×
20.05.2015
216.013.4d69

СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ГРАДИЕНТНОГО ПОКРЫТИЯ МЕТОДОМ МАГНЕТРОННОГО НАПЫЛЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу нанесения градиентных покрытий магнетронным напылением, в частности к нанесению покрытий на основе тугоплавких металлов, и может быть использовано для получения покрытий с высокими адгезивными и когезивными характеристиками, а также с оптимальным сочетанием прочности и пластичности. На предварительно очищенную поверхность металлической подложки наносят адгезионный слой тугоплавких металлов в среде инертного газа и слой нитридов тугоплавких металлов в газовой смеси инертного и реакционного газа. Содержание нитридов тугоплавких металлов изменяют от 0% до 100%, выдерживают до получения требуемой толщины нитридного слоя, затем уменьшают в обратном порядке, выдерживают до получения требуемой толщины слоя тугоплавких металлов и вновь увеличивают в направлении толщины напыляемого слоя. Для увеличения и уменьшения содержания нитридов тугоплавких металлов давление реакционного газа изменяют по линейной зависимости соответственно от 0 до 8´10 Па, а затем в обратном порядке. Способ позволяет получать материалы с высокими прочностными характеристиками и оптимальным сочетанием твердости (H>40 ГПа) и пластичности (W>70%). 1 з.п. ф-лы, 1 ил., 2 пр.
Реферат Свернуть Развернуть

Изобретение относится к области нанесения градиентных покрытий, в частности к нанесению покрытий на основе титана или циркония, обладающих специальными защитными свойствами, и может быть использовано для получения покрытий с высокими адгезивными и когезивными характеристиками и с оптимальным сочетанием прочности и пластичности.

Известен способ нанесения многослойного износостойкого покрытия (RU №2346078, кл. C23C 14/24, опубл. 10.02.2009), при котором первым наносят микрослой TiZr, затем осуществляют термомеханическую активацию поверхности слоев путем ее ионной бомбардировки, после чего наносят слой на основе нитрида титана и циркония (Ti, Zr)N. Осаждение слоев TiZr, (Ti, Zr)N и ионную бомбардировку повторяют по крайней мере три раза, причем последним наносят слой (Ti, Zr)N. Нанесение слоев покрытия осуществляют испарением двух титановых и одного циркониевого катода. Недостатком этого известного способа нанесения покрытий является значительная разность коэффициентов расширения между металлом подложки и наносимым покрытием, что приводит к возникновению коэффициентных напряжений и, как правило, к возможному отслоению покрытия.

Наиболее близким по технической сущности и достигаемому эффекту является способ нанесения покрытия по патенту №2433209 (кл. C23C 14/06, опубл. 10.11.2011), взятый за прототип. Сущность способа получения многослойного покрытия заключается в том, что на предварительно очищенную поверхность подложки сначала наносят адгезионный слой титана магнетронным распылением титановой мишени в среде инертного газа, затем наносят слой нитрида титана TiN распылением титановой мишени в газовой смеси инертного и реакционного газов, затем наносят чередующиеся слои двухкомпонентного нитрида циркония ZrN распылением циркониевой мишени в газовой смеси инертного и реакционного газов и циркония распылением циркониевой мишени в инертном газе, после чего наносят чередующиеся слои трехкомпонентного нитрида титана и циркония TiZrN одновременным распылением титановой и циркониевой мишеней в газовой смеси инертного и реакционного газов и циркония распылением циркониевой мишени в инертном газе.

Недостатки прототипа заключаются в том, что в покрытии имеются резкие межфазные границы между металлическими и неметаллическими слоями, имеющими значительную разницу в коэффициентах термического расширения. Это создает существенные механические напряжения при термоциклических нагрузках, приводящих часто к разрушению покрытия и выводу из строя готового изделия. Наличие таких границ также влияет на интегральную когезионную прочность и снижает срок службы изделия.

Кроме этого, по схеме прототипа наличие коэффициентных напряжений не позволяет получать покрытия с толщиной, превышающей 12-15 мкм, что явно недостаточно для изделий, эксплуатирующихся при жестком воздействии вторичных факторов.

Для устранения указанных негативных факторов необходимо создать структуру с одномерными границами раздела фаз (порошковые армированные компоненты), то есть наноструктурную составляющую покрытия, которая обеспечит высокую объемную долю границ раздела фаз по всему сечению покрытия.

