.2014
20.07.2015
№216.013.63e2

Композиционный материал на основе ниобия, упрочненный силицидами ниобия, и изделие, выполненное из него

Изобретение относится к области металлургии, в частности к эвтектическим композиционным материалам на основе ниобия, упрочненным силицидами ниобия, предназначенным для изготовления теплонагруженных изделий, и может быть использовано в авиационной и энергетической промышленности. Композиционный...
Тип: Изобретение
Номер охранного документа: 0002557117
Дата охранного документа: 20.07.2015
10.09.2015
№216.013.75d6

Способ работы и устройство газотурбинной установки

Группа изобретений относится к энергетике Способ работы газотурбинной установки предусматривает подачу в камеру сгорания сжатого воздуха и паро-метановодородной смеси, расширение продуктов ее сгорания в газовой турбине, охлаждение путем испарения или перегрева водяного пара, направляемого в...
Тип: Изобретение
Номер охранного документа: 0002561755
Дата охранного документа: 10.09.2015
+ добавить свой РИД