×
20.06.2013
216.012.4cb4

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ВОЛЬФРАМАТА НАТРИЯ-ВИСМУТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области выращивания из расплава нелегированных кристаллов вольфрамата натрия-висмута NaBi(WO), являющегося перспективным материалом для Черепковских детекторов. Выращивание кристаллов осуществляют методом Чохральского в воздушной атмосфере со скоростью вытягивания 4-5 мм/час и скоростью вращения кристалла 15-19 мин. Способ позволяет получать кристаллы, прозрачные в видимом диапазоне начиная с длины волны 352 нм. 3 ил., 4 пр.
Основные результаты: Способ получения кристаллов вольфрамата натрия-висмута NaBi(WO) методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 4-5 мм/ч, отличающийся тем, что скорость вращения кристалла составляет 15-19 мин.

Изобретение относится к области выращивания кристаллов из расплава. Вольфрамат натрия висмута NaBi(WO4)2 - перспективный материал для Черенковских детекторов.

Известен способ получения кристаллов NaBi(WO4)2 методом Чохральского [E.G.Devitsin, V.A.Kozlov, V.A.Nefedov, A.R.Terkulov, B.I.Zadneprovski. Colorless NaBi(WO4)2: In Cherenkov Crystals for Electromagnetic Calorimetry. Научно-информационный журнал «ЭЛЛФИ», 2003, выпуск 5, №28, с.1-14] - прототип, в котором кристаллы выращивают в воздушной среде, из платиновых тиглей, со скоростью вытягивания 4-5 мм/час при скорости вращения 30-32 мин-1. По этому способу получены нелегированные кристаллы NaBi(WO4)2, а также кристаллы, легированные индием.

Основной недостаток способа-прототипа состоит в том, что нелегированные кристаллы NaBi(WO4)2 практически непрозрачны в диапазоне длин волн 352-380 нм, что снижает эффективность их применения в Черенковских детекторах. При выращивании кристаллов по способу-прототипу, для обеспечения прозрачности в указанном диапазоне, NaBi(WO4)2 необходимо легировать индием, что усложняет процесс.

На Фиг.1 представлены опубликованные авторами способа-прототипа [E.G.Devitsin, V.A.Kozlov, V.A.Nefedov, A.R.Terkulov, B.I.Zadneprovski. Colorless NaBi(WO4)2: In Cherenkov Crystals for Electromagnetic Calorimetry. Научно-информационный журнал «ЭЛЛФИ», 2003, выпуск 5, №28, с.1-14] спектры светопропускания нелегированного NaBi(WO4)2, а также кристалла, легированного индием. Из спектров на Фиг.1 видно, что нелегированный кристалл NaBi(WO4)2 прозрачен в видимом диапазоне начиная с длины волны 380 нм, а легированный индием - начиная с длины волны 352 нм.

Задачей данного изобретения является упрощение процесса получения кристаллов NaBi(WO4)2, прозрачных в диапазоне длин волн 352-380 нм.

Эта задача решается в предлагаемом способе в воздушной атмосфере из платинового тигля со скоростью вытягивания 4-5 мм/час за счет выращивания нелегированных кристаллов NaBi(WO4)2 со скоростью вращения 15-19 мин-1.

На фиг.2 показаны кристалл NaBi(WO4)2, выращенный по предлагаемому способу (слева), и заготовка твердотельного элемента Черепковского детектора из такого кристалла (справа).

На фиг.3 представлен спектр светопропускания кристалла NaBi(WO4)2, выращенного по предлагаемому способу. Видно, что материал прозрачен в видимом диапазоне начиная с волнового числа 28400 см-1, что соответствует длине волны 352 нм.

Таким образом, получен нелегированный NaBi(WO4)2, прозрачный в диапазоне длин волн 352-380 нм.

Достигнутый результат может быть объяснен следующим образом. При выращивании NaBi(WO4)2 с высокими скоростями вытягивания и вращения, в кристаллах, как правильно отмечено авторами способа-прототипа, образуются точечные дефекты, а именно вакансии вольфрама и атомы висмута, занимающие места атомов натрия в решетке (см. [E.G.Devitsin, V.A.Kozlov, V.A.Nefedov, A.R.Terkulov, B.I.Zadneprovski. Colorless NaBi(WO4)2: In Cherenkov Crystals for Electromagnetic Calorimetry. Научно-информационный журнал «ЭЛЛФИ», 2003, выпуск 5, №28, с.4]). Эти дефекты обуславливают появление глубоких энергетических уровней в запрещенной зоне NaBi(WO4)2, вызывающих интенсивное поглощение света в диапазоне длин волн 350-420 нм и, как следствие, непрозрачность кристаллов в диапазоне длин волн 352-380 нм. В способе-прототипе прозрачность кристаллов в диапазоне длин волн 352-380 нм достигается за счет компенсации глубоких уровней при введении примеси индия. В предлагаемом способе, за счет снижения скорости вращения кристалла, существенно снижается концентрация точечных дефектов в NaBi(WO4)2, что позволяет получать нелегированные кристаллы, прозрачные в диапазоне длин волн 352-380 нм. Исключение легирования упрощает технологический процесс.

