×
20.10.2013
216.012.757e

Результат интеллектуальной деятельности: ГИБКАЯ АВТОМАТИЗИРОВАННАЯ СИСТЕМА БАЗИРОВАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к приспособлениям для крепления-зажима деталей, более конкретно к способам и устройствам для базирования сложнопрофильных нежестких деталей на многокоординатных станках, которое может быть использовано в авиакосмической и других отраслях промышленности. Технический результат - снижение производственных издержек, возможность базирования и зажима нежестких деталей любой конфигурации. Система базирования содержит стол, состоящий из четырех состыкованных между собой модульных секций, на рабочей поверхности каждой из которых выполнена прямоугольная сетка отверстий с установленными в них выдвижными опорами с вакуумными присосками. Она также содержит систему вакуумирования, систему подачи сжатого воздуха и числовую систему управления гибкой автоматизированной системой базирования, включающей систему управления опорами с вакуумными присосками. При этом каждая из выдвижных опор выполнена с тормозом, а система подачи сжатого воздуха использована для расфиксации тормоза в процессе перемещения выдвижных опор с вакуумными присосками в заданное положение. 2 з.п. ф-лы, 5 ил.

Область техники.

Изобретение относится к устройствам, являющимся приспособлениями для крепления деталей, более конкретно - к способам и устройствам для высокоточного базирования крупногабаритных сложнопрофильных нежестких деталей на многокоординатных станках, и может быть использовано в технологических процессах при их производстве в авиакосмической и других отраслях промышленности.

Уровень техники.

В настоящее время в авиакосмической и других отраслях промышленности востребованы автоматизированные гибкие системы универсальных приспособлений для высокоточного базирования крупногабаритных сложнопрофильных нежестких деталей с целью их дальнейшей обработки на многокоординатных станках с числовым программным управлением (ЧПУ).

Это вызвано тем, что обычные приспособления для базирования и зажима таких деталей - это сложные металлоемкие конструкции, по размерам большие, чем детали, ими фиксируемые. Они изготавливаются индивидуально для каждой детали в зависимости от ее размеров и конфигурации. Работа с ними требует большого времени установки самого приспособления, а также детали. Необходимым является также наличие производственных площадей для складирования большого количество приспособлений.

Эти факторы определяют высокие производственные издержки при использовании обычных приспособлений для производства крупногабаритных сложнопрофильных нежестких деталей типа панелей, листовых обшивок.

В настоящее время существуют два типа конструктивных решений автоматизированных гибких систем базирования и зажима нежестких деталей, предлагаемых фирмами-производителями.

1. Системы с подвижными опорами базирования и зажима с вакуумными присосками, перемещающимися по координатам Х и Y обрабатывающего центра и выдвигающимися по координате Z (фирма "Jobs" Италия, адрес в сети Интернет: www.jobs.it).

Такая система описана в ЕР50703381, 01.02.1995 г. Опоры устанавливаются на поперечных ходу по координате Х балках. Балки перемещаются по направляющим качения по координате Х от синхронизированных зубчато-реечных приводов. Каждая опора имеет индивидуальный шариковинтовой привод перемещения по направляющим качения вдоль балки по координате Y. Перемещение по координате Z вакуумных чашек с присосками, установленных на балках опор, осуществляется от электродвигателей с помощью точных шариковинтовых передач и валов в направляющих скольжения или качения.

Система содержит следующие признаки, общие с предлагаемым изобретением: выдвижные опоры с вакуумными присосками, система вакуумирования, система подачи сжатого воздуха, числовая система управления всей автоматизированной гибкой системой базирования с системой управления опорами с вакуумными присосками.

Преимуществами компоновки с подвижными опорами базирования и зажима являются:

- возможность изменения расстояния между опорами;

- возможность создания прямоугольных сеток вакуумных чашкообразных опор различной конфигурации.

