×
20.08.2013
216.012.6120

Результат интеллектуальной деятельности: ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Выходное устройство содержит наружный корпус двигателя, внутренний корпус турбины, хвостовой обтекатель, элементы их крепления, расположенные за рабочим колесом последней ступени турбины, и смеситель. Элементы крепления выполнены в виде полых стоек. Смеситель выполнен в виде кольцевого элемента с расположенными внутри по его периметру сквозными лепестковыми каналами, чередующимися с лепестковыми каналами, закрепленными на выходных участках полых стоек. Сквозные каналы сообщены с внутренним каналом горячего газа, а каналы, закрепленные на выходных участках полых стоек, сообщены с наружным каналом холодного воздуха. Кольцевой элемент прикреплен к обтекателю турбины, корпусу двигателя и корпусу турбины. Входные участки профилированных стоек внутреннего контура повернуты навстречу направлению вращения рабочего колеса последней ступени турбины на угол 20-40° к ее продольной оси. Стенки каналов и средняя линия выходных участков стоек направлены вдоль продольной оси турбины. Длина хорды стойки выбрана таким образом, чтобы отношение длины хорды стойки к расстоянию между стойками составляло 1-3. Изобретение позволяет повысить коэффициент полезного действия турбины, обеспечить практически осевой поток на ее выходе, снизить инфракрасное излучение и улучшить охлаждение элементов конструкции. 1 з.п. ф-лы, 6 ил.

Изобретение относится к области авиационного двигателестроения, в частности к устройствам узловых соединений корпусов газотурбинных двигателей летательных аппаратов, конкретнее к конструкции выходных устройств в которых часть рабочего тела минует турбину.

Известно выходное устройство двухконтурного газотурбинного двигателя, содержащее наружный корпус двигателя, корпус турбины и затурбинный обтекатель, образующие наружный канал холодного воздуха и внутренний канал горячего газа и расположенные за рабочим колесом последней ступени турбины стойки крепления корпуса турбины и затурбинного обтекателя и смеситель /RU №2117796, МПК F02C 7/20, опубл. 20.08.1998 г./

Конструкция соединительных элементов корпусов известного решения способствует существенному загромождению периферийной зоны смесителя, что приводит к возникновению срывных зон, в которые поступает горячий газ из внутреннего канала. С холодным воздухом наружного канала в тракт охлаждения поступает горячий газ, что снижает эффективность охлаждения элементов конструкции и камеры сгорания, выходящий поток неравномерен и обладает значительными закручивающими потоками и инфракрасным излучением.

Задачей изобретения, является повышение надежности работы устройства, за счет облегчения транзита технологических сред во внутренней полости турбины, оптимизация загроможденности тракта с сохранением параметров потока воздуха на выходе из смесителя.

Ожидаемый технический результат повышение КПД последнего контура турбины при практически осевом потоке газа на выходе из турбины, повышение равномерности закрутки потока, улучшение охлаждения элементов конструкции, минимизация сопротивления и уменьшение инфракрасного излучения.

Ожидаемый технический результат достигается тем, что в известном выходном устройстве двухконтурного газотурбинного двигателя, содержащем наружный корпус двигателя, внутренний корпус турбины и хвостовой обтекатель, образующие наружный канал холодного воздуха и внутренний канал горячего газа, элементы крепления внутреннего и наружного корпусов и хвостового обтекателя за рабочим колесом последней ступени турбины и смеситель, по предложению, элементы крепления наружного корпуса двигателя, внутреннего корпуса турбины и обтекателя выполнены в виде полых аэродинамически профилированных стоек, а смеситель выполнен в виде кольцевого элемента с расположенными внутри по его периметру сквозными лепестковыми каналами, чередующимися с лепестковыми каналами, закрепленными на выходных участках полых стоек, сквозные каналы сообщены с внутренним каналом горячего газа, а каналы, закрепленные на выходных участках полых стоек сообщены с наружным каналом холодного воздуха, кольцевой элемент прикреплен к обтекателю турбины, корпусу двигателя и корпусу турбины, входные участки профилированных стоек внутреннего контура повернуты навстречу направлению вращения рабочего колеса последней ступени турбины на угол 20-40° к ее продольной оси, а стенки каналов и средняя линия выходных участков стоек направлены вдоль продольной оси турбины, при этом длина хорды стойки выбрана таким образом, чтобы отношение b/t=1-3, где b - длина хорды стойки; t - расстояние между стойками.