Наличие большой площади раздела фаз (объемная доля которых может достигать <50%) в наноструктурированных покрытиях и пленках позволяет существенно изменять их свойства как путем модификации структуры и электронного строения, так и за счет легирования различными элементами. Прочность границ раздела способствует увеличению стойкости наноструктурированных покрытий к деформации. Отсутствие дислокаций внутри кристаллитов увеличивает упругость покрытий. Эти свойства позволяют получать материалы с улучшенными физико-химическими и физико-механическими свойствами, такими как высокая твердость (H>40 ГПа), упругое восстановление (We>70%), прочность, жаростойкость и износостойкость.

Таким образом, техническим результатом настоящего изобретения является разработка способа получения многослойного градиентного износостойкого покрытия с более высокой прочностью сцепления с подложкой, повышенной прочностью покрытия за счет существенно меньшего влияния разницы коэффициентов термического расширения, а значит с меньшими механическими напряжениями в покрытии при термоциклических нагрузках, а также с более высокой вязкостью покрытия за счет отсутствия двухмерных границ слоев с разной твердостью, что обеспечивает демпфирование для релаксации напряжений и остановку роста трещин.

Технический результат достигается за счет того, что при магнетронном напылении многослойного градиентного покрытия напыление производится при регулируемом поступлении реакционного газа азота в вакуумную камеру по линейному закону от 0 до давления 8×10-2 Па, затем это значение давления удерживается до получения нитридного слоя требуемой толщины, после чего уменьшается по тому же линейному закону от 8×10-2 Па до 0, и нулевое значение давления выдерживают до получения требуемой толщины слоя тугоплавких металлов, затем процесс напыления при регулируемом увеличении и уменьшении давления реакционного газа азота по указанному линейному закону повторяют до получения необходимого количества слоев. При этом поверхностным слоем должен быть упомянутый нитридный слой.

Указанное максимальное значение давления азота является оптимальным, так как обеспечивает напыление нитридов с оптимальным стехиометрическим составом TiN. При дальнейшем увеличении давления азота в камере происходит образование хрупкой фазы TiN2. При меньших давлениях помимо нитридов присутствует металлическая фаза в количестве, превышающем оптимальное, что значительно снижает свойства покрытия.

Реализация многослойной структуры покрытия с градиентными переходами между слоями позволяет обеспечить более высокую вязкость покрытия по сравнению с монослойным покрытием и таким образом способность материалов поглощать энергию в процессе деформации без разрушения. Повышение износостойкости покрытия происходит за счет того, что слои с высокой твердостью градиентно переходят в более мягкие слои, что обеспечивает демпфирование для релаксации напряжений и остановку роста трещин, которые могут зародиться в более твердом слое под влиянием упругих и термоупругих напряжений.

Сущность способа заключается в том, что подготовленную подложку, помещенную в вакуумную камеру установки магнетронного напыления, предварительно нагревают в вакууме до температуры 400-450°C, затем осуществляют напыление первого слоя титана или циркония в среде плазмообразующего газа аргона, затем в камеру напускают реакционный газ азот, причем давление аргона поддерживают постоянным, а давление азота изменяют по линейному закону от 0 до 8×10-2 Па. По достижению максимального значения выдерживают указанное давление до получения требуемой толщины нитридного слоя, затем уменьшают по тому же линейному закону (фиг. 1). В результате содержание нитридов в покрытии изменяется от 0 до 100%, а затем снова падает до 0% от адгезионного слоя к поверхности. Такое постоянное увеличение и уменьшение давления азота обеспечивает чередование в покрытии металлических пластичных слоев и твердых нитридных, что значительно повышает износостойкость покрытия за счет высоких адгезионных и когезионных свойств.

Примеры осуществления способа:

Предложенный способ опробован на научном нанотехнологическом комплексе ФГУП «ЦНИИ КМ «Прометей».

Пример 1.

На установке магнетронного напыления с использованием металлической мишени Ti (марки ВТ 1-0) производили нанесение многослойного градиентного покрытия на металлические пластины из титана марки ВТ 1-0 размером 100×150×2.

Подготовка поверхности деталей перед загрузкой в вакуумную камеру заключалась в удалении различных видов загрязнений и проводилась по схеме: химическая очистка, сушка.

