×
27.06.2013
216.012.4f3e

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ВНУТРИГЛАЗНОГО ДАВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицины, в частности к области офтальмологии для измерений внутриглазного давления. Способ заключается в том, что на глаз воздействуют пневмоимпульсом, с одновременным освещением его поверхности лазером. Далее преобразуют отраженный сигнал в автодинный сигнал, регистрируют его мощность, после чего сигнал оцифровывают и анализируют. В качестве информационного параметра используют отношение величины прогиба ΔZ и ускорения , с которым движется оболочка. Для нахождения этих параметров анализируют автодинный сигнал P(t). Величину прогиба ΔZ определяют в результате восстановления функции движения Z(t) с помощью обратной функции: θ+4π/λ·Z(t)=±arccos(P(t))+2πn, где n=0, ±1, ±2, …; θ - набег фазы автодинного сигнала, λ - длина волны лазерного излучения. Ускорение определяется из решения обратной задачи получающегося в результате нахождения минимума функционала, определяемого как сумму квадратов отклонений экспериментальных Р и теоретических Р автодинного сигнала P(t) для различных временных интервалов: По полученному отношению ΔZ/, используя калибровочную кривую, определяют внутриглазное давление. Использование изобретения позволит повысить точность измерения внутреннего давления глаза бесконтактным способом. 1 з.п. ф-лы, 5 ил., 2 табл.

Изобретение относится к области медицины и здравоохранения. В частности, данная разработка может быть использована в офтальмологии для измерений внутриглазного давления (ВГД) in vivo. Предлагаемый способ позволит проводить оценку ВГД бесконтактно.

Известен способ измерения внутриглазного давления, заключающийся в использовании генератора звукового колебания переменной частоты, передающего элемента, принимающего элемента, усилительной схемы и компьютера. Способ заключается в том, что при измерении ВГД обеспечивают вибрацию исследуемого глазного яблока с помощью средства вибрации. Измеряют вибрацию исследуемого глазного яблока средством бесконтактного измерения значения добротности (Q) резонанса исследуемого глазного яблока. Вычисляют внутриглазное давление в зависимости от значения Q. Средство вибрации и средство измерения расположены на веке глазного яблока (см. патент на ИЗ №2290856 МПК A61B 3/16).

Недостатком известного способа и реализующих его устройств является необходимость контакта между веком, принимающим и передающим элементом, вызывающим дополнительное нагружение глазного яблока и изменение истинного ВГД.

Известен способ измерения давления, в котором внутриглазное давление измеряют при помощи контактного средства, приходящего в соприкосновение с веком, средства вибрации, вибрирующего при приложении напряжения, средства приложения переменного тока к средству вибрации, средства измерения значения протекающего тока через средство вибрации, средства обработки информации. Способ измерения внутриглазного давления основан на приведении в соприкосновение средства вибрации с веком через контактное средство, приложении напряжения к средству вибрации, измерении значения тока, протекающего через средство вибрации, и измерении давления по значению тока в области точки резонанса, вычисленной при помощи средства обработки информации на основании изменения значения тока, которое вызывается изменением частоты вибрации (см. патент на ИЗ №2372021 МПК A61B 3/16).

Недостатком известного способа является то, что измерение ВГД проводится через веко. Поиск резонансной частоты может быть затруднен различными значениями толщины века, т.к. для каждого человека эти показатели будут индивидуальны.