Недостатком таких систем является высокая стоимость из-за наличия:

- приводов перемещения по координатам X, Y, кроме приводов по координате Z выдвижения вакуумных чашек с присосками в заданную позицию;

- подвижных кабеленесущих цепей подводов пневмовакуумных рукавов и кабелей электропитания;

- большого объема аппаратуры электроавтоматики и пневматики.

2. Системы с неподвижными опорами базирования и зажима.

Они оснащаются столом с прямоугольной сеткой отверстий для жесткой установки выдвижных опор. Эти системы предполагают замену стола, использующего традиционные приспособления обрабатывающего CNC центра,

на стол с гибкой системой базирования крупногабаритных сложнопрофильных нежестких деталей.

Ведущей фирмой в области производства таких систем универсальных гибких приспособлений является фирма "Kostyrka", Германия (адрес в сети Интернет www.Kostyrka.com). Стол выполняется секционным с возможностью наращивания по длине.

В компоновочном решении такой автоматизированной гибкой универсальной системы для высокоточного базирования основным модульным компонентом является чашкообразная выдвижная опора с вакуумной присоской с приводом перемещения по координате Z для ее автоматической установки по программе в заданное положение.

Приводы обеспечивают точность позиционирования и повторяемость в пределах ±0,01 мм при перемещении и установке опор в заданном положении.

Фиксацию-расфиксацию вала с установленной чашкой вакуумной с присоской в заданной позиции фирма осуществляет при помощи гидромеханического тормоза.

Для фиксации вала в тормозе используется разрезная упругая зажимная гильза. Расфиксация для перемещения вала с чашкообразной опорой и вакуумной присоской осуществляется подачей давления масла, освобождающего зажимную гильзу. Чашкообразная опора с вакуумной присоской выполнена в виде полусферы с каналами для отсоса воздуха при вакууме. В полусферу встроен обратный клапан, перекрывающий отсос воздуха из зоны присоски при достижении между ней и деталью требуемого уровня вакуума.

В корпус сферический поворотный чашкообразной опоры встроен клапан безопасности вакуума, автоматически закрывающийся при отрыве детали от присоски.

Недостатком данной системы является использование гидравлики в конструкции тормоза и, как следствие, возможность критических утечек масла и загрязнения. Современной тенденцией при создании гибких автоматизированных систем ведущими фирмами-производителями "Forest line group" Франция и др. является отказ от гидравлики в пользу пневматики.

Сущность изобретения

Задачей изобретения является разработка гибкой автоматизированной системы базирования сложнопрофильных нежестких деталей с целью их дальнейшей обработки на многокоординатных станках с ЧПУ.

Поставленная задача решается созданием системы, оснащенной:

- столом с прямоугольной сеткой чашкообразных опор с вакуумными присосками со встроенными обратными клапанами, регулирующими подвод вакуума, а также имеющими возможность сферического поворота чашкообразных опор вокруг координат Х и Y и возврата в исходное положение с помощью пружины;

- высокоточными приводами перемещения опор по координате Z;

- системой вакуумирования для закрепления деталей с помощью вакуумных присосок чашкообразных опор;

- системой подачи сжатого воздуха, обеспечивающей расфиксацию тормоза в процессе перемещения опор с вакуумными присосками в заданное по координате Z положение от системы управления;

- числовой системой автоматического управления перемещениями опор с вакуумными присосками в заданное положение.

Такие решения изобретения обеспечат синтез современной технологии, гибкости производства, производительности и надежности при изготовлении сложнопрофильных нежестких деталей типа панелей и листовых обшивок и снизят стоимость изготовления подобных деталей в авиакосмической и других отраслях промышленности, а также повысят их конкурентоспособность на рынке.

Перечень фигур

Изобретение поясняется чертежами, на которых:

Фиг.1 - общий вид спереди на гибкую автоматизированную систему базирования,

Фиг.2 - общий вид сверху на гибкую автоматизированную систему базирования,

Фиг.3 показывает конструкцию выдвижных опор базирования с вакуумными присосками,

Фиг.4 показывает конструкцию чашкообразной опоры базирования с вакуумной присоской.

