×
20.06.2013
216.012.4cb4

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ВОЛЬФРАМАТА НАТРИЯ-ВИСМУТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области выращивания из расплава нелегированных кристаллов вольфрамата натрия-висмута NaBi(WO), являющегося перспективным материалом для Черепковских детекторов. Выращивание кристаллов осуществляют методом Чохральского в воздушной атмосфере со скоростью вытягивания 4-5 мм/час и скоростью вращения кристалла 15-19 мин. Способ позволяет получать кристаллы, прозрачные в видимом диапазоне начиная с длины волны 352 нм. 3 ил., 4 пр.
Основные результаты: Способ получения кристаллов вольфрамата натрия-висмута NaBi(WO) методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 4-5 мм/ч, отличающийся тем, что скорость вращения кристалла составляет 15-19 мин.

Изобретение относится к области выращивания кристаллов из расплава. Вольфрамат натрия висмута NaBi(WO4)2 - перспективный материал для Черенковских детекторов.

Известен способ получения кристаллов NaBi(WO4)2 методом Чохральского [E.G.Devitsin, V.A.Kozlov, V.A.Nefedov, A.R.Terkulov, B.I.Zadneprovski. Colorless NaBi(WO4)2: In Cherenkov Crystals for Electromagnetic Calorimetry. Научно-информационный журнал «ЭЛЛФИ», 2003, выпуск 5, №28, с.1-14] - прототип, в котором кристаллы выращивают в воздушной среде, из платиновых тиглей, со скоростью вытягивания 4-5 мм/час при скорости вращения 30-32 мин-1. По этому способу получены нелегированные кристаллы NaBi(WO4)2, а также кристаллы, легированные индием.

Основной недостаток способа-прототипа состоит в том, что нелегированные кристаллы NaBi(WO4)2 практически непрозрачны в диапазоне длин волн 352-380 нм, что снижает эффективность их применения в Черенковских детекторах. При выращивании кристаллов по способу-прототипу, для обеспечения прозрачности в указанном диапазоне, NaBi(WO4)2 необходимо легировать индием, что усложняет процесс.

На Фиг.1 представлены опубликованные авторами способа-прототипа [E.G.Devitsin, V.A.Kozlov, V.A.Nefedov, A.R.Terkulov, B.I.Zadneprovski. Colorless NaBi(WO4)2: In Cherenkov Crystals for Electromagnetic Calorimetry. Научно-информационный журнал «ЭЛЛФИ», 2003, выпуск 5, №28, с.1-14] спектры светопропускания нелегированного NaBi(WO4)2, а также кристалла, легированного индием. Из спектров на Фиг.1 видно, что нелегированный кристалл NaBi(WO4)2 прозрачен в видимом диапазоне начиная с длины волны 380 нм, а легированный индием - начиная с длины волны 352 нм.

Задачей данного изобретения является упрощение процесса получения кристаллов NaBi(WO4)2, прозрачных в диапазоне длин волн 352-380 нм.

Эта задача решается в предлагаемом способе в воздушной атмосфере из платинового тигля со скоростью вытягивания 4-5 мм/час за счет выращивания нелегированных кристаллов NaBi(WO4)2 со скоростью вращения 15-19 мин-1.

На фиг.2 показаны кристалл NaBi(WO4)2, выращенный по предлагаемому способу (слева), и заготовка твердотельного элемента Черепковского детектора из такого кристалла (справа).

На фиг.3 представлен спектр светопропускания кристалла NaBi(WO4)2, выращенного по предлагаемому способу. Видно, что материал прозрачен в видимом диапазоне начиная с волнового числа 28400 см-1, что соответствует длине волны 352 нм.

Таким образом, получен нелегированный NaBi(WO4)2, прозрачный в диапазоне длин волн 352-380 нм.