Смеситель может быть снабжен дополнительными сквозными лепестковыми каналами, размещенными между полыми стойками и сообщен с наружным каналом холодного воздуха. В предложенном решении для уменьшения захламленности канала средства крепления наружного корпуса двигателя, корпуса турбины и обтекателя выполнены в виде полых аэродинамически профилированных стоек. Для обеспечения благоприятного обтекания потоком самих стоек, а также обтекания элементов конструкции двигателя, расположенных за затурбинным устройством по основному потоку, и течения с минимальными потерями в проточной части двигателя после затурбинного устройства, необходимо, чтобы поток газа на выходе из турбины был направлен практически вдоль продольной оси двигателя с малой окружной составляющей вектора скорости. Для этого приходится, вынуждено увеличивать угол выхода и снижать скорость потока в относительном движении на выходе из рабочего колеса последней ступени турбины.

Согласно формуле Эйлера, КПД турбины зависит от угла выхода потока. Оптимальное значение угла выхода потока составляет 20…40°. Использование этой зависимости для последней ступени турбины приводит к завышенным потерям полного давления в последующей за турбиной проточной части двигателя (форсажная камера, реактивное сопло) из-за сильной закрутки потока. Минимальные потери полного давления возможны только при осевом или близком к осевому направлению потока газов.

Изменение угла закрутки потока после турбины осуществляется использованием профилированных стоек затурбинного устройства. Однако, определяющим геометрию стоек и их число являются не газодинамические параметры основного потока (их влияние на параметры не значительно), а параметры прочности и работоспособности стойки турбины. Через полые аэродинамически профилированные стойки в конструкции затурбинных устройств, проходят технологические трубопроводы, передающие турбине технологические среды. Для технического обслуживания турбины и размещения необходимого числа проводок в турбину и из нее достаточно 10-15 профилированных полых стоек, что является недостаточным для поворота потока. Поворот потока на необходимый угол с минимальными потерями полного давления можно получить путем удлинения профиля полых стоек. Чтобы не увеличивать осевой размер двигателя из-за увеличения осевого размера стоек затурбинного устройства в изобретении предлагается конструктивно объединить стойки и смеситель, выполнив смеситель в виде кольцевого элемента с расположенными внутри по его периметру сквозными лепестковыми каналами, чередующимися с лепестковыми каналами, закрепленными на выходных участках полых стоек. Сквозные каналы сообщены с внутренним каналом горячего газа, а каналы, закрепленные на выходных участках полых стоек, сообщены с наружным каналом холодного воздуха. Такое размещение каналов в смесителе обеспечивает транзит воздуха из наружного контура во внутренний, с последующим смешением газов в проточной части двигателя (в камере смешения форсажной камеры двигателя). Длина хорды профиля выбирается таким образом, чтобы отношение b/t=1…3, где b - длина хорды профиля, t - расстояние между профилями в решетке. Этим достигается поворот потока газов внутреннего контура до углов, близких к нулю относительно оси выходного устройства. При суммарной нехватке площади выходных каналов наружного контура, возможно использование между стойками карманов для дополнительного транзита наружного канала холодного воздуха, что позволит соблюсти закон равенства статических давлений потоков из внутреннего канала горячего газа и наружного канала холодного воздуха в месте смешения (необходимо для минимизации потерь на смешение потоков). Максимальная глубина этих каналов меньше, чем высота канала внутреннего контура. Выходные сечения каналов, проходящие в теле стойки располагаются таким образом, что сечение одного канала совпадает с входной кромкой соседней стойки. Данное расположение позволяет закрыть видимость лопаток турбины. Таким образом, инфракрасное излучение, исходящее от лопаток турбины, экранируется охлажденными воздухом из наружного контура стойками затурбинного устройства.

Изобретение поясняется графически.

Фиг.1 - продольный разрез места соединения корпусов со смесителем;

фиг.2 - поперечный разрез соединения корпусов со смесителем;

фиг.3 - вид сзади на выходное устройство;

фиг.4 - продольный разрез места соединения корпусов со смесителем с дополнительными лепестковыми каналами;

фиг.5 - поперечный разрез соединения корпусов со смесителем с дополнительными лепестковыми каналами;

фиг.6 - вид сзади на выходное устройство с дополнительными лепестковыми каналами.