Для химической очистки деталь укладывали в емкость с растворителем так, чтобы она была полностью погружена в него. Емкость с деталью помещали в ультразвуковую ванну УЗУ-0,25 и производили очистку ультразвуком не менее 10 минут. После чего пластины извлекали из емкости с растворителем и протирали мягкой тканью.

Сушка деталей производится в сушильном шкафу при температуре 100°C не менее 15 мин.

После помещения пластин в шлюз загрузки магнетронной установки вакуумную камеру откачивали до остаточного давления не выше 3×10-3 Па. Далее включали кварцевые нагреватели, расположенные в шлюзе загрузки. Время выдержки пластин при температуре 400C°±30°C составляло 5 мин. Далее, пластины из шлюза загрузки с помощью специального поворотного механизма «карусельного» типа переводились в позицию ионного источника. После этого в вакуумную камеру подавали плазмообразующий газ аргон до давления 5×10-1 Па и поддерживали на заданном уровне в течение всего процесса ионной очистки. С помощью того же поворотного механизма пластины помещали в позицию магнетронного напыления. Повторно откачивали камеру до достижения остаточного давления не выше 2×10-3 Па и подавали плазмообразующий газ аргон до давления 3×10-1 Па. На металлическую мишень титана подавали напряжение и возбуждали плазменный разряд с плотностью тока 0,3 А/см2 при диаметре мишени 100 мм. В течение 5 минут производилось напыление чистого титана на поверхности пластин. После чего в вакуумную камеру включали подачу реакционного газа азота, увеличивая парциальное давление азота по линейному закону от 0 до 8×10-2 Па в течение 5 минут, затем производили напыление при указанном давлении в течение 5 минут. Далее по обратной линейной зависимости в течение 5 минут уменьшали парциальное давление азота от 8×10-2 Па до 0. Вышеописанный цикл напыления повторялся до получения требуемого количества слоев с образованием на поверхности покрытия нитридного слоя.

Пример 2.

На установке магнетронного напыления с использованием металлической мишени Zr (цирконий иодидный) производили нанесение многослойного градиентного покрытия на металлические пластины из стали марки Ст35 размером 100×150×2.

Подготовка поверхности деталей перед загрузкой в вакуумную камеру заключалась в удалении различных видов загрязнений и проводилась по схеме: химическая очистка, затем сушка.

Для химической очистки деталь укладывали в емкость с растворителем так, чтобы она была полностью погружена в него. Емкость с деталью помещали в ультразвуковую ванну УЗУ-0,25 и производили очистку ультразвуком не менее 10 минут. После чего пластины извлекали из емкости с растворителем и протирали мягкой тканью.

Сушка деталей производится в сушильном шкафу при температуре 100°C не менее 15 мин.

После помещения пластин в шлюз загрузки магнетронной установки вакуумную камеру откачивали до остаточного давления не выше 3×10-3 Па. Далее включали кварцевые нагреватели, расположенные в шлюзе загрузки. Время выдержки пластин при температуре 400C°±30°C составляло 5 мин. Далее, пластины из шлюза загрузки с помощью специального поворотного механизма «карусельного» типа переводились в позицию ионного источника. После этого в вакуумную камеру подавали плазмообразующий газ аргон до давления 5×10-1 Па и поддерживали на заданном уровне в течение всего процесса ионной очистки. С помощью того же поворотного механизма пластины помещали в позицию магнетронного напыления. Повторно откачивали камеру до достижения остаточного давления не выше 2×10-3 Па и подавали плазмообразующий газ аргон до давления 5×10-1 Па. На металлическую мишень циркония подавали напряжение и возбуждали плазменный разряд с плотностью тока 0,25 А/см2 при диаметре мишени 100 мм. В течение 5 минут производилось напыление чистого циркония на поверхности пластин. После чего в вакуумную камеру включали подачу реакционного газа - азота, увеличивая парциальное давление азота по линейному закону от 0 до 8×10-2 Па в течение 5 минут, затем производили напыление при указанном давлении в течение 5 минут. Далее по обратной линейной зависимости в течение 5 минут уменьшали парциальное давление азота от 8×10-2 Па до 0. Вышеописанный цикл напыления повторялся до получения требуемого количества слоев с образованием на поверхности покрытия нитридного слоя.


СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ГРАДИЕНТНОГО ПОКРЫТИЯ МЕТОДОМ МАГНЕТРОННОГО НАПЫЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 255.
10.01.2013
№216.012.17dc

Способ газолазерной резки крупногабаритных деталей из композиционных материалов и устройство для его осуществления

Изобретение относится к способу и устройству газолазерной резки композиционных материалов. Способ включает подачу лазерного луча на обрабатываемую поверхность и соосно с лучом - технологического газа, коллимирование лазерного луча, заглубление его в обрабатываемое изделие и перемещение по...
Тип: Изобретение
Номер охранного документа: 0002471600
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.18c2

Полимерная композиция

Изобретение относится к негорючим полимерным композициям холодного отверждения и может применяться для местного упрочнения конструкций в зонах установки крепежа, заполнения пустот в деталях из полимерных композиционных материалов, заделки торцов и упрочнения участков сотовых конструкций,...
Тип: Изобретение
Номер охранного документа: 0002471830
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.18cd

Грунтовочная композиция

Изобретение относится к лакокрасочным покрытиям, в частности к грунтовочным композициям с пониженным содержанием летучих веществ холодного отверждения, предназначенным для окраски металлических и неметаллических поверхностей, и может быть использовано в авиационной технике, в строительстве и...
Тип: Изобретение
Номер охранного документа: 0002471841
Дата охранного документа: 10.01.2013
10.02.2013
№216.012.2454

Способ адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов и устройство для его осуществления

Заявленная группа изобретений относится к области экспериментальной аэродинамики и может быть использована при проведении испытаний в трансзвуковых аэродинамических трубах. Предложен новый способ адаптации рабочей части аэродинамической трубы, содержащий новую технологию получения на границах...
Тип: Изобретение
Номер охранного документа: 0002474802
Дата охранного документа: 10.02.2013
27.02.2013
№216.012.2aa5

Способ получения конъюгата нона-β-(1→3)-глюкозида с бычьим сывороточным альбумином скваратным методом

Изобретение относится к области биохимии. Предложен способ синтеза конъюгата нона-β-(1→3)-глюкозида с бычьим сывороточным альбумином (БСА) скваратным методом. Первоначально осуществляют взаимодействие нона-β-(1→3)-глюкозида с диэтилскваратом. Затем проводят реакцию полученного лиганда -...
Тип: Изобретение
Номер охранного документа: 0002476444
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2b51

Износостойкий сплав на основе никеля для нанесения износо- и коррозионно-стойких покрытий на конструкционные элементы микроплазменным или сверхзвуковым газодинамическим напылением

Изобретение относится к области металлургии, в частности к сплавам на основе никеля, используемым в качестве материала для получения износо- и коррозионно-стойких покрытий на функционально- конструкционных элементах методом микроплазменного или сверхзвукового холодного газодинамического...
Тип: Изобретение
Номер охранного документа: 0002476616
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c2c

Способ измерения температуры поверхности конструкции резистивным чувствительным элементом, устройство для его осуществления и способ изготовления устройства

Изобретение относится к измерительной технике и может быть использовано в тепло-прочностных испытаниях авиационно-космических конструкций при определении их поверхностных температурных полей. Согласно заявленному способу для измерения температуры поверхности конструкции чувствительный элемент...
Тип: Изобретение
Номер охранного документа: 0002476835
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c2d

Способ определения температурной характеристики резисторного чувствительного элемента, устройство для его осуществления и способ изготовления устройства

Изобретение относится к измерительной технике и может быть использовано при испытании и калибровке термометров сопротивления и тензорезисторов. Согласно заявленному способу определения температурной характеристики резисторного чувствительного элемента регистрируют температуру воздействия и...
Тип: Изобретение
Номер охранного документа: 0002476836
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c32

Устройство для измерения звукового давления

Изобретение относится к измерительной технике и может быть использовано для измерения звукового давления. Устройство содержит датчик с емкостным чувствительным элементом с обкладками конденсатора и экранами, усилитель заряда, состоящий из операционного усилителя, резистора и конденсатора...
Тип: Изобретение
Номер охранного документа: 0002476841
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c33

Устройство для измерения давления, температуры и теплового потока

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения в заданном участке температуры, теплового потока и давления. Техническим результатом изобретения является расширение области применения, повышение информативности и точности измерения давления,...
Тип: Изобретение
Номер охранного документа: 0002476842
Дата охранного документа: 27.02.2013
Показаны записи 1-10 из 201.
10.01.2013
№216.012.17dc