Достигнутый результат может быть объяснен следующим образом. При выращивании NaBi(WO4)2 с высокими скоростями вытягивания и вращения, в кристаллах, как правильно отмечено авторами способа-прототипа, образуются точечные дефекты, а именно вакансии вольфрама и атомы висмута, занимающие места атомов натрия в решетке (см. [E.G.Devitsin, V.A.Kozlov, V.A.Nefedov, A.R.Terkulov, B.I.Zadneprovski. Colorless NaBi(WO4)2: In Cherenkov Crystals for Electromagnetic Calorimetry. Научно-информационный журнал «ЭЛЛФИ», 2003, выпуск 5, №28, с.4]). Эти дефекты обуславливают появление глубоких энергетических уровней в запрещенной зоне NaBi(WO4)2, вызывающих интенсивное поглощение света в диапазоне длин волн 350-420 нм и, как следствие, непрозрачность кристаллов в диапазоне длин волн 352-380 нм. В способе-прототипе прозрачность кристаллов в диапазоне длин волн 352-380 нм достигается за счет компенсации глубоких уровней при введении примеси индия. В предлагаемом способе, за счет снижения скорости вращения кристалла, существенно снижается концентрация точечных дефектов в NaBi(WO4)2, что позволяет получать нелегированные кристаллы, прозрачные в диапазоне длин волн 352-380 нм. Исключение легирования упрощает технологический процесс.

Предлагаемый интервал скорости вращения выбран экспериментально. При скорости выше 19 мин-1 значительно возрастает концентрация точечных дефектов в кристаллах, и, как следствие, NaBi(WO4)2 интенсивно поглощает свет с длинами волн 352-380 нм. При скоростях вращения ниже 15 мин-1 выращивание качественного NaBi(WO4)2 неосуществимо, так как в этом случае механизм роста сменяется на дендритный и в кристаллах образуется множество структурных макродефектов, что делает невозможным применение NaBi(WO4)2 в Черенковских детекторах.

Пример 1

Кристалл вольфрамата натрия-висмута NaBi(WO4)2 выращивается методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 4 мм/час и скоростью вращения кристалла 14 мин-1. Получить качественный NaBi(WO4)2 не удается из-за дендритного механизма роста кристалла.

Пример 2

Кристалл вольфрамата натрия-висмута NaBi(WO4)2 выращивается методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 5 мм/час и скоростью вращения кристалла 15 мин-1. Получен кристалл NaBi(WO4)2, прозрачный в диапазоне длин волн 352-380 нм.

Пример 3

Кристалл вольфрамата натрия-висмута NaBi(WO4)2 выращивается методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 4 мм/час и скоростью вращения кристалла 19 мин-1. Получен кристалл NaBi(WO4)2, прозрачный в диапазоне длин волн 352-380 нм.

Пример 4

Кристалл вольфрамата натрия-висмута NaBi(WO4)2 выращивается методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 5 мм/час и скоростью вращения кристалла 20 мин-1. Получен кристалл NaBi(WO4)2, практически полностью поглощающий свет в диапазоне длин волн 352-380 нм, т.е. непрозрачный в данном диапазоне.

Способ получения кристаллов вольфрамата натрия-висмута NaBi(WO) методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 4-5 мм/ч, отличающийся тем, что скорость вращения кристалла составляет 15-19 мин.
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ВОЛЬФРАМАТА НАТРИЯ-ВИСМУТА
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ВОЛЬФРАМАТА НАТРИЯ-ВИСМУТА
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ВОЛЬФРАМАТА НАТРИЯ-ВИСМУТА
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ВОЛЬФРАМАТА НАТРИЯ-ВИСМУТА
Источник поступления информации: Роспатент

Показаны записи 71-80 из 94.
20.05.2020
№220.018.1dcf

Неорганический фотохромный материал с пространственно-селективным эффектом памяти

Изобретение относится к области неорганических материалов для твердотельных индикаторов ультрафиолетового излучения. Неорганический фотохромный материал с пространственным эффектом памяти содержит Сu - 0,012-0,015 мас.%, Gd - 0,0004-0,0006 мас.% и ZnS – остальное. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002721095
Дата охранного документа: 15.05.2020
29.05.2020
№220.018.217a

Способ выращивания слоев алмаза на подложке монокристаллического кремния

Изобретение относится к области выращивания кристаллов и может быть использовано для получения слоев алмаза большой площади на подложках из монокристаллического кремния. Способ выращивания слоев алмаза, включающий нагрев в вакуумной среде в диапазоне температур от 910°С до 1150°С порошка...
Тип: Изобретение
Номер охранного документа: 0002722136
Дата охранного документа: 26.05.2020
31.05.2020
№220.018.22bb