Наиболее близким к предлагаемому решению является бесконтактный способ измерения внутриглазного давления, реализуемый при помощи источника излучения, оптическая ось которого расположена под углом к оптической оси глаза, установленные последовательно по ходу отраженного от роговицы глаза пучка света щелевую диафрагму и фотоприемник, выход которого соединен с регистрирующим прибором, и устройство для пневматического воздействия, выполненное в виде полого сужающегося канала, диаметр выходного окна которого соизмерим с размером роговицы и окно расположено вблизи нее, а входное окно совмещено с плоскостью диффузора низкочастотного акустического динамика, установленного в корпусе и соединенного с генератором низкочастотных сигналов, причем диаметр входного окна канала не менее диаметра диффузора, фотоприемника и диафрагмы, установленных с возможностью перемещения в плоскости, перпендикулярной направлению распространения отраженного от роговицы пучка света. Способ заключается в освещении центра роговицы глаза узким пучком света, направленным под углом к оптической оси глаза, деформации роговицы путем пневматического воздействия, осуществляемого периодически в звуковом диапазоне частот, изменении путем перемещения диафрагмы и фотоприемника перпендикулярно направлению распространения отраженного от роговицы пучка величины амплитуды электрического сигнала до максимального значения, измерении значения амплитуд полученного сигнала, нахождении среднего значения этих амплитуд, по которому по предварительно построенной градуировочной зависимости определяют искомое значение внутриглазного давления (см. патент на ИЗ №2067845 МПК A61B 3/16).

Недостатком известного способа является то, что этот способ связан с измерением амплитуды отраженного сигнала и не учитывает особенности строения роговицы и толщины роговицы, что в итоге влияет на точность измерения истинного ВГД.

Задача настоящего изобретения заключается в обеспечении возможности измерения внутреннего давления сферической оболочки глаза (внутриглазного давления) бесконтактным способом и получения информации о динамических свойствах оболочки, сопоставляя полученные результаты с результатами тестового измерения внутреннего давления.

Технический результат заключается в повышении точности измерения внутреннего давления глаза бесконтактным способом за счет использования полупроводникового лазера, работающего в автодинном режиме.

Указанный технический результат достигается тем, что на склеру глаза воздействуют пневмоимпульсом, при этом ее освещают лазерным излучением, преобразуют отраженный сигнал в автодинный сигнал, регистрируют его мощность, после чего сигнал оцифровывают и анализируют. В качестве информационных параметров используют параметры движения оболочки и величину прогиба, которым ставят в соответствие давление внутри глаза, измеренное с помощью глазного тонометра. Способ отличается тем, что отраженный от глаза сигнал преобразуют в автодинный сигнал, регистрируют его мощность, после чего сигнал оцифровывают, по цифровому автодинному сигналу P(t):

где θ - набег фазы автодинного сигнала, λ0 - длина волны лазерного излучения, t - интервал времени наблюдаемого автодинного сигнала на различных участках движения, Z(t) - функция, описывающая продольные перемещения объекта.

Для определения величины смещения необходимо восстановить функцию движения объекта Z(t). Функцию движения объекта Z(t) можно определять по нормированной переменной составляющей интерференционного сигнала P(t) с помощью обратной функции, т.е.:

где n=0, ±1, ±2, …

Неизвестный параметр ускорения оболочки а определяется из решения обратной задачи, получающегося в результате нахождения минимума функционала S(θ, а), определяемого как сумма квадратов отклонений экспериментальных Рэксп и теоретических Ртеор величин автодинного сигнала (1) для различных временных интервалов:

При нахождении минимума функционала (3) определялась область глобального минимума, точное значение которого находили методом спуска по искомым параметрам θ и a. Рассчитанным значениям ускорения и величины прогиба оболочки ΔZ, ставят в соответствие давление внутри глаза, измеренное с помощью глазного тонометра.

Способ реализуется следующим образом.

Проводят компьютерное моделирование автодинного сигнала полупроводникового лазера при колебаниях внешнего отражателя. Переменная составляющая автодинного сигнала в предложенной модели записывается в виде:

где θ - набег фазы автодинного сигнала, λ0 - длина волны лазерного излучения, t - интервал времени наблюдаемого автодинного сигнала на различных участках движения, Z(t) - функция, описывающая продольные перемещения объекта.

