×
10.04.2014
216.012.b41f

Результат интеллектуальной деятельности: ГИБРИДНЫЙ ТУРБОРЕАКТИВНЫЙ АВИАЦИОННЫЙ ДВИГАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Гибридный турбореактивный авиационный двигатель содержит камеру сгорания и расположенный вне камеры электрохимический генератор на топливных элементах, связанные входом с источником углеводородного топлива и потоком сжатого в двигателе воздуха, и контроллер. Выход камеры сгорания связан через турбину высокого давления с турбиной низкого давления. Выход электрохимического генератора связан с электродвигателем, установленным на валу турбины низкого давления. Контроллер связан с регулирующими органами, расположенными в тракте топлива и потока воздуха, и выполнен с возможностью регулирования соотношения потоков воздуха и потоков топлива, поступающих в электрохимический генератор и камеру сгорания, и совмещения для привода вала разнородных энергий электрогенератора и турбины низкого давления в виде электроэнергии и тепловой энергии продуктов сгорания. Изобретение направлено на уменьшение выбросов токсичных веществ за период полетного цикла, снижение шума, в том числе в зоне аэропортов, повышение экономичности. 6 з.п. ф-лы, 1 ил. .

Изобретение относится к авиационному машиностроению, а более точно касается гибридного турбореактивного авиационного двигателя.

Под «гибридностью» понимается схема, позволяющая совмещать в двигателе тягу двигателей разного типа.

Так, известен гибридный автомобиль, который использует для привода ведущих колес разнородную энергию (Автомобильные новости. Гибридные автомобили, 15 марта 2011: http://carnews.topinfomaster.com/post_1300194213.html). Для этого современными автопроизводителями используется схема, позволяющая совмещать тягу двигателя внутреннего сгорания (ДВС) и электродвигателя. Это позволяет избежать работы ДВС в режиме малых нагрузок, а также реализовывать рекуперацию кинетической энергии, что повышает топливную эффективность силовой установки. Этот тип двигателя в автомобильной индустрии (Toyota Prius, Lexus, BMW 5, 6 и 7 серий), а также в судоходстве (Mochi Craft Long Range 23M) сегодня является наиболее подходящим решением. Он основывается на сочетании традиционного дизеля и электромотора. Они не соединяются напрямую. Если они завязаны на единый передаточный вал, то могут работать отдельно друг от друга. Это значит, что в некоторых случаях можно идти только на электричестве. Преимущества - отсутствие загрязнения и шума. Недостатки - уменьшенные скорость и автономность.

Известен гибридный ракетный двигатель (ГРД) - химический ракетный двигатель, использующий компоненты ракетного топлива в разных агрегатных состояниях - жидком и твердом. В твердом состоянии может находиться как окислитель, так и горючее.

Известен гибридный ТРД/ПВРД фирмы Pratt&Whitney на самолете SR-71 blackbind (Сайт FreePapers.ru - 7 декабря 2010, http://freepapers.ru/85/istoriya-razvitiya-reaktivnogo-dvigatelya/3888.35649.list4.html), который работал как ТРД с форсажем до скорости M=2,4, а на более высоких скоростях воздух поступал в форсажную камеру, минуя компрессор, камеру сгорания и турбину, подача топлива в форсажную камеру увеличивалась и он работал как ПВРД. Такая схема позволяет расширить скоростной диапазон эффективности работ до M=3,2, но уступает ТРД и ПВРД по весовым характеристикам.

Известно использование топливных элементов во вспомогательных силовых установках самолета (Сайт - aviaport.ru. 29 марта 2007: http://www.aviaport.ru/digest/2007/03/29/118391.html).

Известен авиалайнер A320 ATRA (Advanced Technology Research Aircraft), оснащенный двумя электродвигателями на переднем колесе, который продемонстрировал, что мощности электротяги достаточно, чтобы проехать от начальной позиции до взлетно-посадочной полосы, не включая реактивные двигатели. Электродвигатели получали питание от бортовых топливных элементов самолета (Сайт - ozemle. net. 18 августа 2011 г. http://www.ozemle.net/category/dostijeniya/page/12).

