×
20.08.2013
216.012.6120

Результат интеллектуальной деятельности: ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Выходное устройство содержит наружный корпус двигателя, внутренний корпус турбины, хвостовой обтекатель, элементы их крепления, расположенные за рабочим колесом последней ступени турбины, и смеситель. Элементы крепления выполнены в виде полых стоек. Смеситель выполнен в виде кольцевого элемента с расположенными внутри по его периметру сквозными лепестковыми каналами, чередующимися с лепестковыми каналами, закрепленными на выходных участках полых стоек. Сквозные каналы сообщены с внутренним каналом горячего газа, а каналы, закрепленные на выходных участках полых стоек, сообщены с наружным каналом холодного воздуха. Кольцевой элемент прикреплен к обтекателю турбины, корпусу двигателя и корпусу турбины. Входные участки профилированных стоек внутреннего контура повернуты навстречу направлению вращения рабочего колеса последней ступени турбины на угол 20-40° к ее продольной оси. Стенки каналов и средняя линия выходных участков стоек направлены вдоль продольной оси турбины. Длина хорды стойки выбрана таким образом, чтобы отношение длины хорды стойки к расстоянию между стойками составляло 1-3. Изобретение позволяет повысить коэффициент полезного действия турбины, обеспечить практически осевой поток на ее выходе, снизить инфракрасное излучение и улучшить охлаждение элементов конструкции. 1 з.п. ф-лы, 6 ил.

Изобретение относится к области авиационного двигателестроения, в частности к устройствам узловых соединений корпусов газотурбинных двигателей летательных аппаратов, конкретнее к конструкции выходных устройств в которых часть рабочего тела минует турбину.

Известно выходное устройство двухконтурного газотурбинного двигателя, содержащее наружный корпус двигателя, корпус турбины и затурбинный обтекатель, образующие наружный канал холодного воздуха и внутренний канал горячего газа и расположенные за рабочим колесом последней ступени турбины стойки крепления корпуса турбины и затурбинного обтекателя и смеситель /RU №2117796, МПК F02C 7/20, опубл. 20.08.1998 г./

Конструкция соединительных элементов корпусов известного решения способствует существенному загромождению периферийной зоны смесителя, что приводит к возникновению срывных зон, в которые поступает горячий газ из внутреннего канала. С холодным воздухом наружного канала в тракт охлаждения поступает горячий газ, что снижает эффективность охлаждения элементов конструкции и камеры сгорания, выходящий поток неравномерен и обладает значительными закручивающими потоками и инфракрасным излучением.

Задачей изобретения, является повышение надежности работы устройства, за счет облегчения транзита технологических сред во внутренней полости турбины, оптимизация загроможденности тракта с сохранением параметров потока воздуха на выходе из смесителя.

Ожидаемый технический результат повышение КПД последнего контура турбины при практически осевом потоке газа на выходе из турбины, повышение равномерности закрутки потока, улучшение охлаждения элементов конструкции, минимизация сопротивления и уменьшение инфракрасного излучения.

Ожидаемый технический результат достигается тем, что в известном выходном устройстве двухконтурного газотурбинного двигателя, содержащем наружный корпус двигателя, внутренний корпус турбины и хвостовой обтекатель, образующие наружный канал холодного воздуха и внутренний канал горячего газа, элементы крепления внутреннего и наружного корпусов и хвостового обтекателя за рабочим колесом последней ступени турбины и смеситель, по предложению, элементы крепления наружного корпуса двигателя, внутреннего корпуса турбины и обтекателя выполнены в виде полых аэродинамически профилированных стоек, а смеситель выполнен в виде кольцевого элемента с расположенными внутри по его периметру сквозными лепестковыми каналами, чередующимися с лепестковыми каналами, закрепленными на выходных участках полых стоек, сквозные каналы сообщены с внутренним каналом горячего газа, а каналы, закрепленные на выходных участках полых стоек сообщены с наружным каналом холодного воздуха, кольцевой элемент прикреплен к обтекателю турбины, корпусу двигателя и корпусу турбины, входные участки профилированных стоек внутреннего контура повернуты навстречу направлению вращения рабочего колеса последней ступени турбины на угол 20-40° к ее продольной оси, а стенки каналов и средняя линия выходных участков стоек направлены вдоль продольной оси турбины, при этом длина хорды стойки выбрана таким образом, чтобы отношение b/t=1-3, где b - длина хорды стойки; t - расстояние между стойками.