Для определения величины смещения необходимо восстановить функцию движения объекта Z(t). Функцию движения объекта Z(t) можно определять по нормированной переменной составляющей интерференционного сигнала P(t) с помощью обратной функции, т.е.:

где n=0, ±1, ±2, …

Неизвестный параметр ускорения оболочки а определяется из решения обратной задачи, получающегося в результате нахождения минимума функционала (3), определяемого как сумма квадратов отклонений экспериментальных Рэксп и теоретических Ртеор величин автодинного сигнала (1) для различных временных интервалов:

При нахождении минимума функционала (3) определялась область глобального минимума, точное значение которого находили методом спуска по искомым параметрам θ и а. Рассчитанным значениям ускорения и величины прогиба оболочки ΔZ ставят в соответствие давление внутри глаза, измеренное с помощью глазного тонометра.

Для получения значений Р(t) глаз освещают лазерным излучением от полупроводникового лазера, работающего в автодинном режиме. Автодинный сигнал регистрируют встроенным в лазер фотодетектором, при этом выходной автодинный сигнал с фотодетектора усиливается, преобразуется в цифровой код и сохраняется в памяти компьютера для последующей обработки.

Для моделирования деформации глазного яблока под действием воздушной струи был использован макет, представляющий собой резиновый шарик, заполненный гелем, с разным внутренним давлением. Давление внутри макета изменяли путем введения дополнительного объема геля. Образец имел диаметр, равный 24 мм.

На фиг.1 приведена блок-схема экспериментальной установки. Излучение полупроводникового лазера 1, стабилизированного источником тока 3, направлялось на макет глаза. Воздушные импульсы от компрессора 2, запитанного источником тока 4, по гибкому шлангу и пластмассовой трубке направлялись на освещаемую лазером поверхность оболочки макета. Часть излучения, отраженного от поверхности, возвращалась в резонатор полупроводникового лазера, изменение выходной мощности которого регистрировалось встроенным фотодетектором 5. Сигнал с фотодетектора поступал через усилитель 6 на аналого-цифровой преобразователь 7. Цифровой сигнал с АЦП для последующей обработки сохраняли в памяти ЭВМ 8.

Были проведены экспериментальные исследования по определению величины деформации и ускорения оболочки а макета под действием пневмоимпульса. Для воздействия на анализируемый участок макета глаза использовался компрессор типа Roteri RCC-90 мощностью 120 W. При проведении экспериментов использовались различные режимы работы компрессора. С помощью внешнего источника питания изменялось давление воздушных импульсов. Для измерения деформаций макета глаза использовался полупроводниковый лазерный диода RLD-650 с мощностью излучения до 1 мВт. Тестовое измерение величины внутреннего давления проводилось по методу Маклакова грузом массой 10 г.

Были проведены экспериментальные исследования по определению величины деформации и ускорения оболочки а глаза на его модели. Экспериментальные исследования проводились при трех различных силах воздействия. Деформация поверхности макета приводила к изменению величины автодинного сигнала полупроводникового лазера. Смещение и параметры движения при этом определялись по автодинному сигналу по методикам, приведенным выше.

Измеренные автодинные сигналы, полученные при отражении от поверхности макета глаза с внутренним давлением 24 мм рт.ст., показаны на фиг.2, фиг.3, фиг.4.

Таблица 1
Ускорение оболочки а, м/с2×10-2 Смещение оболочки ΔZ, м×10-6 Отношение ΔZ/a, с2×10-4 Давление струи p, Па ВД макета, мм рт.ст.
1 0,93 1,71 1,823 0,018 16
2 1,28 2,35 1,827 0,082
3 1,67 3,05 1,823 0,158
4 1,07 1.53 1,430 0,018 20
5 1,49 2,15 1,442 0,082
6 1,95 2,80 1,435 0,158
7 1,04 1,30 1,252 0,018 24
8 1,57 1,95 1,254 0,082
9 2,07 2,60 1,258 0,158
10 1,06 1,12 1,047 0,018 30
11 1,68 1,76 1,044 0,082
12 2,31 2,43 1,048 0,158
13 1,01 0,95 0,932 0,018 33
14 1,71 1,59 0,929 0,082
15 2,48 2,31 0,93 0,158

