×
09.07.2020
220.018.3097

Результат интеллектуальной деятельности: Устройство для выращивания смешанных кристаллов сульфата кобальта-никеля-калия для оптических фильтров ультрафиолетового диапазона

Вид РИД

Изобретение

Аннотация: Изобретение относится к области роста кристаллов, в частности, к выращиванию смешанных монокристаллов K(Со,Ni)(SO)x6HO (KCNSH) из водных растворов и может быть использовано в оптическом приборостроении для изготовления солнечно-слепых фильтров. Устройство для выращивания смешанных кристаллов сульфата кобальта-никеля-калия содержит кристаллизатор с герметичной крышкой и закрепленной на ней затравкой 7, помещенный в тепловой узел с возможностью переворота вокруг горизонтальной оси на 180°C в процессе роста, при этом тепловой узел выполнен в виде шахтной печи с двумя независимыми нагревателями 6, 9, а кристаллизатор состоит из верхней 3 и нижней 8 - ростовой частей, различающихся по объему как 100/1, с диаметром нижней части, соответствующей размеру получаемого кристалла. Выполнение кристаллизатора из двух частей с разными объемами и его установка в тепловом узле с двумя зонами нагрева позволяет сохранить метастабильность раствора в течение длительного времени и предотвратить появление спонтанных кристаллов. Это обусловлено тем, что основная масса раствора находится в верхней части кристаллизатора при температуре выше ликвидуса (в не насыщенном состоянии), а раствор в нижней части кристаллизатора (ростовая часть, гораздо меньшая по объему) находится при температуре ниже ликвидуса, что позволяет существенно (до 100 раз) снизить объем раствора, находящегося в пересыщенном состоянии. 1 з.п. ф-лы, 3 ил.

Устройство для выращивания смешанных кристаллов сульфата кобальта-никеля-калия для оптических фильтров ультрафиолетового диапазона относится к области роста кристаллов.

Смешанные кристаллы K2NixCo(1-x)(SO4)2⋅6H2O (KCNSH) являются перспективными материалами для УФ оптических фильтров солнечно-слепого диапазона спектра 220-280 нм. Они обладают повышенной эффективностью фильтрации излучения в указанном диапазоне вследствие подавления паразитных полос пропускания в нерабочей (видимой) области спектра благодаря поглощению шести водными комплексами ионов никеля и кобальта.

Известно, что смешанным кристаллам, выращиваемым из растворов, свойственно повышенное дефектообразование. Причем, большинство дефектов, которые существуют в кристаллах, выращенных из низкотемпературных растворов, образуются во время их роста. Одним из важнейших факторов, влияющих на дефектообразование в растущем кристалле, является спонтанная кристаллизация в пересыщенном растворе. Сами по себе зародыши твердой фазы в растворе могут служить источниками дефектов кристалла в случае их захвата фронтом кристаллизации, т.е. они, по сути, являются одними из первых индикаторов дефектного роста кристалла. Для снижения влияния спонтанной кристаллизации на дефектность растущего кристалла были испытаны различные схемы фильтрации растворов, включая сложные схемы непрерывной фильтрации раствора на протяжении всего процесса роста кристаллов семейства КДП, что резко усложнило процесс роста и ростовое оборудование. Уменьшение спонтанной кристаллизации в растворах особенно актуально для выращивания технически важных кристаллов, которые требуют длительных циклов роста.

Целью данного изобретения является разработка устройства для выращивания смешанных кристаллов сульфата кобальта-никеля-калия без спонтанной кристаллизации в растворе в течение длительного периода времени.

Известна установка для выращивания кристаллов (патент США №5.904.772, МПК С30В 7/00, опубл. 18.05.1999 г.), содержащая кристаллизационный стакан, крышку кристаллизационного стакана, платформу с затравочным кристаллом, механизм, обеспечивающий герметизацию кристалла от раствора, механизмы фильтрации и перемешивания раствора.

