×
20.06.2018
218.016.6493

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ НАНОПЕРЕМЕЩЕНИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области прецизионной контрольно-измерительной техники. Способ измерения наноперемещений заключается в том, что облучают объект лазерным излучением, регистрируют отраженное от объекта излучение, интерферирующее в лазере, встроенным фотодетектором. Преобразуют лазерное излучение в электрический автодинный сигнал. Длину волны лазерного излучения модулируют током питания заданной частоты и амплитуды. Амплитуду изменяют по гармоническому закону. Продетектированный сигнал раскладывают в спектральный ряд Фурье и ряд по функциям Бесселя. Измеряют амплитуду 2n-й (S) и 2n+2-й (S) гармоник спектра или 2n+1-й (S) и 2n+3-й (S) гармоник спектра автодинного сигнала, по отношению или , соответственно, вычисляют значение параметра амплитуды фазы токовой модуляции σ. Определяют величину стационарной фазы автодинного сигнала по формуле , наноперемещение отражателя находят по формуле: , где ω - частота лазерного излучения, c - скорость света, J, J, J и J – функции Бесселя. Технический результат заключается в обеспечении возможности повышения точности измерения перемещений микро- и нанометрового диапазона. 4 ил.

Изобретение относится к области прецизионной контрольно-измерительной техники, может быть использовано для определения микро- и нанометровых перемещений с высокой точностью, может найти широкое применение в точном машиностроении и электронной технике.

Известен способ измерения перемещений, в котором используется полупроводниковый лазерный диод со средством возбуждения, обеспечивающим изменение рабочей частоты лазера. При измерении луч от лазера, в виде последовательности импульсов, направляют на поверхность объекта, расстояние до которого требуется определить. Отражённое от объекта излучение имеет интенсивность, связанную с расстоянием от лазерного диода до отражателя, обусловленную когерентной интерференцией в лазере между рассеянным светом от объекта и светом внутри лазерного диода. Детектирование этого сигнала обеспечивает выработку электрического сигнала обратной связи. Сигнал содержит информацию об импульсах интенсивности, связанных с расстоянием L до объекта. По количеству импульсов рассчитывают расстояние до объекта, используя расчётное соотношение (см. патент РФ на изобретение №2111510, МПК G01S 17/32).

Недостатком известного способа является то, что в системе необходимо использование дополнительного блока, обеспечивающего гашение части сигнала обратной связи для уменьшения воздействия разрывов непрерывности сигнала возбуждения лазера на показания измерителя расстояния.

Известен способ измерения перемещений, в котором облучение измеряемого объекта происходит через оптическую фокусирующую систему моноимпульсным лазерным излучателем с модулированной добротностью и плотностью мощности в точке фокусировки, а излучение фокусируют в точке измерения объекта и одновременно в двух точках мерной базы, сигнал принимают с помощью широкополосной акустической антенны, причем точки облучения, а также приемник и его антенну располагают на оптической оси фокусирующей системы, а отсчет времени приема звуковой волны производят в конце первого полупериода электрического сигнала приемника, индуцированного этой волной. Устройство для осуществления способа содержит оптическую фокусирующую систему лазерного излучателя и компаратор с мерной базой, приемник акустических сигналов содержит широкополосную высокочастотную антенну, при этом оси антенны, акустического приемника и мерной базы совмещены с оптической осью фокусирующей системы (см. патент РФ на изобретение №2267743, МПК G01B 11/14, G01B 17/00).

Однако в измерительной системе используется источник звуковых волн, который способен вызвать дополнительные вибрации, влияющие на объект измерений, например, тонкостенные оболочки. Подобные вибрации будут служить дополнительным источником погрешности при измерении расстояния.

Известен способ и устройство для измерения расстояния, в котором излучение от лазерного диода после прохождения линзы падает на поверхность объекта в виде поплавка, покрытого отражающей лентой. Отражённый от объекта луч возвращается обратно в блок лазерного диода и регистрируется фотодиодом. Анализируя зарегистрированный сигнал, определяют расстояние L от измерителя до объекта (см. патент РФ на изобретение №2101731, МПК G01S 17/32).

Однако способ измерения сильно зависит от величины отражённого оптического излучения. Для того чтобы сигнал отражался от поверхности, авторы изобретения используют специальную ленту. Использование подобной ленты на некоторых объектах, со сложной геометрией и шероховатостью, представляется невозможным.