Из таблицы 1 видно, что отношение смещения оболочки ΔZ и ускорения оболочки а с внутренним давлением 24 мм рт.ст. изменяется следующим образом: для p1=0,01873 Па отклонение от среднего значения составило 0,207%, для p2=0,08272 Па - 0,047%, для p3=0,15806 Па - 0,27%. Подобные результаты были получены в случае ВД макета 16, 20, 30 и 33 мм рт.ст. Таким образом можно сделать вывод о том, что отношение ΔZ/a слабо зависит от давления воздушной струи.

Были проведены также измерения ΔZ и a при разных расстояниях между источником пневмоимпульсов и объектом (Δx). Измерения величины прогиба и ускорения оболочки a проводились для трех разных расстояний: 5, 10 и 15 мм. Результаты измерений приведены в таблице 2.

Таблица 2
Δx, мм Ускорение оболочки a, м/с2×10-2 Смещение оболочки ΔZ, м×10-6 Отношение ΔZ/a, с2×10-4 ВД макета, мм рт.ст.
1 5 1,63 2,98 1,824 16
2 10 1,07 1,95 1,823
3 15 0,70 1,32 1,825
4 5 1,95 2,80 1,435 20
5 10 1,22 1,75 1,433
6 15 0,84 1,21 1,432
7 5 2,04 2,55 1,251 24
8 10 1,14 1,43 1,255
9 15 0,65 0,82 1,253
10 5 2,23 2,34 1,047 30
11 10 1,65 1,72 1,044
12 15 1,08 1,13 1,048
13 5 2,41 2,25 0,932 33
14 10 1,73 1,61 0,929
15 15 1,12 1,04 0,93

Представленные в таблице 2 результаты свидетельствуют о том, что при изменении расстояния между источником пневмоимпульсов и объектом исследований, в пределах одного давления, величина ΔZ/a изменяется слабо.

Полученные особенности могут быть использованы для исключения возможных ошибок, связанных с непостоянством давления, которое создает воздушная струя при пневмоударе. Кроме того, не потребуется построение множества калибровочных кривых, описывающих зависимость прогиб - внутреннее давление. Для этих целей можно будет использовать универсальную зависимость, основанную на постоянстве отношения величины прогиба и ускорения оболочки а. На фиг.5 показана калибровочная кривая, полученная из экспериментальных данных.

Предлагаемый способ был реализован на примере определения неизвестного внутреннего давления глаза с использованием калибровочных кривых. Исследования были проведены с использованием лазерного диода RLD-650 на квантово-размерных структурах с дифракционно-ограниченной одиночной пространственной модой и характеристиками: мощность излучения <1 mW, длина волны 654 nm. Для воздействия на глаз пневмоимпульсом использовался компрессор мембранного типа мощностью 2 Вт, давлением 0,01 МПа с частотой воздушных импульсов 1 Гц, диаметр воздушной струи на расстоянии 10 мм от объекта был равен 3 мм. Измеренное отношение ΔZ/a составило 1,91×10-4 с-2, что на калибровочной кривой (фиг.5) соответствует величине давления 16 мм рт.ст. Проверка величины внутреннего давления глаза проводилось с помощью бесконтактного пневмотонометра Canon Full Auto Tonometr. Измеренное значение величины давления составило 15±3,5 мм рт.ст. Таким образом, предлагаемый метод согласуется с общепринятым но, в отличие от него, позволяет проводить измерения с высокой точностью.