Фиг.5 показывает конструкцию фиксатора выдвижной опоры базирования.

Осуществление изобретения

Гибкая автоматизированная система базирования сложнопрофильных нежестких деталей на многокоординатных станках включает следующие составные части.

Стол 1 (Фиг.1) с выдвижными опорами с вакуумными присосками 6 (Фиг.1), устанавливается на станке вместо традиционного жесткого стола станка, использующего обычные приспособления при обработке традиционных жестких деталей.

Стол состоит из четырех одинаковых модульных секций 5 (Фиг.2), выставляемых на башмаках 36 (Фиг.2), установленных на фундаменте 27 (Фиг.1) и состыкованных между собой болтами 25 (Фиг.2).

Каждая модульная секция имеет прямоугольную сетку отверстий, в которые устанавливаются выдвижные опоры базирования 6 (Фиг.1) и (Фиг.2).

Выдвижные опоры с вакуумными присосками (Фиг.3) включают в себя:

- привод позиционирования, состоящий из электродвигателя 8, сильфонной муфты 40, шарикоподшипниковой опоры винта 41, шариковинтовой пары 7, полого вала 9 с закрепленной чашкой вакуумной А;

- фиксатор 13 для удержания полого вала в заданной позиции;

- направляющие втулки скольжения 10 для полого вала;

- корпус 43 выдвижной опоры базирования.

Привод позиционирования выдвижной опоры базирования с чашкой вакуумной А (Фиг.3) осуществляется от электородвигателя 8 через сильфонную муфту 40, вращающую винт 42 шариковинтовой пары 7, которая перемещает полый вал 9 с закрепленной чашкой вакуумной.

Привод размещается в корпусе 12, где установлена опора шариковинтовой пары и имеется штуцер 33 (Фиг.3) для подвода вакуума в систему вакуумирования.

Корпус 12 крепится к нижней плоскости секции модульной 5 (Фиг.2).

Полый вал 9 с чашкой вакуумной (А, Фиг.3) перемещается в корпусе 43 в направляющих втулках скольжения 10. Корпус 43 крепится к верхней плоскости секции модульной 5.

Чашка вакуумная в сборе (А, Фиг.4) навинчивается корпусом 18 (Фиг.4), имеющим опорную сферическую поверхность, на конец полого вала 9, который перемещается по координате Z от шариковинтовой пары 7 (Фиг.3) и электродвигателя 8.

Чашка вакуумная поворотная 19 (Фиг.4) опирается на сферическую поверхность корпуса 18 и выполнена в виде полусферы, в верхней части которой установлена опорная шайба 15 (Фиг.4) со сферическим углублением, центр которого является центром поворота вакуумной чашки, и имеющая каналы для отсоса воздуха при создании вакуума. В чашку вакуумную поворотную встроен обратный клапан 16 (Фиг.4), закрывающий отсос воздуха из зоны между резиновой присоской 14 (Фиг.4) и закрепляемой деталью при достижении между ней и закрепленной деталью требуемого уровня вакуума.

Поворотная вакуумная чашка имеет возможность поворота по сферической поверхности корпуса 18 (Фиг.4) вокруг координат X, Y на угол ±40° и самоустанавливается при установке и базировании детали на опорную шайбу 15, центр сферического углубления которой совпадает с центром поворота вакуумной чашки.

После снятия готовой детали пружина 17 (Фиг.4), закрепленная между соединенным с корпусом 18 (Фиг.4) фланцем 30 (Фиг.4) и чашкой, возвращает поворотную сферическую чашку 19 в исходное положение.

На фланце 30 (Фиг.4) закреплен клапан безопасности вакуума 31 (Фиг.4), имеющий предварительно настроенный обратный клапан, автоматически закрывающийся при отрыве детали 32 (Фиг.4) от резиновой присоски 14 (Фиг.4) и таким образом защищающий систему вакуумирования от попадания в нее атмосферного воздуха после снятия детали.

