×
20.03.2014
216.012.ab87

СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ ПОРОШКОВ МЕТАЛЛОВ ИЛИ ИХ СПЛАВОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области порошковой металлургии. Порошкообразный хлорид металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в присутствии активированного угля или при подаче в реакционное пространство оксида углерода(II), получаемого при разложении муравьиной кислоты HCOOH. Изобретение обеспечивает надежное получение нанодисперсных порошков металлов или их сплавов из ряда 3-d металлов: Ni, Co, Cu, Fe, Zn. 1 ил., 3 пр.
Основные результаты: Способ получения нанодисперсных металлических порошков, включающий обработку газом-восстановителем при высокой температуре, отличающийся тем, что порошкообразный хлорид соответствующего металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в присутствии активированного угля, взятого в мольном соотношении Me:C=1:3÷1:5, или при подаче в реакционное пространство оксида углерода(II), получаемого при разложении муравьиной кислоты HCOOH, взятой в мольном соотношении Me:HCOOH=1:5÷1:7.
Реферат Свернуть Развернуть

Изобретение относится к области порошковой металлургии, конкретно к области получения нанодисперсных порошков металлов или их сплавов из ряда 3-d металлов: Ni, Co, Cu, Fe, Zn, которые могут быть использованы в порошковой металлургии для улучшения процесса спекания; в химической промышленности как наполнители полимеров и катализаторы реакций; как добавки к антикоррозионным покрытиям; и т.д.

Известен способ получения порошков редких металлов, включающий металлотермическое восстановление расплавленной шихты из двойной комплексной соли галогенида редкого металла и хлорида калия при нагревании и перемешивании, гидрометаллургическую обработку восстановленной реакционной массы, сушку порошка, при этом восстановление проводят магнием, который вводят единовременно при 750-800°C в течение 15±5 минут с последующим охлаждением расплава до комнатной температуры со скоростью 50-100°/мин. В результате получают нанопорошки редких металлов (патент РФ №2416493, МПК B22F 9/18, 2011 год).

Недостатки известного способа заключаются в следующем: дороговизна используемого в качестве восстановителя магния, невозможность снизить температуру синтеза, что обусловлено строго фиксированной температурой плавления соли, необходимость введения дополнительных стадий, связанных с отмывкой реакционной массы от хлоридов калия и магния и сушкой полученного продукта.

Известен способ получения порошка металла группы железа, заключающийся в том, что к порошку кислородсодержащего соединения металла группы железа добавляют 2-30 мас.% нитрата соответствующего металла, осуществляют размол в жидкости, практически не растворяющей основное соединение, но растворяющей нитрат, и восстанавливают полученную смесь водородом (патент РФ №2356694, B22F 9/04, 2009 год) прототип).

Недостатком известного способа является необходимость стадий размола в жидкости и отделения продукта, что требует дополнительного оборудования и времени. Другим недостатком является использование в качестве восстановителя водорода в связи с его взрывоопасностью. Кроме того, размер частиц порошка достаточно крупный и достигает 2 мкм.

Таким образом, перед авторами стояла задача разработать простой, надежный способ получения нанодисперсных порошков металлов, а также их сплавов.

Поставленная задача решена в предлагаемом способе получения нанопорошков металлов или их сплавов, включающем обработку газом-восстановителем при высокой температуре, в котором хлорид соответствующего металла или смесь хлоридов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в присутствии активированного угля, взятого в мольном соотношении Men+:C=1:3÷1:5, или при подаче в реакционное пространство оксида углерода(II), получаемого при разложении муравьиной кислоты НСООН, взятой в мольном соотношении Men+:HCOOH=1:5÷1:7.

В настоящее время не известен способ получения нанопорошков металлов или их сплавов путем обработки хлорида соответствующего металла в атмосфере водяного пара, подаваемого в реакционное пространство с определенной скоростью при повышенной температуре в присутствии активированного угля, взятого в определенном отношении к исходному количеству ионов металла, или при подаче в реакционное пространство оксида углерода(II), получаемого при разложении муравьиной кислоты HCOOH, необходимое количество которой также определяется количеством ионов металла.