Известно, что Airbus и DLR экспериментально доказали, что топливные элементы могут быть использованы в качестве наземной вспомогательной силовой установки, которая, подключенная к самолету, обеспечивает подачу электричества на освещение, кондиционирование салона и для других нужд в то время, когда авиационные двигатели отключены (сайт - aero-news.ru, 18 июля 2011 г.: http://www.aero-news.ru/airbus-i-dlr-eksperimentiruyut-s-toplivnymi-elementami/).

Известен электрический самолет на топливных элементах (заявка США №2003/0075643), летающий на небольшой высоте со схемой силовой установки, которая включает электромотор, батарею твердополимерных топливных элементов, отдельный воздухозаборник из атмосферы для батареи твердополимерных топливных элементов, топливный бак с запасенным водородом либо с химическим реагентом, который в результате реакции выделяет водород, электрический преобразователь, контроллер, самолетное оборудование, солнечные батареи, аккумуляторные батареи.

Выработанная электрическая мощность поступает в преобразователь, далее в систему энергоснабжения и оборудования самолета и к двум электромоторам, которые приводят во вращение воздушные винты легкого самолета.

Кроме получения электроэнергии от батареи топливных элементов предусмотрено дополнительное получение электроэнергии от солнечных батарей и запас ее в аккумуляторных батареях.

Данное техническое решение касается электродвигателя для легких местных самолетов без камеры сгорания.

Известен двухконтурный двигатель с комбинированной камерой сгорания (заявка США №2008/001038). В камере сгорания дополнительно для улучшения характеристик ТРДД размещены топливные элементы, работающие одновременно с основной камерой сгорания. Двигатель снабжен системой управления - контроллером, одной из задач которого является управление расходами топлива через камеру сгорания и топливными элементами. Полученная в топливном элементе электроэнергия используется потребителями бортовой сети самолета, например системой кондиционирования или другими системами. Хотя двигатель имеет конструктивно комбинированную камеру сгорания, его нельзя отнести к гибридным турбореактивным двигателем, так как он обеспечивает электроэнергией вспомогательные нужды, а для привода вентилятора используется традиционная тепловая энергия камеры сгорания.

Гибридных авиационных турбореактивных двигателей, совмещающих для привода вентилятора разнородную энергию, продуктов сгорания и электрическую, в основной силовой установке в патентной литературе не выявлено.

В основу изобретения положена задача создания гибридного авиационного турбореактивного двигателя, позволяющего уменьшить выброс токсичных веществ, снизить шум, особенно в зоне аэропортов, повысить топливную экономичность.

Технический результат - уменьшение выбросов токсичных веществ за период полетного цикла, снижение шума, в том числе в зоне аэропортов, повышение топливной экономичности.

Поставленная задача решается тем, что гибридный турбореактивный авиационный двигатель (ГТРД) содержит камеру сгорания и расположенный вне камеры электрохимический генератор на топливных элементах, связанные входом с источником углеводородного топлива и потоком сжатого в двигателе воздуха, при этом выход камеры сгорания связан через турбину высокого давления с турбиной низкого давления, а выход электрохимического генератора - с электродвигателем, установленным на валу турбины низкого давления, и контроллер, связанный с регулирующими органами, расположенными в тракте топлива и потока воздуха, и выполненный с возможностью регулирования соотношения потоков воздуха и потоков топлива, поступающих в электрохимический генератор и камеру сгорания, и совмещения для привода вала разнородных энергий электрогенератора и турбины низкого давления в виде электроэнергии и энергии продуктов сгорания.

Целесообразно, чтобы контроллер был связан с регулирующими органами, один из которых расположен в тракте топлива от его источника к камере и электрохимического генератора и регулирует распределение углеводородного топлива между электрохимическим генератором и камерой сгорания, а другой расположен в тракте потока воздуха на отводящем канале воздушного потока за компрессором и регулирует распределение воздуха между электрохимическим генератором и камерой сгорания. Целесообразно также, чтобы электрохимический генератор содержал риформер и камеру дожигания, вход которой соединен с выходом батареи, а выход - с камерой смешения на выходе камеры сгорания.

В дальнейшем изобретение поясняется описанием и чертежом, где показана принципиальная схема гибридного турбореактивного авиационного двигателя, согласно изобретению.

Гибридный турбореактивный авиационный двигатель (ГТРД) содержит камеру сгорания 4, электрохимический генератор (ЭХГ) 8, расположенный вне камеры сгорания 4, связанные входами с источником углеводородного топлива и потоком сжатого в двигателе воздуха.