Известен способ, основанный на явлениях оптической обратной связи и частотной модуляции в полупроводниковых лазерах. В основу методики измерений дальности до исследуемых объектов и параметров их движения положено свойство полупроводниковых лазеров изменять частоту излучения под воздействием изменений инжекционного тока. При небольших (до 5 %) изменениях тока частота излучения изменяется линейно, и если этот ток периодически модулируется, то соответственно изменяются мощность и частота излучения. Модулированный таким образом пучок света направляется на исследуемый объект. Рассеянное им излучение попадает обратно в активную среду лазера, где усиливается и интерферирует с исходным излучением. Из-за конечного значения скорости света рассеянное излучение приходит в лазер с некоторой задержкой, вследствие чего частота этого излучения не совпадает с частотой, генерируемой лазером в данный момент. В результате на выходе встроенного в лазер фотодиода возникает электрический сигнал, параметры которого несут полезную информацию об отражающей способности исследуемого объекта, его удаленности и характеристиках движения (см. Соболев В.С., Кащеева Г.А. Активная лазерная интерферометрия с частотной модуляцией // Автометрия. 2008. 44, N 6., C. 49.; Amann M.-C., T. Bosch, M. Lescure, R. Myllyla, M. Rioux Laser ranging: a critical review of usual techniques for distance measurement // Optical Engineering, 2001, Vol. 40 No. 1, P10-18). В способе минимальное значение измеряемых перемещений составляет 40 мкм.

Однако предлагаемый способ не позволяет регистрировать нанометровые перемещения.

Наиболее близким к предлагаемому решению является способ, который заключается в облучении объекта лазерным излучением, регистрации встроенным в лазер фотодетектором автодинного сигнала по изменению мощности лазерного излучения и разложение зарегистрированного сигнала на спектральные компоненты. При этом перед регистрацией лазерного излучения фотодетектором объект или/и лазер подвергают вибрационному воздействию с заданной частотой и амплитудой, большей половины длины волны лазерного излучения, выделяют из зарегистрированного сигнала участок длительностью не менее чем величина, обратная заданной частоте, после разложения зарегистрированного сигнала на спектральные компоненты рассчитывают фазу автодинного сигнала по набору спектральных компонент, повторяют эту процедуру на следующем участке сигнала, по полученной зависимости фазы автодинного сигнала от времени рассчитывают скорость и величину перемещения (расстояние) движения объекта (см. патент РФ на изобретение № 2247395, МПК G01P3/36).

Однако данный способ имеет ограниченный диапазон измеряемых перемещений.

Техническая проблема заключается в расширении диапазона измеряемых перемещений и повышении точности проводимых измерений.

Технический результат заключается в значительном повышении точности измерения перемещений микро- и нанометрового диапазона.

Указанная техническая проблема решается тем, что облучают объект лазерным излучением, регистрируют отраженное от объекта излучение, интерферирующее в лазере, встроенным фотодетектором, преобразуют лазерное излучение в электрический автодинный сигнал, согласно решению длину волны лазерного излучения модулируют током питания заданной частоты и амплитуды, амплитуду изменяют по гармоническому закону, продетектированный сигнал раскладывают в спектральный ряд Фурье и ряд по функциям Бесселя, измеряют амплитуду 2n-й (S2n) и 2n+2-й (S2n+2) гармоник спектра или 2n+1-й (S2n+1) и 2n+3-й (S2n+3) гармоник спектра автодинного сигнала, по отношению или , соответственно, вычисляют значение параметра σ, и определяют величину стационарной фазы автодинного сигнала по формуле , наноперемещение отражателя находят по формуле: , где ω0 - частота лазерного излучения, c - скорость света, J2n, J2n+2, J2n+1 и J2n+3 – функции Бесселя.

Изобретение поясняется чертежами. На фиг. 1 представлена блок-схема экспериментальной установки; на фиг. 2 представлен зарегистрированный автодинный сигнал при токовой модуляции длины волны лазерного излучения, полученный при отражении от объекта; на фиг. 3 представлен спектр автодинного сигнала; на фиг. 4 представлена зависимость наноперемещений зонда при заданной величине шага 80 нм зондового транслятора.

Позициями на фигурах обозначены:

1 – полупроводниковый лазерный автодин;

2 – держатель зонда ближнеполевого СВЧ зонда;

3 – объект (отражающая пластина);

4 – транслятор ближнеполевого СВЧ микроскопа;

5 – фотоприемник;

6 - фильтр переменного сигнала;

7 – аналого-цифровой преобразователь (АЦП);

8 – компьютер.