Недостатком известной установки является ее конструктивная сложность, включающая механизмы вращения внутри раствора (элементы перемешивания раствора, герметизации затравки и др.), которые приводят к появлению спонтанных кристаллов в растворе и дефектообразованию в растущем кристалле.

Наиболее близким к изобретению является устройство для выращивания смешанных кристаллов K2NixCo(1-x)(SO4)2⋅6H2O, описанное в статье [Andrei А. Zhokhov, Vladimir М. Masalov, Elena В. Rudneva,Vera L. Manomenova, Natalia A. Vasilyeva, Nadezhda S. Sukhininaa, Alexey E. Voloshin, Gennadi A. Emelchenko, Growth of mixed K2NixCo(1-x)(SO4)2⋅6H2O crystals for large supercooling without spontaneous crystallization in solution, Mater. Res. Express 7 (2020) 016202,]. Устройство, названное «поворотный кристаллизатор», включает кристаллизатор с герметичной крышкой, помещенный в сухой термостат с температурным перепадом по внутреннему объему не более 1°С и возможностью переворота вокруг горизонтальной оси на 180° в процессе роста. Затравочный кристалл при этом закреплен в формообразователе на крышке кристаллизатора. Методика выращивания заключается в следующем: кристаллизатор с раствором, перегретым на 7-10°С относительно температуры ликвидуса, и затравочным кристаллом на крышке, помещается в термостат с такой же температурой. Потом температура термостата понижается до 2-3°С выше температуры ликвидуса и выдерживается несколько часов. Далее кристаллизатор переворачивают вверх дном (вместе с термостатом) и температуру понижают на 2-3°С ниже ликвидуса раствора. В этом состоянии рост кристалла ведется в течение до 40 сут с постепенным понижением температуры.

Недостатком описанного устройства является образование спонтанных кристаллов из-за большого объема пересыщенного раствора в кристаллизаторе. Весь объем рабочего раствора находится в пересыщенном состоянии в течение всего процессе роста, что увеличивает вероятность образования спонтанных кристаллов. Длительность сохранения метастабильного состояния (гомогенная жидкость без выделения твердой фазы) в течение длительного периода времени в основном зависит от природы самого раствора, его степени пересыщения, объема самого раствора, а также от воздействия механических возмущений.

Технической задачей настоящего изобретения является изменение конструкции кристаллизатора таким образом, чтобы сохранить метастабильность раствора в течение длительного времени и предотвратить появление спонтанных кристаллов.

Техническим результатом является изменение конструкции, которая снижает объем раствора, находящегося в пересыщенном состоянии, и этим предотвращает образование спонтанных кристаллов.

Поставленная задача решается тем, что кристаллизатор с герметичной крышкой и закрепленной на ней затравкой, помещенный в сухой термостат с возможностью переворота вокруг горизонтальной оси на 180° в процессе роста, состоит из верхней и нижней (ростовой) части, различающихся по объему как 100/1 и более, с диаметром нижней части, соответствующей размеру получаемого кристалла, а термостат изготовлен с двумя независимыми нагревателями.

Предложенное изменение в конструкции устройства позволяет сохранить метастабильность раствора в течение длительного времени. Это обусловлено тем, что основная масса раствора находится в верхней части кристаллизатора при температуре выше ликвидуса (в не насыщенном состоянии), а раствор в нижней части кристаллизатора (ростовая часть, гораздо меньшая по объему) находится при температуре ниже ликвидуса, что позволяет существенно (до 100 раз) снизить объем раствора, находящегося в пересыщенном состоянии. Объем верхней части определяется массой находящегося в ней раствора и составляет отношение не менее 120/1 к массе выращиваемого кристалла. Размер нижней части кристаллизатора соответствует диаметру получаемого кристалла. В условиях концентрационной конвекции, которая возникает при росте затравки, удается достичь высокого качества кристаллов при отсутствии спонтанного зарождения.