Смеситель может быть снабжен дополнительными сквозными лепестковыми каналами, размещенными между полыми стойками и сообщен с наружным каналом холодного воздуха. В предложенном решении для уменьшения захламленности канала средства крепления наружного корпуса двигателя, корпуса турбины и обтекателя выполнены в виде полых аэродинамически профилированных стоек. Для обеспечения благоприятного обтекания потоком самих стоек, а также обтекания элементов конструкции двигателя, расположенных за затурбинным устройством по основному потоку, и течения с минимальными потерями в проточной части двигателя после затурбинного устройства, необходимо, чтобы поток газа на выходе из турбины был направлен практически вдоль продольной оси двигателя с малой окружной составляющей вектора скорости. Для этого приходится, вынуждено увеличивать угол выхода и снижать скорость потока в относительном движении на выходе из рабочего колеса последней ступени турбины.

Согласно формуле Эйлера, КПД турбины зависит от угла выхода потока. Оптимальное значение угла выхода потока составляет 20…40°. Использование этой зависимости для последней ступени турбины приводит к завышенным потерям полного давления в последующей за турбиной проточной части двигателя (форсажная камера, реактивное сопло) из-за сильной закрутки потока. Минимальные потери полного давления возможны только при осевом или близком к осевому направлению потока газов.

Изменение угла закрутки потока после турбины осуществляется использованием профилированных стоек затурбинного устройства. Однако, определяющим геометрию стоек и их число являются не газодинамические параметры основного потока (их влияние на параметры не значительно), а параметры прочности и работоспособности стойки турбины. Через полые аэродинамически профилированные стойки в конструкции затурбинных устройств, проходят технологические трубопроводы, передающие турбине технологические среды. Для технического обслуживания турбины и размещения необходимого числа проводок в турбину и из нее достаточно 10-15 профилированных полых стоек, что является недостаточным для поворота потока. Поворот потока на необходимый угол с минимальными потерями полного давления можно получить путем удлинения профиля полых стоек. Чтобы не увеличивать осевой размер двигателя из-за увеличения осевого размера стоек затурбинного устройства в изобретении предлагается конструктивно объединить стойки и смеситель, выполнив смеситель в виде кольцевого элемента с расположенными внутри по его периметру сквозными лепестковыми каналами, чередующимися с лепестковыми каналами, закрепленными на выходных участках полых стоек. Сквозные каналы сообщены с внутренним каналом горячего газа, а каналы, закрепленные на выходных участках полых стоек, сообщены с наружным каналом холодного воздуха. Такое размещение каналов в смесителе обеспечивает транзит воздуха из наружного контура во внутренний, с последующим смешением газов в проточной части двигателя (в камере смешения форсажной камеры двигателя). Длина хорды профиля выбирается таким образом, чтобы отношение b/t=1…3, где b - длина хорды профиля, t - расстояние между профилями в решетке. Этим достигается поворот потока газов внутреннего контура до углов, близких к нулю относительно оси выходного устройства. При суммарной нехватке площади выходных каналов наружного контура, возможно использование между стойками карманов для дополнительного транзита наружного канала холодного воздуха, что позволит соблюсти закон равенства статических давлений потоков из внутреннего канала горячего газа и наружного канала холодного воздуха в месте смешения (необходимо для минимизации потерь на смешение потоков). Максимальная глубина этих каналов меньше, чем высота канала внутреннего контура. Выходные сечения каналов, проходящие в теле стойки располагаются таким образом, что сечение одного канала совпадает с входной кромкой соседней стойки. Данное расположение позволяет закрыть видимость лопаток турбины. Таким образом, инфракрасное излучение, исходящее от лопаток турбины, экранируется охлажденными воздухом из наружного контура стойками затурбинного устройства.

Изобретение поясняется графически.

Фиг.1 - продольный разрез места соединения корпусов со смесителем;

фиг.2 - поперечный разрез соединения корпусов со смесителем;

фиг.3 - вид сзади на выходное устройство;

фиг.4 - продольный разрез места соединения корпусов со смесителем с дополнительными лепестковыми каналами;

фиг.5 - поперечный разрез соединения корпусов со смесителем с дополнительными лепестковыми каналами;

фиг.6 - вид сзади на выходное устройство с дополнительными лепестковыми каналами.