Для определения наноперемещений объекта по спектру частотномодулированного автодинного сигнала используют следующие теоретические предпосылки.

При воздействии отраженного излучения от объекта на лазерный диод излучаемая им мощность может быть представлена в виде [Усанов Д.А., Скрипаль А.В., Авдеев К.С. Определение расстояния до объекта с помощью частотно-модулированного полупроводникового лазерного автодина // Письма в ЖТФ. 2007. Том 33. Вып 21. С. 72-77]:

(1)

где - составляющая мощности, независящая от расстояния до внешнего отражателя, – амплитудная составляющая мощности, зависящая от фазового набега волны в системе с внешним отражателем, – время обхода лазерным излучением расстояния до внешнего отражателя, – частота излучения полупроводникового лазера, зависящая от плотности тока накачки и уровня обратной связи.

При модуляции длины волны излучения полупроводникового лазера частота и амплитудная составляющая мощности излучения лазера определятся соотношениями:

(2)

где – собственная частота излучения полупроводникового лазерного диода; – девиация частоты излучения полупроводникового лазерного диода; – частота модуляции тока питания лазерного диода; – начальная фаза. I1 – амплитуда токовой модуляции составляющей P1(j(t)).

Таким образом, выражение для мощности излучения частотномодулированного полупроводникового лазера (1) запишется в виде:

(3)

где стационарная фаза автодинного сигнала , амплитуда фазы токовой модуляции , круговая частота модуляции тока питания лазерного диода .

Для описания низкочастотного спектра автодинного сигнала при гармонической модуляции длины волны излучения лазерного диода мощность автодинного сигнала может быть представлена в виде разложения в ряд по функциям Бесселя первого рода :

(4)

Представляя автодинный сигнал в виде ряда Фурье с коэффициентами разложения и :

(5)

коэффициенты , равные по модулю четным и нечетным спектральным составляющим разложения в ряд Фурье

(6)

можно записать в виде:

для четных n: (7)
для нечетных n: . (8)

Соотношения (7) и (8) характеризуют связь спектральных составляющих частотномодулированного автодинного сигнала с функциями Бесселя первого рода.

Для определения наноперемещений отражателя через величину стационарной фазы автодинного сигнала, используют отношения 2n и 2n+2 или отношения 2n+1 и 2n+3 спектральных гармоник:

(9)
(10)

Решение полученных уравнений (9) и (10) относительно неизвестного параметра позволяет записать выражение для определения наноперемещений отражателя через величину стационарной фазы автодинного сигнала в виде:


или
.
(11)

Принимая во внимание, что , получают соотношение для определения наноперемещений отражателя :

. (12)

Таким образом, для определения величины наноперемещений отражателя при токовой модуляции длины волны лазерного излучения по амплитудам спектральных составляющих S2n, S2n+2, S2n+1 и S2n+3 автодинного сигнала, используя уравнения (9) и (10), рассчитывают значение параметра . Из соотношения (11) определяют величину стационарной фазы автодинного сигнала , а, используя выражение (12), с учетом периодичности функции arctg определяют величину смещения зонда.

Способ реализуется с помощью устройства (фиг.1) следующим образом. Освещают объект (отражающую пластину) 3, закрепленный на трансляторе 4 ближнеполевого СВЧ микроскопа, излучением от частотномодулированного полупроводникового лазерного автодина 1 на лазерном диоде RLD-650 на квантоворазмерных структурах с дифракционно-ограниченной одиночной пространственной модой с длиной волны 650 нм. Полупроводниковый лазерный автодин (лазер) 1 закреплен на держателе зонда ближнеполевого СВЧ зонда 2. Модуляцию длины волны излучения проводят на частоте v1 = 100 Гц посредством модуляции тока питания лазера с помощью встроенного в лабораторную станцию виртуальных приборов NI ELVIS генератора сигналов. Изменение тока питания лазерного диода осуществляют путем изменения напряжения питания, подаваемого на полупроводниковую структуру от блока управления током питания. Отраженное излучение направляют в резонатор лазера, изменение мощности которого фиксируют фотоприемником 5. Продетектированный и усиленный сигнал с фотоприемника 5 проходит через фильтр переменного сигнала 6 и поступает на вход аналого-цифрового преобразователя 7, встроенного в модуль NI DAQmx (с частотой дискретизации 1.25 MГц), соединенного с компьютером 8. Параметр девиации частоты излучения лазерного диода wA измеряют с помощью спектрометра высокого разрешения SHR (Solar Laser Systems).