Схема устройства в процессе роста кристалла представлена на фиг. 1: 1 - теплоизолятор (пенопласт); 2 - воздушное пространство; 3 - верхняя часть кристаллизатора; 4 - раствор; 5 - термопара; 6 - нижний нагреватель; 7 - затравка; 8 - нижняя часть кристаллизатора; 9 - верхний нагреватель.

Кристаллизатор представляет собой емкость из стекла или пластика (3 и 8), а тепловой узел изготовлен в форме вертикальной шахтной печи с двумя независимыми нагревателями (6 и 9) с возможностью переворота на 180° вокруг горизонтальной оси. Нижняя ростовая часть (8) кристаллизатора закрывается герметичной крышкой, на которой крепится затравочный кристалл (7). Ростовая часть (8) может быть выполнена как съемная часть, так и в форме цельной емкости кристаллизатора. Роль термостата (печи) с двумя независимыми нагревателями (6 и 9) заключается в том, чтобы охлаждение кристаллизатора обеспечивало пересыщенное состояние раствора в нижней (ростовой) части (8) и недосыщенное состояние раствора в верхней части кристаллизатора (3) в течение всего процесса роста кристалла.

При проведении ростовых экспериментов с использованием предложенного устройства были получены смешанные кристаллы KCNSH, демонстрирующие высокое пропускание в УФ области (~80% при высоте кристалла 25 мм) и низкое пропускание в видимой области спектра (0.01%-0.1%) (Фиг. 2). Такие оптические характеристики отвечают требованиям, предъявляемым к материалам для УФ фильтров. Общий вид выращенных кристаллов представлен на Фиг. 3


Устройство для выращивания смешанных кристаллов сульфата кобальта-никеля-калия для оптических фильтров ультрафиолетового диапазона
Устройство для выращивания смешанных кристаллов сульфата кобальта-никеля-калия для оптических фильтров ультрафиолетового диапазона
Устройство для выращивания смешанных кристаллов сульфата кобальта-никеля-калия для оптических фильтров ультрафиолетового диапазона
Устройство для выращивания смешанных кристаллов сульфата кобальта-никеля-калия для оптических фильтров ультрафиолетового диапазона
Источник поступления информации: Роспатент

Показаны записи 1-10 из 91.
10.01.2013
№216.012.1846

Устройство для получения массивов углеродных нанотрубок на металлических подложках

Изобретение относится к нанотехнологии. Устройство для получения массивов углеродных нанотрубок (УНТ) на металлических подложках состоит из двух электродов 7 и 8, расположенных соосно и перемещаемых навстречу друг другу водоохлаждаемыми штоками 8 и 9, скользящих графитовых токоподводов 11 и 12,...
Тип: Изобретение
Номер охранного документа: 0002471706
Дата охранного документа: 10.01.2013
10.02.2013
№216.012.2477

Устройство и способ с речевым интерфейсом определения водолазом направления на источник тонального звукового сигнала

Использование: для определения водолазом направления на источник тонального звукового сигнала. Сущность: сигнал источника принимается на две ненаправленные антенны, расстояние между которыми λ/4. Сигнал от первой антенны подается на вход сумматора, сигнал от второй антенны последовательно...
Тип: Изобретение
Номер охранного документа: 0002474837
Дата охранного документа: 10.02.2013
10.04.2013
№216.012.3480

Способ определения глубины погружения приводняющегося объекта

Использование: для измерения глубины погружения приводняющегося объекта с использованием гидролокатора ближнего действия, установленного на движущемся носителе относительно горизонта его движения. Сущность: с помощью гидролокатора производят излучение зондирующих сигналов гидролокатором, прием...
Тип: Изобретение
Номер охранного документа: 0002478983
Дата охранного документа: 10.04.2013
20.06.2013
№216.012.4cb3

Способ получения монокристаллов теллурида галлия (ii)

Изобретение относится к технологии получения кристаллов GaTe, которые могут быть использованы в нелинейной оптике, а именно для оптических преобразователей частоты ИК и ТГц диапазонов. Кристаллы теллурида галлия (II) выращивают вертикальной зонной плавкой в графитовых тиглях под давлением...
Тип: Изобретение
Номер охранного документа: 0002485217
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4cb4