Выходное устройство двухконтурного газотурбинного двигателя содержит наружный корпус двигателя 1, корпус турбины 2 и затурбинный обтекатель 3, образующие участок газовоздушного тракта двигателя: канал наружного контура 4, по которому течет относительно холодный воздух, и канал внутреннего контура 5, по которому течет горячий газ. В канале внутреннего контура 5 расположены рабочие лопатки 6 рабочего колеса последней ступени турбины, закрепленные на диске 7. Хвостовой обтекатель 3 фиксируется в проточной части двигателя с помощью силовых элементов аэродинамически спрофилированный полых стоек 8 затурбинного устройства. Смеситель 2 потоков горячего газа и холодного воздуха выполнен в виде кольцевого элемента с расположенными внутри по его периметру сквозными лепестковыми каналами 9, по которым воздух из наружного контура 4 попадает в камеру смешения 10. Профилированные стойки 8 и внешние стенки лепестковых каналов 9 объединены между собой и образуют межстоечные каналы 11, по которым горячий газ из внутреннего контура 5 попадает в камеру смешения 10. Чередование лепестковых каналов 9 с межстоечными каналами 11 обеспечивает равномерное и быстрое перемешивание потоков холодного воздуха и горячего газа. Смеситель 2 прикреплен к затурбинному обтекателю 3, к внутреннему корпусу 2 и к наружному корпусу 1. При необходимости, смеситель 2 может иметь дополнительные сквозные лепестковые каналы 12 (вариант 2), расположенные между лепестковыми каналами 9. Глубина дополнительных каналов 12 меньше, чем высота проточной части внутреннего контура 5. Входной участок средней линии 13 профилированной стойки 8 внутреннего контура 5 повернуты навстречу направлению вращения рабочего колеса 7 последней ступени турбины на угол 20-40° к ее продольной оси 14, а стенки лепестковых каналов 9 и 12, и выходной участок средней линии 13 стойки направлены вдоль продольной оси 14 турбины.

При работе последнего колеса 7 турбины поток с рабочих лопаток 6 выходит с относительной средней скоростью w2 под углом β2 к фронту решетки из стоек 8. С учетом скорости вращения колеса 7 на выходе u2 абсолютная скорость потока будет равна c2 с углом α2 (фиг.2). Окружная составляющая скорости будет равна cu2=c2·cos α2. Если эта компонента будет отрицательной по отношению к направлению вращения, то при прочих равных условиях она будет давать приращение мощности N ступени, вычисляемой по формуле Эйлера:

N=m1u1cu1-m2u2cu2,

где m1 и m2 - расходы массы газа на входе и выходе из колеса; u1 и u2 - окружная скорость вращения колеса на входе и выходе потока из колеса; cu1 и cu2 - окружные составляющие абсолютных скоростей на входе и выходе потока из колеса.

Для организации безударного натекания потока на основные стойки 8 необходимо обеспечить θ1=90°-α2 или 20-40° от продольной оси 14 турбины. В межстоечном канале 11 газ из внутреннего контура 5 изменяет свое направление до осевого и попадает в камеру смешения 10, где перемешивается с воздухом из наружного контура 4. Воздух из наружного контура 4 попадает в камеру смешения 10 по лепестковым каналам 9 и 12. Площадь поперечного сечения на выходе из межстоечного канала 11, площадь поперечного сечения на выходе из лепестковых каналов 9 и 12, а также наличие и число дополнительных лепестковых каналов 12 определяется из условия минимальных потерь полного давления при смешении в камере смешения 10. Минимальные потери полного давления определяются из условия pcp.горср.хол., где рср.гор - статическое давления потока горячих газов внутреннего контура 5 на выходе из межстоечного канала 11, рср.хол. - статическое давления потока холодного воздуха из наружного контура 4 на выходе из лепестковых каналов.

Использование изобретения позволяет повысить КПД последнего контура турбины до 3% при практически осевом потоке газа на выходе из турбины, повысить равномерность закрутки потока и улучшить охлаждение элементов конструкции, оптимизировать сопротивление проточного тракта двигателя, а конструктивное выполнение и расположение стоек и каналов смесителя позволяет закрыть видимость лопаток турбины и экранировать инфракрасное излучение, исходящее от лопаток турбины, охлажденным воздухом из наружного контура и стойками затурбинного устройства.


ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
ВЫХОДНОЕ УСТРОЙСТВО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 231-240 из 299.
20.01.2018
№218.016.1b72

Механизм передачи крутящего момента агрегатам турбореактивного двигателя (трд), центральная коническая передача (цкп) трд, главная коническая шестерённая пара цкп трд, корпус цкп трд, ведущее зубчатое коническое колесо цкп, ведомое зубчатое коническое колесо цкп, узел цкп трд

Группа изобретений относится к области авиадвигателестроения. Единый механизм передачи крутящего момента агрегатам двухвального, двухконтурного авиационного ТРД, имеющего газодинамически связанные между собой соосные валы РВД и РНД, включает соединенные с РВД с возможностью передачи агрегатам...
Тип: Изобретение
Номер охранного документа: 0002636626
Дата охранного документа: 24.11.2017
20.01.2018
№218.016.1e3e

Маслосистема газотурбинного двигателя маневренного самолета

Изобретение относится к области авиационного двигателестроения и касается масляной системы газотурбинного двигателя маневренного самолета. Перепускной клапан установлен за топливомасляным теплообменником, а выход из перепускного клапана сообщен трубопроводом с внутренней полостью...
Тип: Изобретение
Номер охранного документа: 0002640900
Дата охранного документа: 12.01.2018
17.02.2018
№218.016.2a88

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы РВД и РНД модуля газогенератора и вал ротора...
Тип: Изобретение
Номер охранного документа: 0002642955
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.2ead

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы роторов высокого давления (РВД) и роторов...
Тип: Изобретение
Номер охранного документа: 0002644497
Дата охранного документа: 12.02.2018
20.02.2019
№219.016.bcef

Способ диагностики колебаний рабочего колеса турбомашины

Способ диагностики колебаний рабочего колеса турбомашины относится к диагностике колебаний, возникающих в турбомашинах, и может найти широкое применение при создании и прочностной доводке осевых турбин и компрессоров, применяемых как в авиации, так и в энергомашиностроении. Способ дает...
Тип: Изобретение
Номер охранного документа: 0002287141
Дата охранного документа: 10.11.2006
20.02.2019
№219.016.bda7

Регулируемое сопло турбореактивного двигателя

Регулируемое сопло турбореактивного двигателя содержит корпус с шарнирно закрепленными на нем створками и расположенными между ними уплотнительными проставками. Проставки подвешены на створках посредством коромысел с лапками, торцы которых установлены с возможностью контактирования со...
Тип: Изобретение
Номер охранного документа: 0002258829
Дата охранного документа: 20.08.2005
01.03.2019
№219.016.cc63

Топливный коллектор камеры сгорания газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к конструкции топливного коллектора камеры сгорания газотурбинного двигателя (ГТД). Топливный коллектор камеры сгорания газотурбинного двигателя содержит кольцевую трубу для подачи топлива к форсункам, установленную внутри корпуса...
Тип: Изобретение
Номер охранного документа: 0002375597
Дата охранного документа: 10.12.2009
01.03.2019
№219.016.cc9a

Масляная система авиационного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, в частности к масляной системе авиационного ГТД маневренного самолета. Маслосистема содержит, по меньшей мере, одну масляную полость, оборудованную двумя маслозаборниками, установленными в верхней и нижней противоположных частях полости и...
Тип: Изобретение
Номер охранного документа: 0002374469
Дата охранного документа: 27.11.2009
01.03.2019
№219.016.cd4f

Компрессор двухконтурного газотурбинного двигателя

Изобретение относится к устройствам управления угловым положением направляющих лопаток статора компрессора и позволяет уменьшить нагрузки на опоры подшипника путем разнесения опор подшипника как можно дальше друг от друга без увеличения габаритов и веса конструкции и путем устранения...
Тип: Изобретение
Номер охранного документа: 0002364754
Дата охранного документа: 20.08.2009
01.03.2019
№219.016.cec8

Система переброса рабочего тела для поворотного сопла турбореактивного двигателя

Система переброса рабочего тела для поворотного всеракурсного сопла турбореактивного двигателя содержит два полых рычага и два полых шарнирных узла, жестко закрепленных посредством проушин, охватывающих полые втулки, один - на неподвижном корпусе сопла двигателя, другой - на его подвижном...
Тип: Изобретение
Номер охранного документа: 0002456468
Дата охранного документа: 20.07.2012
Показаны записи 231-240 из 322.
20.01.2018
№218.016.1b72