Для удержания опоры с чашкой вакуумной после ее перемещения в заданную позицию имеется фиксатор (Б, Фиг.3) и (Фиг.5), который крепится на верхней плоскости модульной секции 5 (Фиг.2) винтами 38 (Фиг.5).

Фиксатор является пневмомеханическим цилиндром, состоящим из корпуса 24 (Фиг.5), закрывающегося с одной стороны крышкой 22 (Фиг.5), с другой разрезной конусообразной четырехлепестковой цангой 21 (Фиг.5).

Внутри корпуса 24 перемещается поршень 20 (Фиг.5), имеющей внутреннюю конусную поверхность, сопрягаемую с наружной конусной поверхностью четырехлепестковой цанги 21.

Между поршнем 20 и крышкой 22 установлены пружины 23 (Фиг.5), которые за счет перемещения конусной поверхности поршня 20 вниз при перекрытии подвода сжатого воздуха сжимают сопрягаемые лепестки цанги 21, фиксируя полый вал 9 с вакуумной чашкой в неподвижном состоянии.

Для расфиксации при необходимости перемещения и установки опоры с вакуумной чашкой в другую заданную позицию по координате Z в рабочую полость поршня 20 подается сжатый воздух из пневмосети.

Сжатый воздух из пневмосети (Фиг.2) через блок подготовки воздуха 26 (Фиг.2) поступает в усилитель 3 (Фиг.2), давление на выходе которого составляет 1,0 МПа, а затем по команде на расфиксацию опоры с вакуумной чашкой открывается пневмоклапан, установленный на нижней плоскости секции модульной 5, и сжатый воздух подается в фиксатор (Б, Фиг.5).

При подаче сжатого воздуха в фиксатор (Б, Фиг.5), в полость между поршнем 20 и корпусом 24, поршень 20 перемещается до упора вверх, сжимая пружины 23. При этом лепестки цанги 21 освобождаются от конусной поверхности поршня и разжимаются, полый вал 9 с вакуумной чашкой расфиксируется, давая возможность перемещения и установки полого вала 9 с вакуумной чашкой в заданную позицию по координате Z. После этого по команде закрывается пневмоклапан, перекрывая подачу сжатого воздуха, и происходит фиксация полого вала 9 с вакуумной чашкой, как описано выше.

Система вакуумирования создается вакуумной насосной станцией 2 (Фиг.1) с диапазоном вакуумирования -0,07…-0,093 МПа.

От вакуумной насосной станции 2 через систему трубопроводов вакуум подается к каждой выдвижной опоре базирования с вакуумной чашкой через штуцер 33 (Фиг.3).

От штуцера 33 вакуум попадает в зазор между шариковинтовой парой 7 (Фиг.3) и корпусом 12 в полый вал 9 (Фиг.3) и (Фиг.4) и через клапан безопасности вакуума 31 (Фиг.4), обратный клапан 16 (Фиг.4) и отверстия в опорной шайбе 15 (Фиг.4) попадает в пространство между базируемой деталью 32 (Фиг.4) и резиновой присоской 14 (Фиг.4), притягивая деталь к опорной шайбе 15 (Фиг.4). По достижении требуемого вакуума между деталью и резиновой присоской 14 обратный клапан 16 (Фиг.4) закрывает поступление вакуума от вакуумной станции. Клапан безопасности вакуума 31 (Фиг.4), имеющий предварительно настроенный обратный клапан, автоматически закрывает поступление воздуха из атмосферы в систему вакуумирования после снятия базируемой детали с резиновых присосок 14 и опорной шайбы 15.

Числовая программная система управления (ЧПУ) 2 (Фиг.2) всей автоматизированной гибкой системой базирования с системой управления опорами с вакуумными присосками осуществляет их выдвижение, она построена на основе принципа децентрализованной периферии.