Способ получения кристаллов вольфрамата натрия-висмута

Изобретение относится к области выращивания из расплава нелегированных кристаллов вольфрамата натрия-висмута NaBi(WO), являющегося перспективным материалом для Черепковских детекторов. Выращивание кристаллов осуществляют методом Чохральского в воздушной атмосфере со скоростью вытягивания 4-5...
Тип: Изобретение
Номер охранного документа: 0002485218
Дата охранного документа: 20.06.2013
27.10.2013
№216.012.783c

Крионаконечник с сапфировым хладопроводом-облучателем

Изобретение относится к хирургическим инструментам, применяемым для локального замораживания и деструкции выделенных участков биологической ткани, и может быть использовано в общей и детской хирургии, в онкологии, дерматологии, отоларингологии, гинекологии, косметологии. Крионаконечник с...
Тип: Изобретение
Номер охранного документа: 0002496442
Дата охранного документа: 27.10.2013
20.01.2014
№216.012.98be

Устройство для визуализации электрических полей свч в пространстве

Использование: относится к области визуализации распределения в пространстве электрических полей СВЧ диапазона. Сущность: в установке визуализации СВЧ полей применены измерительная камера «открытого» типа из двух расположенных горизонтально параллельных медных дисков, антенна-зонд,...
Тип: Изобретение
Номер охранного документа: 0002504801
Дата охранного документа: 20.01.2014
27.03.2014
№216.012.adf5

Способ удаления опухолей мозга с выделением границ опухоли флуоресцентной диагностикой с одновременной коагуляцией и аспирацией и устройство для его осуществления

Группа изобретений относится к медицине. Устройство включает сапфировый зонд с продольными каналами, в которых размещены оптические волокна, одни из которых предназначены для подачи излучения, возбуждающего флуоресценцию и коагулирующего излучения в зону деструкции ткани от присоединенных...
Тип: Изобретение
Номер охранного документа: 0002510248
Дата охранного документа: 27.03.2014
10.06.2014
№216.012.d04b

Способ эксфолиации слоистых кристаллических материалов

Изобретение относится к нанотехнологиям. Способ включает эксфолиацию заготовок из слоистых кристаллических материалов, закрепленных с одной стороны на опоре из глипталя, с использованием клейкой ленты, глипталь по окончании эксфолиации растворяют в ацетоне, где образуется взвесь кристаллических...
Тип: Изобретение
Номер охранного документа: 0002519094
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d5ae

Способ получения слоев карбида кремния

Изобретение относится к области получения карбида кремния, используемого в полупроводниковой промышленности в качестве материала для радиопоглощающих покрытий, диодов, светодиодов, солнечных элементов и силовых вентилей. Карбид кремния получают перемещением ленты углеродной фольги в...
Тип: Изобретение
Номер охранного документа: 0002520480
Дата охранного документа: 27.06.2014
Показаны записи 1-10 из 14.
20.07.2014
№216.012.ddfb

Микрофлюидное устройство для кристаллизации белков в условиях невесомости

Изобретение относится к устройствам для кристаллизации белковых макромолекул в наземных условиях и условиях микрогравитации (в космосе). Микрофлюидное устройство содержит емкости с растворами различных белков 7, 9, 11 и осадителей 8, 10, 12, попарно подключенные через отдельные каналы 2, 3, 4,...
Тип: Изобретение
Номер охранного документа: 0002522613
Дата охранного документа: 20.07.2014
10.04.2015
№216.013.3f7b

Способ выращивания смешанных кристаллов сульфата кобальта-никеля-калия для оптических фильтров ультрафиолетого диапазона