СПОСОБ ИЗМЕРЕНИЯ ВНУТРИГЛАЗНОГО ДАВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ВНУТРИГЛАЗНОГО ДАВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ВНУТРИГЛАЗНОГО ДАВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ВНУТРИГЛАЗНОГО ДАВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ВНУТРИГЛАЗНОГО ДАВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ВНУТРИГЛАЗНОГО ДАВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ВНУТРИГЛАЗНОГО ДАВЛЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ВНУТРИГЛАЗНОГО ДАВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 61-67 из 67.
25.08.2017
№217.015.cd1c

Способ диагностики наполненности мочевого пузыря

Изобретение относится к медицине и нефрологии и может быть использовано для определения наполненности мочевого пузыря. Накладывают электроды на кожу в области нахождения мочевого пузыря. Подключают их к усилителю биопотенциалов для получения двух отведений, с помощью которых измеряют сигналы...
Тип: Изобретение
Номер охранного документа: 0002619752
Дата охранного документа: 17.05.2017
25.08.2017
№217.015.cdc8

Способ определения толщины, электропроводности, эффективной массы, коэффициентов рассеяния носителей заряда, концентрации и энергии активации легирующей примеси полупроводникового слоя

Изобретение относится к измерительной технике, может быть использовано для определения электрофизических параметров слоя полупроводника на поверхности диэлектрика и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002619802
Дата охранного документа: 18.05.2017
26.08.2017
№217.015.d7f7

Способ измерения параметров полупроводниковых структур

Использование: для одновременного определения толщины полуизолирующей подложки, толщины и удельной электропроводности нанесенного на нее сильнолегированного слоя и подвижности свободных носителей заряда в этом слое. Сущность изобретения заключается в том, что способ определения параметров...
Тип: Изобретение
Номер охранного документа: 0002622600
Дата охранного документа: 16.06.2017
20.11.2017
№217.015.ef60

Умножитель частоты высокой кратности

Изобретение относится к радиоэлектронике, в частности к СВЧ-умножителям частоты высокой кратности, применяемым для получения сигнала высокой частоты с низким уровнем фазового шума в выходном сигнале. Технический результат заключается в расширении арсенала средств. Умножитель частоты включает...
Тип: Изобретение
Номер охранного документа: 0002628993
Дата охранного документа: 23.08.2017
19.01.2018
№218.016.00bf

Способ определения расстояния до объекта

Изобретение относится к области контрольно–измерительной техники. Способ измерения расстояния до объекта заключается в том, что объект освещают лазерным излучением, отраженное от объекта излучение, интерферирующее в лазере, преобразуют в электрический автодинный сигнал. Лазерное излучение...
Тип: Изобретение
Номер охранного документа: 0002629651
Дата охранного документа: 30.08.2017
20.01.2018
№218.016.1236

Многофункциональное отладочное устройство для микропроцессорных систем

Изобретение относится к области электроники и микропроцессорной техники и может найти обширное применение при отладке, ремонте и эксплуатации широкого спектра микропроцессорных систем и устройств, как уже существующих, так и вновь разрабатываемых, а также при изучении и исследовании принципов...
Тип: Изобретение
Номер охранного документа: 0002634197
Дата охранного документа: 24.10.2017
10.05.2018
№218.016.40ce

Способ повышения октанового числа

Изобретение относится к способу получения увеличения октанового числа бензина на 2,5-3 пункта, заключающемуся в пропускании бензина через пористую основу. Способ характеризуется тем, что данная основа содержит в себе адсорбирующий материал из многослойных углеродных нанотрубок, при этом для...
Тип: Изобретение
Номер охранного документа: 0002648985
Дата охранного документа: 29.03.2018
Показаны записи 71-80 из 89.
09.06.2018
№218.016.5f69

Способ дистанционного контроля движения поверхности объекта

Изобретение относится к области медицинской техники и может быть использовано для дистанционного контроля движения поверхности объекта. Осуществляют генерирование электромагнитного СВЧ-сигнала и его излучение. Принимают интерференционный сигнал, являющийся суммой падающего и отраженного...
Тип: Изобретение
Номер охранного документа: 0002656532
Дата охранного документа: 05.06.2018
20.06.2018
№218.016.6493