Сапфировый роликовый аппликатор для криохирургии и криотерапии

Изобретение относится к криогенной технике, а именно криоаппликаторам иммерсионного типа, и может использоваться в криомедицине и ветеринарии. Криоаппликатор содержит ролик и ручку, ролик выполнен из сапфира в виде шлифованного или полированного шара или цилиндра с углублениями на торцах, в...
Тип: Изобретение
Номер охранного документа: 0002722352
Дата охранного документа: 29.05.2020
09.06.2020
№220.018.25bc

Структура с резистивным переключением

Изобретение предназначено для применения в электронике для нейроморфных вычислений и хранения информации. Структура с резистивным переключением включает два металлических алюминиевых контакта, нанесенных на поверхность тонкой пленки аморфной сурьмы. Изобретение обеспечивает получение структуры...
Тип: Изобретение
Номер охранного документа: 0002723073
Дата охранного документа: 08.06.2020
03.07.2020
№220.018.2dda

Способ получения timnal

Изобретение относится к области металлургии, в частности к получению объемных слитков спин-поляризованного бесщелевого полупроводника TiMnAl, который может быть использован в спинтронике. Способ получения TiMnAl из элементарных титана, марганца и алюминия включает помещение навесок марганца и...
Тип: Изобретение
Номер охранного документа: 0002725229
Дата охранного документа: 30.06.2020
06.07.2020
№220.018.2fb7

Трансформатор импульсов электроэнергии однополярного тока

Изобретение относится к электротехнике и может быть использовано в электрометаллургии для гальванической развязки в источниках питания высокочастотной дуги, используемой для плавления металлических порошков, электроэрозионной обработки поверхности и изготовления деталей сложной формы....
Тип: Изобретение
Номер охранного документа: 0002725610
Дата охранного документа: 03.07.2020
09.07.2020
№220.018.3097

Устройство для выращивания смешанных кристаллов сульфата кобальта-никеля-калия для оптических фильтров ультрафиолетового диапазона

Изобретение относится к области роста кристаллов, в частности, к выращиванию смешанных монокристаллов K(Со,Ni)(SO)x6HO (KCNSH) из водных растворов и может быть использовано в оптическом приборостроении для изготовления солнечно-слепых фильтров. Устройство для выращивания смешанных кристаллов...
Тип: Изобретение
Номер охранного документа: 0002725924
Дата охранного документа: 07.07.2020
20.04.2023
№223.018.4c95

Способ легирования кристаллов селенида цинка хромом

Изобретение относится к области выращивания кристаллов. Способ легирования кристаллов селенида цинка хромом включает смешивание порошков селенида цинка и легирующей добавки и последующее выращивание кристалла из расплава под давлением аргона, при этом хром вводится в исходную загрузку в виде...
Тип: Изобретение
Номер охранного документа: 0002751059
Дата охранного документа: 07.07.2021
20.04.2023
№223.018.4c96

Высокотемпературный слоисто-волокнистый композит, армированный оксидными волокнами, и способ его получения

Изобретение относится к высокотемпературным конструкционным композитным материалам с металлической матрицей и способам их получения. Высокотемпературный слоисто-волокнистый композит, с матрицей на основе Nb, твердого раствора Nb(Al), а также интерметаллидов NbAl и NbAl содержит слои Мо,...
Тип: Изобретение
Номер охранного документа: 0002751062
Дата охранного документа: 07.07.2021
20.04.2023
№223.018.4cda

Способ легирования кристаллов сульфида цинка железом или хромом

Изобретение относится к области выращивания кристаллов. Способ легирования кристаллов сульфида цинка железом или хромом включает смешивание порошков сульфида цинка и порошка моносульфида легирующего металла с последующим выращиванием кристалла из расплава вертикальной зонной плавкой. Способ...
Тип: Изобретение
Номер охранного документа: 0002755023
Дата охранного документа: 09.09.2021
Показаны записи 71-71 из 71.
16.05.2023
№223.018.6357

Электродуговой способ получения прецизионного сплава timnal

Изобретение относится к области металлургии прецизионных сплавов и может быть использовано для получения сплава Гейслера. Осуществляют сплавление смеси порошков алюминия, марганца и титана в гарнисаже плазмой дугового разряда напряжением от 65 до 70 В и током от 8 до 10 А в атмосфере гелия...
Тип: Изобретение
Номер охранного документа: 0002776576
Дата охранного документа: 22.07.2022
+ добавить свой РИД