ГТРД содержит также вентилятор 1, редуктор 2, компрессор 3, турбину 5 высокого давления, турбину 6 низкого давления, электродвигатель 7, связанный входом с электрохимическим генератором 8. Выход камеры сгорания 4 связан через турбину 5 высокого давления с турбиной 6 низкого давления, установленной на одном валу 16 с электродвигателем 7. На том же валу 16 установлен вентилятор 1, который через редуктор 2 приводится во вращение от турбины 6 и электродвигателя 7. На чертеже представлен двухвальный ГТРД, где компрессор 3 и турбина 5 установлены на другом валу 15. Однако возможен ГТРД одновального исполнения.

Кроме того, ГТРД содержит контроллер 20, выполненный с возможностью регулирования соотношения потоков воздуха и потоков топлива, поступающих в электрохимический генератор 8 и камеру сгорания 4.

Контроллер 20 связан с регулирующим органом 11, расположенным в тракте топлива от его источника к камере сгорания 4 и к ЭХГ 8 и регулирующим распределение углеводородного топлива между ЭХГ и камерой сгорания, и с регулирующим органом 9, расположенным в тракте потока воздуха на отводящем канале воздушного потока за компрессором 3 и регулирующим распределение сжатого воздуха между ЭХГ 8 и камерой сгорания 4.

Конструктивно регулирующие органы могут быть выполнены в виде заслонки и предварительно тарированы.

Контроллер 20 меняет положение заслонок в зависимости от режима полета и управляющих воздействий пилота, обеспечивая тем самым потребный расход топлива и воздуха между каналами ЭХГ и камеры сгорания.

Электрохимический генератор (ЭХГ) 8 содержит батарею 12 элементов, например, твердотопливных. Однако возможно применение и других топливных элементов.

ЭХГ 8 может включать риформер 13, преобразующий поступающее углеводородное топливо в синтез-газ. Риформер 13 снабжен входами для подачи воздуха и углеводородного топлива, а выход соединен с входом батареи 12 топливных элементов. ЭХГ 8 может включать также камеру дожигания 14 синтез-газа, выходящего из батареи топливных элементов, вход которой соединен с выходом батареи 12, а выход - с камерой смешения 10 на выходе камеры сгорания 4. Выработанный риформером 13 синтез-газ поступает в батарею 12 твердооксидных топливных элементов (ТОТЭ), работающих на выработанном синтез-газе, заслонка 17 связана с контроллером и разделяет воздушный поток на используемый для выработки синтез-газа в риформере 13 и на поступающий в качестве окислителя непосредственно в батареи 12 топливных элементов.

Электрохимический генератор 8 дополнительно может быть связан с внешними (бортовыми) потребителями электроэнергии.

Анализ вопросов согласования работы газодинамической и электрохимических составляющих ГТРД с ЭХГ на основе батареи топливных элементов на крейсерском и взлетном режиме показал целесообразность совмещения для привода вала 16 разнородных энергий - электроэнергии и тепловой энергии продуктов сгорания.

В канал ЭХГ 8 на крейсерском режиме идет основная часть воздуха, покидающего компрессор 3, а именно от 70% до 90% в зависимости от параметров конкретного двигателя. Под полученный на этом расчетном режиме физический расход воздуха проектируется ЭХГ.

Для обеспечения надежной и эффективной работы ЭХГ на других режимах расход воздуха через ЭХГ изменяется в ограниченных пределах. Для этих целей используется заслонка 9, регулирующая долю воздуха, идущего в каждый из каналов через традиционную камеру сгорания или ЭХГ.

Перед турбиной высокого давления расположена камера смешения 10, в которую поступает газ из двух каналов (канал 18 от ЭХГ и канал 19 от камеры сгорания). Из камеры смешения 10 весь газ поступает на турбину 5 компрессора.

В двухвальном ГТРД выработанная в ЭХГ электрическая мощность подводится к электродвигателю 7 на валу 16 с вентилятором 1 и редуктором 2, как дополнительная к мощности турбины 6 вентилятора.

Гибридный авиационный турбореактивный двигатель работает следующим образом.

При включении двигателя на аэродроме контроллер 20 устанавливает в соответствующее запуску положение заслонки 9 подачи воздуха и 11 подачи топлива.