Механизм передачи крутящего момента агрегатам турбореактивного двигателя (трд), центральная коническая передача (цкп) трд, главная коническая шестерённая пара цкп трд, корпус цкп трд, ведущее зубчатое коническое колесо цкп, ведомое зубчатое коническое колесо цкп, узел цкп трд

Группа изобретений относится к области авиадвигателестроения. Единый механизм передачи крутящего момента агрегатам двухвального, двухконтурного авиационного ТРД, имеющего газодинамически связанные между собой соосные валы РВД и РНД, включает соединенные с РВД с возможностью передачи агрегатам...
Тип: Изобретение
Номер охранного документа: 0002636626
Дата охранного документа: 24.11.2017
20.01.2018
№218.016.1e3e

Маслосистема газотурбинного двигателя маневренного самолета

Изобретение относится к области авиационного двигателестроения и касается масляной системы газотурбинного двигателя маневренного самолета. Перепускной клапан установлен за топливомасляным теплообменником, а выход из перепускного клапана сообщен трубопроводом с внутренней полостью...
Тип: Изобретение
Номер охранного документа: 0002640900
Дата охранного документа: 12.01.2018
17.02.2018
№218.016.2a88

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы РВД и РНД модуля газогенератора и вал ротора...
Тип: Изобретение
Номер охранного документа: 0002642955
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.2ead

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы роторов высокого давления (РВД) и роторов...
Тип: Изобретение
Номер охранного документа: 0002644497
Дата охранного документа: 12.02.2018
10.05.2018
№218.016.3959

Способ управления газотурбинным двигателем

Изобретение относится к области авиационной техники, в частности к способам управления газотурбинным двигателем. В известном способе управления газотурбинным двигателем, включающим изменение расхода охлаждающего воздуха подаваемого на турбину в зависимости от режимов работы двигателя, воздух...
Тип: Изобретение
Номер охранного документа: 0002647017
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3d2f

Способ испытания газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний авиационных газотурбинных двигателей (ГТД). Для типа двигателей, включающих противообледенительную систему, предварительно проводят испытания на выбранном режиме работы, измеряют параметры при выключенной и при...
Тип: Изобретение
Номер охранного документа: 0002648197
Дата охранного документа: 22.03.2018
10.05.2018
№218.016.4231

Маслосистема газотурбинного двигателя

Изобретение относится к области авиационного двигателестроения, в частности к масляной системе авиационного газотурбинного двигателя. Магистрали подвода масла к масляным полостям подшипников ротора компрессора и коробки привода агрегатов сообщены с восходящей ветвью сифонного затвора, а...
Тип: Изобретение
Номер охранного документа: 0002649377
Дата охранного документа: 02.04.2018
10.05.2018
№218.016.4bef

Композиция для сбора и хранения днк или днк-содержащих биологических следов (варианты) и её применение

Группа изобретений относится к области биохимии. Предложены композиции для сбора и хранения ДНК или ДНК-содержащих биологических следов (варианты), а также средство для пропитки гигроскопичных материалов-носителей и осуществления смывов ДНК-содержащих биологических следов, наложений или ДНК с...
Тип: Изобретение
Номер охранного документа: 0002651937
Дата охранного документа: 24.04.2018
09.06.2018
№218.016.5cf8

Устройство подачи воздуха для охлаждения турбины турбореактивного двигателя (варианты)

Изобретение относится к системам управления расходом воздуха, охлаждающего турбину преимущественно двухконтурного турбореактивного двигателя с воздухо-воздушным теплообменником в наружном контуре, и может быть успешно использовано в турбоэнергомашиностроении в газотурбинных приводах...
Тип: Изобретение
Номер охранного документа: 0002656165
Дата охранного документа: 31.05.2018
06.07.2018
№218.016.6d09

Двухсекционный центробежно-шестеренный насос

Изобретение относится к авиадвигателестроению и касается устройства насоса, используемого в маслосистемах авиационных газотурбинных двигателей. Двухсекционный центробежно-шестеренный насос содержит корпус, выполненный в виде двух полуразъемов, образующих замкнутую полость. Внутри полости с...
Тип: Изобретение
Номер охранного документа: 0002660228
Дата охранного документа: 05.07.2018
+ добавить свой РИД