Измерения проводят с использованием электромагнитного транслятора фирмы STANDA модель 8MVT40-13, входящего с состав действующего макета ближнеполевого сканирующего СВЧ микроскопа. Основные параметры транслятора: разрешение – 80 нм (полный шаг); максимальная дистанция перемещения – 13 мм, максимальная скорость перемещения – 0.416 мм/с.

Длину волны лазерного излучения модулируют током питания заданной частоты и амплитуды, амплитуду изменяют по гармоническому закону, зарегистрированный автодинный сигнал (фиг.2) раскладывают в спектральный ряд Фурье (фиг.3) и ряд по функциям Бесселя, измеряют амплитуду 2n-й (S2n) и 2n+2-й (S2n+2) гармоник спектра или 2n+1-й (S2n+1) и 2n+3-й (S2n+3) гармоник спектра автодинного сигнала, по отношению или , соответственно, вычисляют значение параметра σ, и определяют величину стационарной фазы автодинного сигнала по формуле , наноперемещение отражателя находят по формуле: , где ω0 - частота лазерного излучения, c - скорость света, J2n, J2n+2, J2n+1 и J2n+3 – функции Бесселя.

Для определения величины наноперемещений отражателя при токовой модуляции длины волны лазерного излучения по амплитудам спектральных составляющих S1, S2, S3 и S4 автодинного сигнала, используя уравнения (9) и (10), рассчитывают значение параметра . Из соотношения (11) определяют величину стационарной фазы автодинного сигнала , а, используя выражение (12), определяют величину смещения зонда ΔL. Как следует из результатов, приведенных на фиг. 4, погрешность определения величины наноперемещений ΔL по набору спектральных составляющих спектра автодинного сигнала не превышает 15%.

Способ измерения наноперемещений, заключающийся в том, что облучают объект лазерным излучением, регистрируют отраженное от объекта излучение, интерферирующее в лазере, встроенным фотодетектором, преобразуют лазерное излучение в электрический автодинный сигнал, отличающийся тем, что длину волны лазерного излучения модулируют током питания заданной частоты и амплитуды, амплитуду изменяют по гармоническому закону, продетектированный сигнал раскладывают в спектральный ряд Фурье и ряд по функциям Бесселя, измеряют амплитуду 2n-й (S) и 2n+2-й (S) гармоник спектра или 2n+1-й (S) и 2n+3-й (S) гармоник спектра автодинного сигнала, по отношению или , соответственно, вычисляют значение параметра амплитуды фазы токовой модуляции σ, и определяют величину стационарной фазы автодинного сигнала по формуле , наноперемещение отражателя находят по формуле: , где ω - частота лазерного излучения, c - скорость света, J, J, J и J – функции Бесселя.
СПОСОБ ИЗМЕРЕНИЯ НАНОПЕРЕМЕЩЕНИЙ
СПОСОБ ИЗМЕРЕНИЯ НАНОПЕРЕМЕЩЕНИЙ
СПОСОБ ИЗМЕРЕНИЯ НАНОПЕРЕМЕЩЕНИЙ
СПОСОБ ИЗМЕРЕНИЯ НАНОПЕРЕМЕЩЕНИЙ
СПОСОБ ИЗМЕРЕНИЯ НАНОПЕРЕМЕЩЕНИЙ
СПОСОБ ИЗМЕРЕНИЯ НАНОПЕРЕМЕЩЕНИЙ
СПОСОБ ИЗМЕРЕНИЯ НАНОПЕРЕМЕЩЕНИЙ
СПОСОБ ИЗМЕРЕНИЯ НАНОПЕРЕМЕЩЕНИЙ
СПОСОБ ИЗМЕРЕНИЯ НАНОПЕРЕМЕЩЕНИЙ
СПОСОБ ИЗМЕРЕНИЯ НАНОПЕРЕМЕЩЕНИЙ
СПОСОБ ИЗМЕРЕНИЯ НАНОПЕРЕМЕЩЕНИЙ
СПОСОБ ИЗМЕРЕНИЯ НАНОПЕРЕМЕЩЕНИЙ
СПОСОБ ИЗМЕРЕНИЯ НАНОПЕРЕМЕЩЕНИЙ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 90.
27.08.2016
№216.015.4d69