Изобретение относится к области кристаллографии. Способ включает приготовление маточного раствора с последующим его охлаждением в кристаллизаторе, внутри которого на платформе помещен затравочный кристалл, при этом предварительно готовят отдельно растворы сульфата кобальта, сульфата никеля и...
Тип: Изобретение
Номер охранного документа: 0002547739
Дата охранного документа: 10.04.2015
29.12.2017
№217.015.f1ac

Способ оценки состояния твердых тканей зубов при воздействии электромагнитного излучения

Изобретение относится к медицине, а именно к гигиене и стоматологии, и может быть использовано для оценки состояния твердых тканей зубов при воздействии электромагнитного излучения монитора компьютера. Для этого до и после 180 минут после работы за компьютером проводят двухэтапную диагностику...
Тип: Изобретение
Номер охранного документа: 0002636894
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.f986

Способ комплексной диагностики зубов при воздействии компьютерного излучения

Изобретение относится к области медицины, а именно к способу комплексной диагностики состояния зубов при воздействии компьютерного излучения. Способ комплексной диагностики состояния зубов при воздействии компьютерного излучения, заключающийся в том, что проводят диагностику слюны по форме...
Тип: Изобретение
Номер охранного документа: 0002639481
Дата охранного документа: 21.12.2017
10.04.2019
№219.017.096e

Гибкое соединение газоводов с общей осью

Изобретение относится к области машиностроения, а именно к гибким соединениям газоводов, работающих в условиях высоких давлений газов или жидкостей. Гибкое соединение газоводов с общей осью содержит разделенные кольцевым зазором два сферических ответных фланца с размещенным между ними кольцевым...
Тип: Изобретение
Номер охранного документа: 0002442064
Дата охранного документа: 10.02.2012
09.05.2019
№219.017.4eec

Устройство для выращивания кристаллов биологических макромолекул

Изобретение относится к кристаллографии, а более конкретно - к устройству для выращивания кристаллов биологических макромолекул, например кристаллов белка. В настоящее время весьма перспективным направлением в области выращивания кристаллов биологических макромолекул является кристаллизация...
Тип: Изобретение
Номер охранного документа: 0002424383
Дата охранного документа: 20.07.2011
19.06.2019
№219.017.8b3e

Полимер на основе поли(ферроценил)силана, способ его получения и пленка, включающая в себя полимер на основе поли(ферроценил)силана

Изобретение относится к полимерам на основе поли(ферроценил)силана, использующимся в фотонных полупроводниковых матрицах. Предложен ячеистый полимер на основе поли(ферроценил)силана, включающий в себя повторяющиеся блоки трех типов структур, способ его получения, основанный на пространственном...
Тип: Изобретение
Номер охранного документа: 0002441874
Дата охранного документа: 10.02.2012
02.10.2019
№219.017.cd28

Шнековый дозатор порошков тугоплавких металлов

Изобретение относится к устройствам для подачи порошков тугоплавких металлов и может быть использовано в различных отраслях промышленности, где требуется прецизионная подача порошков. Задачей настоящего изобретения является разработка шнекового дозатора порошков тугоплавких металлов для...
Тип: Изобретение
Номер охранного документа: 0002701277
Дата охранного документа: 25.09.2019
04.10.2019
№219.017.d284

Кластер установок для выращивания кристаллов из раствора

Изобретение относится к области выращивания кристаллов. Предлагается кластер установок для выращивания кристаллов из раствора, содержащий несколько кристаллизационных установок 1, которые объединены в отдельные блоки по несколько установок, например по десять, которые образуют кластеры нижнего...
Тип: Изобретение
Номер охранного документа: 0002701940
Дата охранного документа: 02.10.2019
06.02.2020
№220.017.ff42

Способ пространственной стабилизации дуги

Изобретение относится к области электрометаллургии и может быть использовано для прецизионной сварки, наплавки и изготовления деталей способом 3D-печати. Техническим результатом явяляется повышение эффективности способа пространственной стабилизации дуги. Способ пространственной стабилизации...
Тип: Изобретение
Номер охранного документа: 0002713186
Дата охранного документа: 04.02.2020
+ добавить свой РИД