В камеру сгорания 4 поступает сжатый воздух после компрессора 3 за вычетом расхода воздуха, подаваемого ЭХГ. При запуске примерно 10% воздуха поступает в ЭХГ, 90% - в камеру сгорания.

При переходе на другие режимы контроллер переключает заслонки в положение, соответствующее текущему режиму полета. Например, на крейсерском режиме контроллер переключает положение заслонок в положение, когда 70-90% воздуха поступает в ЭХГ, а 30-10% - в камеру сгорания.

От работы батареи 12 топливных элементов и камеры сгорания 4 включаются электродвигатель 7 и турбина 6, которые приводят во вращение валы 15 и 16. Работа привода валов от электродвигателя и турбины снижает нагрузку на камеру сгорания, что уменьшает токсичные выбросы и шум.

Особенностью предложенной схемы гибридного ТРД является то, что ЭХГ работает на протяжении всего полета с расходом воздуха через него, близким к расчетному, а согласование режимов дросселирования и регулирования происходят по топливовоздушным каналам, связанным с традиционной камерой сгорания.

Таким образом, предложенный ГТРД совмещает в силовой установке для привода вала разнородную энергию - электроэнергию и тепловую энергию продуктов сгорания.

Это сочетание повышает экономичность за счет более высокого КПД использования топлива в топливных элементах, уменьшает выбросы загрязняющих веществ, повышает надежность, упрощает задачи регулирования ГТРД на режимах полетного цикла магистрального самолета по сравнению с аналогами.


ГИБРИДНЫЙ ТУРБОРЕАКТИВНЫЙ АВИАЦИОННЫЙ ДВИГАТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 121-130 из 205.
11.01.2019
№219.016.ae5e

Способ изготовления составного керамического стержня для литья полых изделий

Изобретение относится к области литейного производства и может быть использовано при отливке полых лопаток газотурбинных двигателей. При изготовлении составного стержня из керамической массы изготавливают основной стержень (1) с выступами (2) на наружной поверхности и обжигают его. Из...
Тип: Изобретение
Номер охранного документа: 0002676721
Дата охранного документа: 10.01.2019
13.01.2019
№219.016.af81

Устройство формирования образцов тонких покрытий

Изобретение относится к области технической физики и может быть использовано для формирования образцов тонких покрытий, применяемых при испытании на когезионную прочность растяжением при повышенных температурах. Сущность: устройство включает по меньшей мере два кольцевых элемента, каждый из...
Тип: Изобретение
Номер охранного документа: 0002676953
Дата охранного документа: 11.01.2019
20.02.2019
№219.016.bca1

Способ определения температурных временных характеристик термоиндикаторных красок

Изобретение относится к области измерения температуры с помощью термоиндикаторных красок и может найти применение, в частности, при термометрировании узлов двигателя. Сущность: наносят термоиндикаторную краску на препарированный термопарами металлический образец симметричного сечения....
Тип: Изобретение
Номер охранного документа: 0002265196
Дата охранного документа: 27.11.2005
20.02.2019
№219.016.bcd6

Устройство для определения параметров пульсирующего потока

Изобретение относится к области газовой динамики. Устройство содержит насадок, оснащенный определителем направления потока, соединенным с блоком коррекции положения насадка относительно направления потока, блок цифрового преобразования и регистрации аналоговых сигналов, блок определения...
Тип: Изобретение
Номер охранного документа: 0002285244
Дата охранного документа: 10.10.2006
20.02.2019
№219.016.bfde

Аэродинамическая модель летательного аппарата с интегрированным воздушно-реактивным двигателем

Изобретение относится к области аэродинамических испытаний для измерения аэродинамических сил, действующих на уменьшенную в масштабе модель летательного аппарата в аэродинамической трубе в процессе экспериментального определения летно-технических и тягово-экономических характеристик летательных...
Тип: Изобретение
Номер охранного документа: 0002370744
Дата охранного документа: 20.10.2009
20.02.2019
№219.016.c1e4

Устройство поворота вектора тяги турбореактивного двухконтурного двигателя

Устройство поворота вектора тяги турбореактивного двухконтурного двигателя включает центральное тело газогенератора внутреннего контура и мотогондолу вентилятора наружного контура с кольцевым соплом на выходе, содержащее в задней части мотогондолы по периферии окна и размещенные в окнах...
Тип: Изобретение
Номер охранного документа: 0002425242
Дата охранного документа: 27.07.2011
20.02.2019
№219.016.c2ad