Способ прогнозирования эффективности речевого воздействия фрагментов дискурса на разных языках

Изобретение относится к средствам для прогнозирования эффективности речевого воздействия фрагментов дискурса на разных языках. Технический результат заключается в прогнозировании эффективности речевого воздействия (ЭРВ) фрагмента дискурса на разных языках. Отбирают параметры, которые могут...
Тип: Изобретение
Номер охранного документа: 0002595616
Дата охранного документа: 27.08.2016
20.08.2016
№216.015.4e3f

Способ выбора изображений для идентификации оружия по следу бойка

Изобретение относится к области идентификации огнестрельного оружия по следам бойка с индивидуальным признаком в виде пятна произвольной формы путем обработки цифровых изображений следов бойков и последующего их анализа. Исследуемую гильзу сканируют с получением исходного цифрового изображения...
Тип: Изобретение
Номер охранного документа: 0002595181
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.50ff

Способ лечения косоглазия

Изобретение относится к медицине, а именно к офтальмологии, и предназначено для лечения косоглазия. Пациента просят следить за объектом, колеблющимся с постоянной частотой, выбранной из диапазона от 0,2 до 0,5 Гц, в начале и в конце упражнений в течение 10-40 с, в зависимости от выбранной...
Тип: Изобретение
Номер охранного документа: 0002595793
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.8620

Оптоакустический объектив

Изобретение относится к области спектроскопии конденсированных сред и фотоакустического анализа материалов. Оптоакустический объектив содержит звукопровод с кольцевым пьезоэлектрическим преобразователем на одном его торце, акустической линзой на другом его торце и сквозным цилиндрическим...
Тип: Изобретение
Номер охранного документа: 0002603819
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9719

Многодиапазонная радиочастотная идентификационная метка на поверхностных акустических волнах

Изобретение относится к пьезоэлектрическим приборам, в частности к пассивным меткам на поверхностных акустических волнах для систем радиочастотной идентификации. Технический результат: предотвращение искажения кодового сигнала, генерируемого меткой, и снижение потерь сигнала за счет...
Тип: Изобретение
Номер охранного документа: 0002609012
Дата охранного документа: 30.01.2017
25.08.2017
№217.015.99bb

Способ определения массовой доли диэтилендисульфида основного вещества в образце методом автоматического потенциометрического титрования

Изобретение относится к аналитической химии, а именно к определению содержания массовой доли основного вещества в образце состава диэтилендисульфида. Для этого проводят количественный анализ образца диэтилендисульфида методом автоматического потенциометрического титрования. Определение основано...
Тип: Изобретение
Номер охранного документа: 0002609830
Дата охранного документа: 06.02.2017
25.08.2017
№217.015.9c5d

Способ измерения скорости течения крови

Изобретение относится к измерительной технике и касается способа измерения скорости течения жидкости с рассеивающими свет частицами. Способ включает в себя освещение потока жидкости одновременно двумя пучками лазерного излучения и определение спектра мощности P(f) отраженного сигнала. Затем...
Тип: Изобретение
Номер охранного документа: 0002610559
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a6c4

Двухканальный дифракционный фазовый микроскоп

Изобретение относится к области фазовой микроскопии и касается дифракционного фазового микроскопа. Микроскоп включает в себя два источника света с разными длинами волн, микрообъектив, тубусную линзу, дифракционную решетку на пропускание, первую и вторую линзы дифракционного фазового модуля,...
Тип: Изобретение
Номер охранного документа: 0002608012
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.a9c6

Способ модификации поверхности наночастиц оксида кремния с включенными квантовыми точками

Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения стабильных водных растворов полупроводниковых квантовых точек, покрытых оболочками оксида кремния, модифицированных активной группой для биоконъюгирования и стабилизированных полиоксиэтиленом. Описан...
Тип: Изобретение
Номер охранного документа: 0002611541
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.a9c9

Способ получения композитного материала на подложке

Изобретение относится к полимерной химии. Выбирают металлические частицы двух разных размеров. Измельчают полимер до меньшего размера частиц металла. Раздельно перемешивают крупные и мелкие частицы металла с частицами полимера с образованием двух фракций порошков. Производят нагрев частиц...
Тип: Изобретение
Номер охранного документа: 0002611540
Дата охранного документа: 28.02.2017
Показаны записи 1-10 из 50.
10.01.2013
№216.012.1719