Исследования, проведенные авторами, позволили установить, что в процессе получения металла в порошкообразном состоянии при обработке исходного хлорида металла или смеси хлоридов в атмосфере водяного пара в предлагаемом температурном интервале в присутствии активированного угля, предварительно помещенного в реакционное пространство, инициируется восстановление промежуточных оксидов, полученных в химически активном нанокристаллическом состоянии. При этом существенными являются параметры проведения процесса. Так, при подаче водяного пара в реакционное пространство со скоростью менее 50 мл/мин и снижение температуры ниже 400°C значительно увеличивается время прохождения процесса. При подаче водяного пара в реакционное пространство со скоростью более 100 мл/мин возможен выброс реакционной массы из реакционного пространства. Повышение температуры выше 800°С приводит к увеличению частиц конечного продукта до микронных размеров. В случае уменьшения соотношения между количеством активированного угля и исходным хлоридом (Men+:C менее, чем 1:3) конечный продукт будет загрязнен примесями. Увеличение соотношения между количеством активированного угля и исходным хлоридом (Ме+:C более, чем 1:5) приводит к неоправданному расходу реагентов. При альтернативном осуществлении процесса существенным является количество используемой муравьиной кислоты. Так, при уменьшении соотношения Me+:HCOOH менее 1:5 конечный продукт будет загрязнен примесями. Увеличение соотношения Ме+:HCOOH более 1:7 приводит к неоправданному расходу реагентов.

Предлагаемый способ может быть осуществлен следующим образом. Сухой порошкообразный, хлорид соответствующего металла или сухую порошкообразную смесь по крайней мере двух хлоридов металлов загружают в реакционное пространство кварцевой трубы, которую помещают в трубчатую печь. В кварцевую трубу предварительно загружают активированный уголь, взятый в мольном соотношении Me+:C=1:3÷1:5. Кварцевая труба снабжена подводящими и отводящими трубками. Включают подачу водяного пара со скоростью 50-100 мл/мин. Нагрев трубчатой печи производят со скоростью 10-15°/мин до температуры 400-800°C и затем выдерживают при этой температуре до полного прохождения реакции, глубину прохождения которой контролируют путем измерения электропроводности образующегося раствора соляной кислоты. Применение замкнутого цикла позволяет избежать попадания следовых количеств хлорводорода в атмосферу, поскольку газообразный продукт реакции улавливают в резервуар с холодной дистиллированной водой. После прекращения изменения электропроводности подачу водяного пара прекращают и снижают температуру печи до комнатной. После чего вынимают кварцевую трубу и извлекают готовый продукт - нанокристаллический порошок индивидуального металла или сплав металлов.

В случае альтернативного осуществления процесса одна из подводящих трубок кварцевой трубы соединена с модифицированным аппаратом Кипа, в который подают муравьиную кислоту, взятую в мольном соотношении Me+:HCOOH=1:5÷1:7, и концентрированную серную кислоту. Газообразный продукт реакции (оксид углерода) поступает в реакционную зону.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. 5 г сухого порошкообразного хлорида железа FeCl3·6H2O загружают в реакционное пространство кварцевой трубы, которую помещают в трубчатую печь. В кварцевую трубу предварительно загружают активированный уголь, взятый в мольном соотношении Fe3+:C=1:3. Масса вводимого углерода составляет 0,65 г. Кварцевая труба снабжена подводящими и отводящими трубками. Включают подачу водяного пара со скоростью 50 мл/мин. Нагрев трубчатой печи производят со скоростью 15°/мин до температуры 800°C и затем выдерживают при этой температуре до полного прохождения реакции, глубину прохождения которой контролируют путем измерения каждые 10 мин электропроводности образующегося раствора галоидоводородной кислоты. После прекращения изменения электропроводности подачу водяного пара прекращают и снижают температуру печи до комнатной. После чего вынимают кварцевую трубу и извлекают готовый продукт - нанокристаллический порошок железа с размером частиц 150-200 нм. Аттестацию полученного продукта проводят методами рентгенофазового анализа и растровой электронной микроскопии.