Способ газолазерной резки крупногабаритных деталей из композиционных материалов и устройство для его осуществления

Изобретение относится к способу и устройству газолазерной резки композиционных материалов. Способ включает подачу лазерного луча на обрабатываемую поверхность и соосно с лучом - технологического газа, коллимирование лазерного луча, заглубление его в обрабатываемое изделие и перемещение по...
Тип: Изобретение
Номер охранного документа: 0002471600
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.18c2

Полимерная композиция

Изобретение относится к негорючим полимерным композициям холодного отверждения и может применяться для местного упрочнения конструкций в зонах установки крепежа, заполнения пустот в деталях из полимерных композиционных материалов, заделки торцов и упрочнения участков сотовых конструкций,...
Тип: Изобретение
Номер охранного документа: 0002471830
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.18cd

Грунтовочная композиция

Изобретение относится к лакокрасочным покрытиям, в частности к грунтовочным композициям с пониженным содержанием летучих веществ холодного отверждения, предназначенным для окраски металлических и неметаллических поверхностей, и может быть использовано в авиационной технике, в строительстве и...
Тип: Изобретение
Номер охранного документа: 0002471841
Дата охранного документа: 10.01.2013
10.02.2013
№216.012.2454

Способ адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов и устройство для его осуществления

Заявленная группа изобретений относится к области экспериментальной аэродинамики и может быть использована при проведении испытаний в трансзвуковых аэродинамических трубах. Предложен новый способ адаптации рабочей части аэродинамической трубы, содержащий новую технологию получения на границах...
Тип: Изобретение
Номер охранного документа: 0002474802
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.246f

Способ определения запасов устойчивости рулевого привода и устройство для его осуществления

Изобретение относится к экспериментальным исследованиям приводов систем автоматического управления и предназначено для определения запасов устойчивости рулевого привода. Предлагается способ, в котором вначале снимают логарифмическую частотную характеристику участка контура электромеханической и...
Тип: Изобретение
Номер охранного документа: 0002474829
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.27d0

Способ измерения температуры термопарами, измерительная информационная система для его осуществления и температурный переходник

Изобретение относится к области термометрии и может быть использовано при тепловых испытаниях конструкций для определения их поверхностных температурных полей. Заявлен способ измерения температуры термопарами, в котором располагают в районе свободных концов термопар терморезистор. Измеряют...
Тип: Изобретение
Номер охранного документа: 0002475712
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2aa5

Способ получения конъюгата нона-β-(1→3)-глюкозида с бычьим сывороточным альбумином скваратным методом

Изобретение относится к области биохимии. Предложен способ синтеза конъюгата нона-β-(1→3)-глюкозида с бычьим сывороточным альбумином (БСА) скваратным методом. Первоначально осуществляют взаимодействие нона-β-(1→3)-глюкозида с диэтилскваратом. Затем проводят реакцию полученного лиганда -...
Тип: Изобретение
Номер охранного документа: 0002476444
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2b51

Износостойкий сплав на основе никеля для нанесения износо- и коррозионно-стойких покрытий на конструкционные элементы микроплазменным или сверхзвуковым газодинамическим напылением

Изобретение относится к области металлургии, в частности к сплавам на основе никеля, используемым в качестве материала для получения износо- и коррозионно-стойких покрытий на функционально- конструкционных элементах методом микроплазменного или сверхзвукового холодного газодинамического...
Тип: Изобретение
Номер охранного документа: 0002476616
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c2c

Способ измерения температуры поверхности конструкции резистивным чувствительным элементом, устройство для его осуществления и способ изготовления устройства

Изобретение относится к измерительной технике и может быть использовано в тепло-прочностных испытаниях авиационно-космических конструкций при определении их поверхностных температурных полей. Согласно заявленному способу для измерения температуры поверхности конструкции чувствительный элемент...
Тип: Изобретение
Номер охранного документа: 0002476835
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c2d

Способ определения температурной характеристики резисторного чувствительного элемента, устройство для его осуществления и способ изготовления устройства

Изобретение относится к измерительной технике и может быть использовано при испытании и калибровке термометров сопротивления и тензорезисторов. Согласно заявленному способу определения температурной характеристики резисторного чувствительного элемента регистрируют температуру воздействия и...
Тип: Изобретение
Номер охранного документа: 0002476836
Дата охранного документа: 27.02.2013
+ добавить свой РИД