Способ оценки прогрессирования стадии первичной открытоугольной глаукомы

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для оценки стадии прогрессирования первичной открытоугольной глаукомы. Для конкретного пациента с уже установленным клиническими методами диагнозом первичная открытоугольная глаукома стадии S проводят...
Тип: Изобретение
Номер охранного документа: 0002471405
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.171a

Способ бесконтактного измерения внутриглазного давления

Изобретение относится к области медицины и может быть использовано для измерения внутриглазного давления. Способ заключается в том, что на глаз воздействуют пневмоимпульсом, с одновременным освещением его поверхности лазером, используя калибровочную кривую для модели глаза. Преобразуют...
Тип: Изобретение
Номер охранного документа: 0002471406
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a8a

Цифровой генератор хаотического сигнала

Изобретение относится к области радиотехники и может быть использовано в современных, помехозащищенных и конфиденциальных системах связи, в системах защиты информации для создания шумового сигнала, в контрольно-измерительных системах для измерения частотных характеристик, а также в системах...
Тип: Изобретение
Номер охранного документа: 0002472286
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.2801

Способ изготовления зонда для ближнеполевой сверхвысокочастотной микроскопии

Изобретение относится к измерительной технике и может быть использовано в ближнеполевой сканирующей СВЧ и оптической микроскопии. Способ изготовления стеклянного зонда с проводящей сердцевиной включает помещение в стеклянную трубку легкоплавкого металла или металлического сплава, температура...
Тип: Изобретение
Номер охранного документа: 0002475761
Дата охранного документа: 20.02.2013
20.04.2013
№216.012.357d

Способ оценки стадии первичной открытоугольной глаукомы

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для оценки стадии прогрессирования первичной открытоугольной глаукомы. Осуществляют видеорегистрацию зрачковых реакций в темноте без фонового освещения глаза на световую вспышку у пациента с диагнозом:...
Тип: Изобретение
Номер охранного документа: 0002479246
Дата охранного документа: 20.04.2013
27.06.2013
№216.012.4f3e

Способ измерения внутриглазного давления

Изобретение относится к области медицины, в частности к области офтальмологии для измерений внутриглазного давления. Способ заключается в том, что на глаз воздействуют пневмоимпульсом, с одновременным освещением его поверхности лазером. Далее преобразуют отраженный сигнал в автодинный сигнал,...
Тип: Изобретение
Номер охранного документа: 0002485879
Дата охранного документа: 27.06.2013
20.02.2014
№216.012.a32c

Способ определения амплитуды нановибраций по сигналу лазерного автодина

Изобретение относится к измерительной технике и предназначено для измерений вибраций. Способ измерения амплитуды нановибраций ξ заключается в том, что освещают объект лазерным излучением, преобразуют отраженное от него излучение в электрический (автодинный) сигнал, раскладывают сигнал в...
Тип: Изобретение
Номер охранного документа: 0002507487
Дата охранного документа: 20.02.2014
20.05.2014
№216.012.c52f

Способ определения электропроводности и энергии активации примесных центров полупроводниковых слоев

Изобретение относится к измерительной технике, а именно к способу определения электропроводности и толщины слоя полупроводника на поверхности диэлектрика, и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев. Предложенный способ включает...
Тип: Изобретение
Номер охранного документа: 0002516238
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c8ea

Способ определения электропроводности и толщины полупроводниковых пластин или нанометровых полупроводниковых слоев в структурах "полупроводниковый слой - полупроводниковая подложка"

Изобретение относится к контрольно-измерительной технике. Технический результат - расширение функциональных возможностей одновременного определения электропроводности и толщины полупроводниковых пластин и электропроводности и толщины тонких полупроводниковых эпитаксиальных слоев в структурах...
Тип: Изобретение
Номер охранного документа: 0002517200
Дата охранного документа: 27.05.2014
27.06.2014
№216.012.d77f

Способ определения амплитуды нановибраций по спектру частотномодулированного полупроводникового лазерного автодина

Использование: для определения амплитуды нановибраций. Сущность изобретения заключается в том, что освещают вибрирующий на частоте Ω объект лазерным излучением, преобразуют отраженное от объекта излучение в электрический автодинный сигнал, раскладывают сигнал в спектральный ряд, при этом...
Тип: Изобретение
Номер охранного документа: 0002520945
Дата охранного документа: 27.06.2014
+ добавить свой РИД