Выходное устройство двухконтурного газотурбинного двигателя содержит наружный корпус двигателя 1, корпус турбины 2 и затурбинный обтекатель 3, образующие участок газовоздушного тракта двигателя: канал наружного контура 4, по которому течет относительно холодный воздух, и канал внутреннего контура 5, по которому течет горячий газ. В канале внутреннего контура 5 расположены рабочие лопатки 6 рабочего колеса последней ступени турбины, закрепленные на диске 7. Хвостовой обтекатель 3 фиксируется в проточной части двигателя с помощью силовых элементов аэродинамически спрофилированный полых стоек 8 затурбинного устройства. Смеситель 2 потоков горячего газа и холодного воздуха выполнен в виде кольцевого элемента с расположенными внутри по его периметру сквозными лепестковыми каналами 9, по которым воздух из наружного контура 4 попадает в камеру смешения 10. Профилированные стойки 8 и внешние стенки лепестковых каналов 9 объединены между собой и образуют межстоечные каналы 11, по которым горячий газ из внутреннего контура 5 попадает в камеру смешения 10. Чередование лепестковых каналов 9 с межстоечными каналами 11 обеспечивает равномерное и быстрое перемешивание потоков холодного воздуха и горячего газа. Смеситель 2 прикреплен к затурбинному обтекателю 3, к внутреннему корпусу 2 и к наружному корпусу 1. При необходимости, смеситель 2 может иметь дополнительные сквозные лепестковые каналы 12 (вариант 2), расположенные между лепестковыми каналами 9. Глубина дополнительных каналов 12 меньше, чем высота проточной части внутреннего контура 5. Входной участок средней линии 13 профилированной стойки 8 внутреннего контура 5 повернуты навстречу направлению вращения рабочего колеса 7 последней ступени турбины на угол 20-40° к ее продольной оси 14, а стенки лепестковых каналов 9 и 12, и выходной участок средней линии 13 стойки направлены вдоль продольной оси 14 турбины.

При работе последнего колеса 7 турбины поток с рабочих лопаток 6 выходит с относительной средней скоростью w2 под углом β2 к фронту решетки из стоек 8. С учетом скорости вращения колеса 7 на выходе u2 абсолютная скорость потока будет равна c2 с углом α2 (фиг.2). Окружная составляющая скорости будет равна cu2=c2·cos α2. Если эта компонента будет отрицательной по отношению к направлению вращения, то при прочих равных условиях она будет давать приращение мощности N ступени, вычисляемой по формуле Эйлера:

N=m1u1cu1-m2u2cu2,

где m1 и m2 - расходы массы газа на входе и выходе из колеса; u1 и u2 - окружная скорость вращения колеса на входе и выходе потока из колеса; cu1 и cu2 - окружные составляющие абсолютных скоростей на входе и выходе потока из колеса.

Для организации безударного натекания потока на основные стойки 8 необходимо обеспечить θ1=90°-α2 или 20-40° от продольной оси 14 турбины. В межстоечном канале 11 газ из внутреннего контура 5 изменяет свое направление до осевого и попадает в камеру смешения 10, где перемешивается с воздухом из наружного контура 4. Воздух из наружного контура 4 попадает в камеру смешения 10 по лепестковым каналам 9 и 12. Площадь поперечного сечения на выходе из межстоечного канала 11, площадь поперечного сечения на выходе из лепестковых каналов 9 и 12, а также наличие и число дополнительных лепестковых каналов 12 определяется из условия минимальных потерь полного давления при смешении в камере смешения 10. Минимальные потери полного давления определяются из условия pcp.горср.хол., где рср.гор - статическое давления потока горячих газов внутреннего контура 5 на выходе из межстоечного канала 11, рср.хол. - статическое давления потока холодного воздуха из наружного контура 4 на выходе из лепестковых каналов.

Использование изобретения позволяет повысить КПД последнего контура турбины до 3% при практически осевом потоке газа на выходе из турбины, повысить равномерность закрутки потока и улучшить охлаждение элементов конструкции, оптимизировать сопротивление проточного тракта двигателя, а конструктивное выполнение и расположение стоек и каналов смесителя позволяет закрыть видимость лопаток турбины и экранировать инфракрасное излучение, исходящее от лопаток турбины, охлажденным воздухом из наружного контура и стойками затурбинного устройства.


ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 281-290 из 299.
29.05.2019
№219.017.688b

Магнитожидкостное уплотнение вала

Изобретение относится к конструкциям уплотнений между подвижными относительно одна другой поверхностями. Магнитожидкостное уплотнение вала содержит корпус из немагнитного материала с кольцевой магнитной системой внутри него, включающей постоянный магнит с полюсными приставками и жестко...
Тип: Изобретение
Номер охранного документа: 0002451225
Дата охранного документа: 20.05.2012
29.05.2019
№219.017.6a11

Способ управления газотурбинным двигателем с форсажной камерой сгорания и система для его осуществления

Группа изобретений относится к области авиационного двигателестроения. Управление газотурбинным двигателем (ГТД) с форсажной камерой сгорания (ФКС) осуществляется по одному из трех контуров управления, на каждом из контуров задается индивидуальная программа управления, которая корректируется по...
Тип: Изобретение
Номер охранного документа: 0002466287
Дата охранного документа: 10.11.2012
09.06.2019
№219.017.769d

Масляная система авиационного газотурбинного двигателя

Масляная система авиационного газотурбинного двигателя относится к области авиадвигателестроения, преимущественно к маслосистеме авиационного газотурбинного двигателя для маневренных самолетов, и позволяет замедлить снижение уровня масла в маслобаке авиационного газотурбинного двигателя...
Тип: Изобретение
Номер охранного документа: 0002273746
Дата охранного документа: 10.04.2006
19.06.2019
№219.017.8449

Способ запуска газотурбинных двигателей многодвигательного летательного аппарата

Способ запуска газотурбинных двигателей многодвигательного летательного аппарата заключается в запуске одного из двигателей летательного аппарата путем подвода к его ротору мощности от пускового устройства и последующем запуске второго двигателя летательного аппарата. Запуск второго двигателя...
Тип: Изобретение
Номер охранного документа: 0002277179
Дата охранного документа: 27.05.2006
19.06.2019
№219.017.853e

Стенд для испытания турбореактивного двигателя

Стенд для испытания турбореактивного двигателя /ТРД/ и для испытания двигателей с управляемым по направлению вектором тяги и/или испытания реверса тяги. Задачей изобретения является обеспечение измерений тяги по осям трехмерного пространства, в направлении действия измеряемых усилий, с заданной...
Тип: Изобретение
Номер охранного документа: 0002250446
Дата охранного документа: 20.04.2005
19.06.2019
№219.017.85ba

Способ наддува опор газотурбинного двигателя

Изобретение относится к области газотурбинного двигателестроения, а именно к способам наддува опор газотурбинных двигателей. Способ наддува опор двухконтурного газотурбинного двигателя заключается в подаче воздуха от одной из ступеней компрессора через стойки промежуточного корпуса компрессора...
Тип: Изобретение
Номер охранного документа: 0002344303
Дата охранного документа: 20.01.2009
19.06.2019
№219.017.85d0

Газотурбинный двигатель

Газотурбинный двигатель содержит наружный контур и внутренний контур, имеющий камеру сгорания, компрессор, охлаждаемую турбину с, по меньшей мере, двумя ступенями, размещенным между ними сопловым аппаратом и междисковой полостью. Думисная полость образована последней ступенью компрессора,...
Тип: Изобретение
Номер охранного документа: 0002347091
Дата охранного документа: 20.02.2009
19.06.2019
№219.017.8664

Всеракурсное реактивное сопло турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к конструкции сопел турбореактивных двигателей. Сопло содержит неподвижный корпус, снабженный карданным шарниром, и подвижный корпус, соединенный стойками с подвижной частью карданного шарнира, причем подвижный и неподвижный...
Тип: Изобретение
Номер охранного документа: 0002312245
Дата охранного документа: 10.12.2007
19.06.2019
№219.017.86ec

Плоское сопло турбореактивного двигателя

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопел турбореактивных двигателей. Плоское сопло содержит корпус, верхнюю и нижнюю поворотные створки, боковые неподвижные стенки, силовой цилиндр, дополнительный силовой цилиндр и поворотную раму. Один конец...
Тип: Изобретение
Номер охранного документа: 0002383760
Дата охранного документа: 10.03.2010
19.06.2019
№219.017.8878

Узел соединения роторов компрессора и турбины газотурбинного двигателя

Изобретение относится к газотурбинным двигателям авиационного и наземного применения, а именно к соединению валов компрессора и турбины. Узел соединения роторов компрессора и турбины газотурбинного двигателя содержит валы компрессора и турбины, соединенные между собой. В осевом направлении валы...
Тип: Изобретение
Номер охранного документа: 0002328610
Дата охранного документа: 10.07.2008
Показаны записи 281-290 из 322.
24.05.2019
№219.017.5eb2

Реверсивное устройство турбореактивного двигателя

Реверсивное устройство турбореактивного двигателя, содержащее устройство для перекрытия газового потока в корпусе двигателя, размещенного в мотогондоле самолета, содержит выхлопные каналы, установленные по направлению движения газового потока, по окружности в кольцевой полости, клапаны...
Тип: Изобретение
Номер охранного документа: 0002688642
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.66a8