Пример 2. 17,05 г сухого порошкообразного хлорида меди CuCl2·2H2O загружают в реакционное пространство кварцевой трубы, которую помещают в трубчатую печь. Кварцевая труба снабжена подводящими и отводящими трубками. В аппарат Кипа подают муравьиную кислоту, взятую в мольном соотношении Cu+2:HCOOH=1:7, что составляет 27 мл, и через капельную воронку добавляют концентрированную серную кислоту. Газообразный продукт реакции через подводящую трубку поступает в реакционную зону. Одновременно включают подачу водяного пара со скоростью 50 мл/мин. Нагрев трубчатой печи производят со скоростью 10°/мин до температуры 400°C и затем выдерживают при этой температуре до полного прохождения реакции, глубину прохождения которой контролируют путем измерения каждые 10 мин электропроводности образующегося раствора соляной кислоты. После прекращения изменения электропроводности подачу водяного пара прекращают и снижают температуру печи до комнатной. После чего вынимают кварцевую трубу и извлекают готовый продукт - нанокристаллический порошок меди с размером частиц менее 200 нм. Аттестацию полученного продукта проводят методами рентгенофазового анализа и растровой электронной микроскопии.

Пример 3. Смесь 6,5 г сухого порошкообразного хлорида железа FeCl3·6H2O и 3,5 г хлорида кобальта CoCl2·6H2O загружают в реакционное пространство кварцевой трубы, которую помещают в трубчатую печь. В кварцевую трубу предварительно загружают активированный уголь, взятый в мольном соотношении (0,65Co2+0,35Fe3+):C=1:5, что составляет 2,35 г. Кварцевая труба снабжена подводящими и отводящими трубками. Включают подачу водяного пара со скоростью 100 мл/мин. Нагрев трубчатой печи производят со скоростью 15°/мин до температуры 800°C и затем выдерживают при этой температуре до полного прохождения реакции, глубину прохождения которой контролируют путем измерения каждые 10 мин электропроводности образующегося раствора галоидоводородной кислоты. После прекращения изменения электропроводности подачу водяного пара прекращают и снижают температуру печи до комнатной. После чего вынимают кварцевую трубу и извлекают готовый продукт - нанокристаллический порошок сплава железа и кобальта состава Co0,65Fe0,35 с размером частиц 150-200 нм (см. фиг 1). Аттестацию полученного продукта проводят методами рентгенофазового анализа и растровой электронной микроскопии.

Таким образом, авторами предлагается простой, надежный способ получения нанодисперсных порошков металлов, а также их сплавов.

Работа выполнена при поддержке Правительства Свердловской области и РФФИ (грант №10-03-96062-р-урал-а)

Способ получения нанодисперсных металлических порошков, включающий обработку газом-восстановителем при высокой температуре, отличающийся тем, что порошкообразный хлорид соответствующего металла или порошкообразную смесь по крайней мере двух хлоридов металлов обрабатывают в атмосфере водяного пара, который подают в реакционное пространство со скоростью 50-100 мл/мин, при температуре 400-800°C в присутствии активированного угля, взятого в мольном соотношении Me:C=1:3÷1:5, или при подаче в реакционное пространство оксида углерода(II), получаемого при разложении муравьиной кислоты HCOOH, взятой в мольном соотношении Me:HCOOH=1:5÷1:7.
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ ПОРОШКОВ МЕТАЛЛОВ ИЛИ ИХ СПЛАВОВ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 100.
24.11.2018
№218.016.a0ba

Германат редкоземельных элементов в наноаморфном состоянии

Изобретение может быть использовано в электронике. Германат редкоземельных элементов состава CaLaEuGeO, где 0,05≤х≤0,15, в наноаморфном состоянии используют в качестве люминофора белого цвета свечения. Предложенное изобретение позволяет расширить номенклатуру люминофоров белого свечения,...
Тип: Изобретение
Номер охранного документа: 0002673287
Дата охранного документа: 23.11.2018
26.12.2018
№218.016.ab38

Способ получения фотокаталитически активной пленки

Изобретение относится к области получения фотокаталитически активных полупроводниковых пленок. Предложен способ получения фотокаталитически активной пленки, включающий осаждение ионов Cu в виде оксида меди или гидроксида меди из раствора неорганической соли меди на подложку. Осаждение ведут из...
Тип: Изобретение
Номер охранного документа: 0002675808
Дата охранного документа: 25.12.2018
18.01.2019
№219.016.b0ee

Стоматологический гель для реминерализации твердых тканей зубов и способ реминерализации твердых тканей зубов