Инерционное устройство для остановки обоймы при испытаниях летательных аппаратов на птицестойкость

Изобретение относится к области авиастроения и безопасности полетов и может быть использовано для исследования процессов ударного взаимодействия элементов конструкции самолета при столкновении с птицей или другими посторонними предметами. Устройство содержит упор с центральным отверстием и...
Тип: Изобретение
Номер охранного документа: 0002451273
Дата охранного документа: 20.05.2012
20.02.2019
№219.016.c39a

Корпус камеры сгорания летательного аппарата

Изобретение относится к области ракетных или реактивных двигательных установок. Корпус камеры сгорания летательного аппарата выполнен как многослойное изделие, содержащее несущую механическую нагрузку внутреннего давления, металлическую обечайку, слой кремнеземной ткани, пропитанной...
Тип: Изобретение
Номер охранного документа: 0002430306
Дата охранного документа: 27.09.2011
23.02.2019
№219.016.c5cf

Измерительная система для определения истинного объёмного газосодержания

Изобретение относится к измерительным системам для определения физических свойств двухфазных потоков, а именно к измерительным системам для определения истинного объемного газосодержания потока масловоздушной эмульсии в трубопроводе. Измерительная система включает горизонтальный цилиндрический...
Тип: Изобретение
Номер охранного документа: 0002680417
Дата охранного документа: 21.02.2019
23.02.2019
№219.016.c606

Подшипник скольжения межроторной опоры

Изобретение относится к области авиационного моторостроения и может быть использовано в подшипниках скольжения межроторных опор газотурбинных двигателей. Подшипник скольжения межроторной опоры включает наружное и внутреннее кольца. выполненные из металлокерамоматричного материала на основе...
Тип: Изобретение
Номер охранного документа: 0002680466
Дата охранного документа: 21.02.2019
Показаны записи 81-85 из 85.
29.08.2018
№218.016.814f

Способ полетной диагностики узлов турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к способу полетной диагностики узлов турбореактивного двухконтурного двигателя (ТРДД) со смешением потоков. Для диагностики узлов измеряют определенным образом рабочие параметры двигателя на стационарном полетном режиме работы двигателя, измеряют параметры окружающей...
Тип: Изобретение
Номер охранного документа: 0002665142
Дата охранного документа: 28.08.2018
23.12.2018
№218.016.aa4a

Способ работы трехконтурного турбореактивного двигателя с форсажной камерой

Способ работы трехконтурного турбореактивного двигателя с форсажной камерой заключается в том, что сжатый воздух из регулируемого вентилятора разделяют на поток первого контура и поток второго контура. Для формирования потока третьего контура канал третьего контура подключают через...
Тип: Изобретение
Номер охранного документа: 0002675637
Дата охранного документа: 21.12.2018
22.06.2019
№219.017.8eb2

Способ управления турбореактивным двухконтурным двигателем

Изобретение относится к авиадвигателестроению, касается регулирования в полете турбореактивного двухконтурного двигателя со смешением потоков. Способ характеризуется тем, что на стационарных и переходных режимах работы двигателя измеряют внешние рабочие параметры, по которым вычисляют...
Тип: Изобретение
Номер охранного документа: 0002692189
Дата охранного документа: 21.06.2019
27.01.2020
№220.017.fa3b

Способ управления противообледенительной системой турбореактивного двухконтурного двигателя

Изобретение относится к противообледенительным системам летательных аппаратов, в частности к способу управления противообледенительной системой турбореактивного двухконтурного двигателя (ТРДД). Способ управления противообледенительной системой ТРДД заключается в том, что в полете при помощи...
Тип: Изобретение
Номер охранного документа: 0002712103
Дата охранного документа: 24.01.2020
14.05.2023
№223.018.5537

Способ управления турбореактивным двигателем

Изобретение относится к способам управления в полете турбореактивным двигателем с форсажной камерой и регулируемым реактивным соплом. Способ управления турбореактивным двигателем с форсажной камерой и регулируемым реактивным соплом в составе силовой установки летательного аппарата заключается в...
Тип: Изобретение
Номер охранного документа: 0002736403
Дата охранного документа: 16.11.2020
+ добавить свой РИД