Плоское сопло турбореактивного двигателя

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопел турбореактивных двигателей. Плоское сопло турбореактивного двигателя содержит две неподвижные боковые стенки и установленные между ними верхнюю и нижнюю подвижные створки. В каждую подвижную створку...
Тип: Изобретение
Номер охранного документа: 0002374477
Дата охранного документа: 27.11.2009
29.05.2019
№219.017.688b

Магнитожидкостное уплотнение вала

Изобретение относится к конструкциям уплотнений между подвижными относительно одна другой поверхностями. Магнитожидкостное уплотнение вала содержит корпус из немагнитного материала с кольцевой магнитной системой внутри него, включающей постоянный магнит с полюсными приставками и жестко...
Тип: Изобретение
Номер охранного документа: 0002451225
Дата охранного документа: 20.05.2012
29.05.2019
№219.017.6a11

Способ управления газотурбинным двигателем с форсажной камерой сгорания и система для его осуществления

Группа изобретений относится к области авиационного двигателестроения. Управление газотурбинным двигателем (ГТД) с форсажной камерой сгорания (ФКС) осуществляется по одному из трех контуров управления, на каждом из контуров задается индивидуальная программа управления, которая корректируется по...
Тип: Изобретение
Номер охранного документа: 0002466287
Дата охранного документа: 10.11.2012
09.06.2019
№219.017.769d

Масляная система авиационного газотурбинного двигателя

Масляная система авиационного газотурбинного двигателя относится к области авиадвигателестроения, преимущественно к маслосистеме авиационного газотурбинного двигателя для маневренных самолетов, и позволяет замедлить снижение уровня масла в маслобаке авиационного газотурбинного двигателя...
Тип: Изобретение
Номер охранного документа: 0002273746
Дата охранного документа: 10.04.2006
13.06.2019
№219.017.80c2

Центробежно-шестеренный насос

Изобретение относится к насосам, применяемым в маслосистемах авиационных газотурбинных двигателей для подачи и откачки масла. Центробежно-шестеренный насос содержит шестерни 2, размещенные в расточках корпуса 1 и установленные на валах 3, расположенных в опорных подшипниках 4, каналы 9,...
Тип: Изобретение
Номер охранного документа: 0002691269
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.80db

Способ регулирования авиационного турбореактивного двигателя

Способ регулирования авиационного двухроторного турбореактивного двигателя относится к области авиационного двигателестроения, а именно к системам регулирования, чувствительным к параметрам двигателя и окружающей среды, и позволяет повысить тяговые характеристики двигателя за счет оптимизации...
Тип: Изобретение
Номер охранного документа: 0002691287
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.8179

Сопловый аппарат турбины низкого давления (тнд) газотурбинного двигателя (гтд) (варианты) и лопатка соплового аппарата тнд (варианты)

Группа изобретений относится к области авиадвигателестроения. Сопловый аппарат ТНД двигателя содержит сопловые блоки, смонтированные между наружным и внутренним силовыми кольцами, соединенными полыми силовыми спицами. Каждый из сопловых блоков собран из трех жестко соединенных лопаток,...
Тип: Изобретение
Номер охранного документа: 0002691203
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.818d

Способ охлаждения соплового аппарата турбины низкого давления (тнд) газотурбинного двигателя и сопловый аппарат тнд, охлаждаемый этим способом, способ охлаждения лопатки соплового аппарата тнд и лопатка соплового аппарата тнд, охлаждаемая этим способом

Группа изобретений относится к области авиадвигателестроения. Сопловый аппарат ТНД включает сопловый венец, образованный из сопловых блоков, собранный каждый не менее чем из трех сопловых лопаток, выполненных за одно целое с малой и большой. Сопловые блоки смонтированы между наружным и...
Тип: Изобретение
Номер охранного документа: 0002691202
Дата охранного документа: 11.06.2019
19.06.2019
№219.017.85ba

Способ наддува опор газотурбинного двигателя

Изобретение относится к области газотурбинного двигателестроения, а именно к способам наддува опор газотурбинных двигателей. Способ наддува опор двухконтурного газотурбинного двигателя заключается в подаче воздуха от одной из ступеней компрессора через стойки промежуточного корпуса компрессора...
Тип: Изобретение
Номер охранного документа: 0002344303
Дата охранного документа: 20.01.2009
+ добавить свой РИД