Основным периферийным элементом системы является выдвижная опора базирования с вакуумной чашкой, в конструкцию которой вмонтирован интеллектуальный электродвигатель позиционирования 8 (Фиг.3).

Интеллектуальный электродвигатель обладает программными

функциями позиционирования, а также возможностью управления двумя дискретными выходами, к одному из которых подключен электромагнитный пневмоклапан разжима фиксатора.

Конструктивно все опоры гибкой системы базирования расположены на четырех одинаковых модульных секциях. Элементы каждого модуля объединены в одну субсеть, которая подключена к центральному процессору системы управления.

К каждому модулю подключается два кабеля: кабель 34 (Фиг.3) силового энергопитания и информационный кабель 35 (Фиг.3).

Защитно-пусковая аппаратура обслуживает источник питания и вакуумную станцию и управляется от устройства дискретного ввода-вывода.

Гибкая автоматизированная система базирования работает следующим образом.

Исходной информацией для расчета позиций выдвижных опор является 3D-модель базируемой сложнопрофильной поверхности обрабатываемой детали. Для определения величины перемещения каждой опоры задается шаг между ними и расчетный размер от нижнего исходного положения опоры с чашкой вакуумной до выхода центра полусферы опорной шайбы 15 (Фиг.4) в заданную точку базируемой поверхности. Перед установкой детали все выдвижные опоры находятся в нижнем исходном положении. От устройства ЧПУ в автоматическом режиме опоры позиционируются, образуя "постель" чашек вакуумных с присосками, соответствующую заданной 3D-модели базируемой поверхности детали, и затем фиксируются. Нежесткая сложнопрофильная заготовка устанавливается на образованную выдвижными опорами "постель". Включается вакуум и с помощью вакуумных сферических присосок, самоустанавливающихся по профилю базируемой поверхности, деталь прижимается с помощью резиновых присосок 14 к опорной шайбе 15 (Фиг.4) чашки вакуумной с точкой базирования в центре ее поворота.

При этом закрепленная деталь приобретает жесткость, необходимую для последующей механообработки.

Гибкие автоматизированные системы базирования сложнопрофильных нежестких деталей имеют следующие технико-экономические преимущества:

- объединяют современные технологии с гибкостью, обеспечивающей установку и закрепление нежестких деталей;

- ликвидируют высокие производственные издержки за счет универсальности;

- создают возможность базирования и зажима деталей любой конфигурации;

- сокращают время установки детали;

- имеют высокую допустимую нагрузку на каждую опору;

- обеспечивают жесткость и точность базируемых деталей после установки и закрепления.


ГИБКАЯ АВТОМАТИЗИРОВАННАЯ СИСТЕМА БАЗИРОВАНИЯ
ГИБКАЯ АВТОМАТИЗИРОВАННАЯ СИСТЕМА БАЗИРОВАНИЯ
ГИБКАЯ АВТОМАТИЗИРОВАННАЯ СИСТЕМА БАЗИРОВАНИЯ
ГИБКАЯ АВТОМАТИЗИРОВАННАЯ СИСТЕМА БАЗИРОВАНИЯ
ГИБКАЯ АВТОМАТИЗИРОВАННАЯ СИСТЕМА БАЗИРОВАНИЯ
Источник поступления информации: Роспатент

Показаны записи 101-110 из 259.
27.01.2015
№216.013.2081

Способ измерения параметров потока на выходе из протоков моделей ла

Заявленное изобретение относится к области экспериментальной аэродинамики, в частности к способу определения аэродинамических характеристик (АДХ) моделей летательных аппаратов (ЛА), и может быть использовано в аэродинамических трубах (АДТ) при определении параметров потока на выходе из протоков...
Тип: Изобретение
Номер охранного документа: 0002539769
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.2225

Поршень форсированного дизельного двигателя

Изобретение может быть использовано в дизельных двигателях. Поршень форсированного дизельного двигателя состоит из двух стальных сваренных между собой нижнего и верхнего фрагментов (1) и (2), образующих периферийную и центральную полости (3) и (4) охлаждения головки поршня, сообщенные основными...
Тип: Изобретение
Номер охранного документа: 0002540194
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2258