Способ измерения наноперемещений

Изобретение относится к области прецизионной контрольно-измерительной техники. Способ измерения наноперемещений заключается в том, что облучают объект лазерным излучением, регистрируют отраженное от объекта излучение, интерферирующее в лазере, встроенным фотодетектором. Преобразуют лазерное...
Тип: Изобретение
Номер охранного документа: 0002658112
Дата охранного документа: 19.06.2018
20.06.2018
№218.016.64cf

Свч фотонный кристалл

Использование: для измерений с использованием СВЧ техники. Сущность изобретения заключается в том, что СВЧ фотонный кристалл выполнен в виде прямоугольного волновода, содержащего четные и нечетные элементы, периодически чередующиеся в направлении распространения электромагнитного излучения,...
Тип: Изобретение
Номер охранного документа: 0002658113
Дата охранного документа: 19.06.2018
16.10.2018
№218.016.92a9

Способ измерения угла косоглазия

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для измерения угла косоглазия. Получают снимок косящего глаза при съемке камерой в анфас и освещении точечным источником света, расположенным за камерой. Измеряют на снимке расстояние между центром зрачка и...
Тип: Изобретение
Номер охранного документа: 0002669734
Дата охранного документа: 15.10.2018
14.12.2018
№218.016.a6b3

Способ диагностики шизофрении

Изобретение относится к медицине, а именно к области психиатрии, и может быть использовано для диагностики шизофрении. Способ включает в себя определение временной зависимости положения зрачка A(t) при слежении за перемещающимся на экране компьютера по горизонтали по гармоническому закону B(t)...
Тип: Изобретение
Номер охранного документа: 0002674946
Дата охранного документа: 13.12.2018
15.12.2018
№218.016.a7cb

Способ дистанционного измерения внутриглазного давления

Изобретение относится к области медицинской техники и может быть использовано в офтальмологии для дистанционного измерения внутриглазного давления. Техническая проблема заключается в повышении эффективности бесконтактного метода измерений внутриглазного давления за счёт повышения точности и...
Тип: Изобретение
Номер охранного документа: 0002675020
Дата охранного документа: 14.12.2018
13.02.2019
№219.016.b9c2

Газовый свч-сенсор

Использование: для детектирования малых концентраций различных газов и летучих соединений. Сущность изобретения заключается в том, что газовый СВЧ-сенсор содержит микрополосковую линию с заземляющим металлическим слоем и резонатор со слоем газоактивного материала на его поверхности, резонатор...
Тип: Изобретение
Номер охранного документа: 0002679458
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b9ca

Способ определения параметров магнитной жидкости

Изобретение относится к измерительной технике и может найти применение в различных отраслях промышленности. Cпособ определения параметров магнитной жидкости заключается в воздействии СВЧ-излучения и магнитного поля на магнитную жидкость, помещённую в волновод, измерении коэффициента отражения...
Тип: Изобретение
Номер охранного документа: 0002679457
Дата охранного документа: 11.02.2019
13.02.2019
№219.016.b9ce

Неразрушающий способ измерения подвижности носителей заряда в полупроводниковой структуре

Изобретение относится к измерительной технике, может быть использовано для определения локальной подвижности носителей заряда в локальной области полупроводниковых структур в процессе изготовления и испытания полупроводниковых приборов. Изобретение обеспечивает расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002679463
Дата охранного документа: 11.02.2019
01.03.2019
№219.016.d0bf

Сканирующий зондовый микроскоп

Изобретение относится к электронно-измерительной технике и нанотехнологиям и предназначено в том числе для использования со сканирующим зондовым микроскопом (СЗМ) при исследовании микро- и нанорельефа поверхности. СЗМ содержит виброизоляционное основание, средство привода точного...
Тип: Изобретение
Номер охранного документа: 0002461839
Дата охранного документа: 20.09.2012
+ добавить свой РИД