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для реминерализации твердых тканей зубов с целью профилактики и лечения кариеса в стадии пятна, гиперестезии твердых тканей зуба. Предлагаемый стоматологический гель содержит в качестве гидрофильной основы...
Тип: Изобретение
Номер охранного документа: 0002677231
Дата охранного документа: 16.01.2019
08.02.2019
№219.016.b84c

Способ модифицирования порошка алюминия

Изобретение относится к области порошковой металлургии, в частности к способам модифицирования порошков алюминия. Порошок алюминия пропитывают модификатором, представляющим собой гель, полученный растворением формиата железа состава Fe(HCOO)·2HO в смеси дистиллированной воды и глицерина,...
Тип: Изобретение
Номер охранного документа: 0002679156
Дата охранного документа: 06.02.2019
21.02.2019
№219.016.c51a

Способ получения лигатуры на основе алюминия

Изобретение относится к области металлургии и может быть использовано для производства алюминиевых лигатур, применяемых для модифицирования сплавов. Способ включает приготовление и расплавление смеси, содержащей фторид натрия, фторид калия, соединение редкого металла и алюминий,...
Тип: Изобретение
Номер охранного документа: 0002680330
Дата охранного документа: 19.02.2019
23.02.2019
№219.016.c6da

Способ очистки вод, загрязненных тритием

Изобретение относится к области сорбционных технологий дезактивации воды и водных растворов и может быть использовано для обработки природной воды. Способ очистки воды, загрязнённой тритием, включает ее обработку природной или синтетической гуминовой кислотой в жидком или порошкообразном...
Тип: Изобретение
Номер охранного документа: 0002680507
Дата охранного документа: 21.02.2019
23.02.2019
№219.016.c6ee

Способ получения порошка оксида кобальта

Изобретение может быть использовано для получения катодных и анодных материалов литий-ионных аккумуляторов. Cпособ получения порошка оксида кобальта CoO включает нагревание исходной смеси кобальта азотнокислого 6-водного и гелирующего агента с последующим отжигом полученного порошка. Исходная...
Тип: Изобретение
Номер охранного документа: 0002680514
Дата охранного документа: 21.02.2019
03.03.2019
№219.016.d280

Способ получения мезопористого углерода

Изобретение может быть использовано в качестве электродного материала в химических источниках тока, носителя катализаторов и сорбента медицинского назначения. Металлорганическое соединение - глицеролат цинка состава Zn(СНО) - термообрабатывают в инертной атмосфере при 500-750°С. Полученный...
Тип: Изобретение
Номер охранного документа: 0002681005
Дата охранного документа: 01.03.2019
29.03.2019
№219.016.ede3

Способ получения магнетита

Изобретение относится к области металлургии и может быть использовано для получения магнетита в целях повышения эффективности переработки красных шламов, являющихся отходами глиноземного производства. Способ получения магнетита включает обработку красного шлама в присутствии гидроксида кальция,...
Тип: Изобретение
Номер охранного документа: 0002683149
Дата охранного документа: 26.03.2019
30.03.2019
№219.016.f909

Биоактивный композиционный материал для замещения костных дефектов и способ его получения

Изобретение относится к области биологически активных фармацевтических и медицинских материалов с повышенной механической прочностью, такие материалы могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани, а также в качестве носителя...
Тип: Изобретение
Номер охранного документа: 0002683255
Дата охранного документа: 27.03.2019
Показаны записи 41-42 из 42.
08.06.2019
№219.017.75db

Способ получения нанопорошков сложного германата лантана и щелочного металла

Изобретение относится к неорганической химии и может быть использовано при получении люминофоров. В азотной кислоте растворяют карбонат щелочного металла, взятый в 50-100 %-ном избытке по сравнению со стехиометрическим, и оксид лантана. Концентрация оксида лантана в полученном растворе...
Тип: Изобретение
Номер охранного документа: 0002690916
Дата охранного документа: 06.06.2019
21.11.2019
№219.017.e401

Способ уничтожения борщевика сосновского

Изобретение относится к сельскому хозяйству. Осуществляют покрытие защитным слоем поверхности зараженного участка почвы с последующим нанесением на защитный слой грунта, в который производят посев задерняющих трав. С зараженного участка предварительно снимают слой почвы на глубину 8-10 см и...
Тип: Изобретение
Номер охранного документа: 0002706552
Дата охранного документа: 19.11.2019
+ добавить свой РИД