Способ определения работоспособности гидроакустического тракта в натурных условиях

Изобретение относится к измерительной технике, метрологии и гидроакустике и может быть использовано для бездемонтажной проверки рабочего состояния гидроакустического тракта в натурных условиях. На вход проверяемого гидроакустического тракта подают тестовые сигналы в виде тепловых шумов Джонса с...
Тип: Изобретение
Номер охранного документа: 0002540245
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.23fc

Способ изготовления сотового заполнителя

Изобретение относится к способам изготовления сотовых заполнителей для трехслойных панелей и оболочек и касается способа изготовления сотового заполнителя (СЗ) из стеклоткани. На полотно стеклоткани в продольном направлении наносят с заданным шагом клеевые полосы, подсушивают их и разрезают...
Тип: Изобретение
Номер охранного документа: 0002540665
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.29ed

Индуктор для магнитно-импульсной раздачи трубчатых заготовок

Изобретение относится к обработке металлов давлением, в частности к индукторам для магнитно-импульсной обработки. Используют токоподвод коаксильного типа, образованный торцовым токовыводом, выполненным в виде стальной трубы с фланцем, закрепленным на торце спирали индуктора, и изолированно...
Тип: Изобретение
Номер охранного документа: 0002542190
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.3111

Судовая электроэнергетическая установка

Изобретение относится к судостроению, в частности к судовым электроэнергетическим установкам. Судовая электроэнергетическая установка содержит главный двигатель, соединенный с главным генератором, дополнительный двигатель, соединенный с дополнительным генератором, гребной электродвигатель,...
Тип: Изобретение
Номер охранного документа: 0002544029
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3e10

Лигатура для титановых сплавов

Изобретение относится к области цветной металлургии и может быть использовано при производстве сплавов титана. Лигатура содержит, мас.%: ванадий 40-50, титан 5-20, углерод 3-5, алюминий - остальное. Изобретение позволяет улучшить свариваемость и механические характеристики в зоне термического...
Тип: Изобретение
Номер охранного документа: 0002547376
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4c43

Способ получения износо-коррозионностойкого градиентного покрытия

Изобретение относится к области получения покрытий со специальными свойствами, в частности к покрытиям с высокой стойкостью к коррозионным повреждениям и износу. Способ холодного газодинамического напыления износо-коррозионностойкого градиентного покрытия включает подачу металлического порошка...
Тип: Изобретение
Номер охранного документа: 0002551037
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d69

Способ получения многослойного градиентного покрытия методом магнетронного напыления

Изобретение относится к способу нанесения градиентных покрытий магнетронным напылением, в частности к нанесению покрытий на основе тугоплавких металлов, и может быть использовано для получения покрытий с высокими адгезивными и когезивными характеристиками, а также с оптимальным сочетанием...
Тип: Изобретение
Номер охранного документа: 0002551331
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4da5

Устройство для измерения подводного шума плавсредства и система для проверки его рабочего состояния

Изобретения относятся к области гидроакустики и могут быть использованы для контроля уровня шумоизлучения подводного объекта в натурном водоеме. Техническим результатом, получаемым от внедрения изобретений, является получение возможности измерений уровня шума подводного плавсредства...
Тип: Изобретение
Номер охранного документа: 0002551391
Дата охранного документа: 20.05.2015
Показаны записи 101-110 из 201.
20.10.2014
№216.012.fed9

Способ определения статических и нестационарных аэродинамических производных моделей летательных аппаратов и устройство для его осуществления

Изобретения относятся к области экспериментальной аэродинамики летательных аппаратов и могут быть использованы для определения статических и нестационарных аэродинамических производных моделей летательных аппаратов в аэродинамической трубе. Способ заключается в следующем. Испытания проводят как...
Тип: Изобретение
Номер охранного документа: 0002531097
Дата охранного документа: 20.10.2014
20.11.2014
№216.013.05dd

Способ получения 11бета, 17альфа, 21-тригидрокси-16альфа-метил-9альфа-фторпрегна-1,4-диен-3,20-диона (дексаметазона) из фитостерина

Изобретение относится к способу получения дексаметазона из фитостеринов (β-ситостерина, кампестерина, стигмастерина, брассикастерина) способом, включающим последовательность микробиологических и химических реакций, а именно: микробиологическое окислительное элиминирование боковой цепи...
Тип: Изобретение
Номер охранного документа: 0002532902
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0782

Векторное приемное устройство

Изобретение относится к области гидроакустики. Векторное приемное устройство содержит звукопрозрачную раму и векторный приемник, связанные между собой посредством подвеса. При этом подвес выполнен в виде замкнутого линейного элемента с распределенной по длине массой, закрепленного в двух точках...
Тип: Изобретение
Номер охранного документа: 0002533323
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0786

Способ контроля подводного шума плавсредства с помощью забортного гидроакустического средства измерений (варианты)

Изобретения относятся к области гидроакустики и могут быть использованы для оперативного контроля подводного шума плавсредства в натурных условиях. Техническим результатом, получаемым от внедрения изобретений, является получение возможности контроля с помощью выбрасываемого забортного...
Тип: Изобретение
Номер охранного документа: 0002533327
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.09f6

Струйный насадок водометного движителя

Изобретение относится к судостроению, а именно к водометным движителям судов, лодок и других плавучих средств. Струйный насадок водометного движителя содержит наружный корпус с установленным в нем центральным телом, которое выполнено в виде тела вращения и образует совместно с наружным корпусом...
Тип: Изобретение
Номер охранного документа: 0002533958
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0a23

Способ определения прочности металлических запорных элементов обратного клапана гидрорезного оборудования

Изобретение относится к области исследования и анализа твердых материалов путем определения их прочностных свойств, а именно определения коррозии и трещин в металлических запорных элементах - напорных клапанах высокого давления гидрорезного оборудования в процессе их циклического нагружения во...
Тип: Изобретение
Номер охранного документа: 0002534003
Дата охранного документа: 27.11.2014
20.12.2014
№216.013.107c

Способ градуировки гидрофонов методом взаимности

Изобретение относится к области гидроакустики и может быть использовано при градуировке гидрофонов (Г) в измерительном бассейне методом взаимности. Техническим результатом, получаемым от внедрения изобретения, является повышение точности градуировки Г методом взаимности при использовании...
Тип: Изобретение
Номер охранного документа: 0002535643
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1381

Способ изготовления упругоподобных моделей летательных аппаратов на станках с чпу

Изобретение относится к авиационной технике и касается экспериментальных исследований проблем аэроупругости летательных аппаратов (ЛА) в аэродинамических трубах. При изготовлении упругоподобных моделей ЛА на станках с ЧПУ производят предварительный и поверочный расчеты математической модели...
Тип: Изобретение
Номер охранного документа: 0002536416
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.18ae

Способ градуировки гидрофонов методом сличения

Изобретение относится к области гидроакустики и может быть использовано при градуировке гидрофонов (Г) в измерительном бассейне методом сличения. Техническим результатом, получаемым от внедрения изобретения, является повышение точности градуировки Г методом сличения при использовании...
Тип: Изобретение
Номер охранного документа: 0002537746
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.18b1

Гидрофонный тракт с бездемонтажной проверкой его работоспособности

Изобретение относится к измерительной технике, метрологии и гидроакустике и может быть использовано для бездемонтажной проверки рабочего состояния гидроакустического тракта в натурных условиях. Техническим результатом, получаемым от внедрения изобретения, является устранение необходимости...
Тип: Изобретение
Номер охранного документа: 0002537749
Дата охранного документа: 10.01.2015
+ добавить свой РИД