Предлагаемый интервал скорости вращения выбран экспериментально. При скорости выше 19 мин-1 значительно возрастает концентрация точечных дефектов в кристаллах, и, как следствие, NaBi(WO4)2 интенсивно поглощает свет с длинами волн 352-380 нм. При скоростях вращения ниже 15 мин-1 выращивание качественного NaBi(WO4)2 неосуществимо, так как в этом случае механизм роста сменяется на дендритный и в кристаллах образуется множество структурных макродефектов, что делает невозможным применение NaBi(WO4)2 в Черенковских детекторах.

Пример 1

Кристалл вольфрамата натрия-висмута NaBi(WO4)2 выращивается методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 4 мм/час и скоростью вращения кристалла 14 мин-1. Получить качественный NaBi(WO4)2 не удается из-за дендритного механизма роста кристалла.

Пример 2

Кристалл вольфрамата натрия-висмута NaBi(WO4)2 выращивается методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 5 мм/час и скоростью вращения кристалла 15 мин-1. Получен кристалл NaBi(WO4)2, прозрачный в диапазоне длин волн 352-380 нм.

Пример 3

Кристалл вольфрамата натрия-висмута NaBi(WO4)2 выращивается методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 4 мм/час и скоростью вращения кристалла 19 мин-1. Получен кристалл NaBi(WO4)2, прозрачный в диапазоне длин волн 352-380 нм.

Пример 4

Кристалл вольфрамата натрия-висмута NaBi(WO4)2 выращивается методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 5 мм/час и скоростью вращения кристалла 20 мин-1. Получен кристалл NaBi(WO4)2, практически полностью поглощающий свет в диапазоне длин волн 352-380 нм, т.е. непрозрачный в данном диапазоне.

Способ получения кристаллов вольфрамата натрия-висмута NaBi(WO) методом Чохральского в воздушной атмосфере из платинового тигля со скоростью вытягивания 4-5 мм/ч, отличающийся тем, что скорость вращения кристалла составляет 15-19 мин.
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ВОЛЬФРАМАТА НАТРИЯ-ВИСМУТА
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ВОЛЬФРАМАТА НАТРИЯ-ВИСМУТА
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ВОЛЬФРАМАТА НАТРИЯ-ВИСМУТА
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ВОЛЬФРАМАТА НАТРИЯ-ВИСМУТА
Источник поступления информации: Роспатент

Показаны записи 61-70 из 94.
19.12.2019
№219.017.ef3e

Устройство для измерения поверхностного натяжения расплавов сталагмометрическим методом

Устройство относится к измерительной технике для физических исследований свойств жидкостей. Устройство позволяет измерять поверхностное натяжение химически агрессивных расплавов тугоплавких веществ с высокими (больше 0,1 МПа) давлениями собственных паров над жидкой фазой, находящихся в инертной...
Тип: Изобретение
Номер охранного документа: 0002709422
Дата охранного документа: 17.12.2019
21.12.2019
№219.017.f00f

Способ электроэрозионной обработки поверхности молибдена

Изобретение относится к электроэрозионной обработке поверхности металлов и сплавов, используемой для повышения твердости, жаропрочности и коррозионной стойкости деталей машин. Предложен способ получения покрытия из карбида молибдена на детали из молибдена, включающий электроэрозионную обработку...
Тип: Изобретение
Номер охранного документа: 0002709548
Дата охранного документа: 18.12.2019
31.01.2020
№220.017.fb95

Высокотемпературные композиты с молибденовой матрицей и способ их получения

Изобретение относится к высокотемпературным композитным материалам с металлической матрицей и к способам их получения и может быть использовано для производства лопаток авиационных газотурбинных двигателей, работающих при температурах до 1400°С. Высокотемпературный композит с молибденовой...
Тип: Изобретение
Номер охранного документа: 0002712333
Дата охранного документа: 28.01.2020
06.02.2020
№220.017.ff42

Способ пространственной стабилизации дуги

Изобретение относится к области электрометаллургии и может быть использовано для прецизионной сварки, наплавки и изготовления деталей способом 3D-печати. Техническим результатом явяляется повышение эффективности способа пространственной стабилизации дуги. Способ пространственной стабилизации...
Тип: Изобретение
Номер охранного документа: 0002713186
Дата охранного документа: 04.02.2020
17.02.2020
№220.018.0385

Способ получения нанокристаллического муассанита

Изобретение относится к области выращивания слоев нанокристаллического гексагонального карбида кремния (муассанита) и может быть использовано в электронной промышленности. Способ включает перемещение ленты углеродной фольги в горизонтальной плоскости с подачей к ее поверхности расплавленного...
Тип: Изобретение
Номер охранного документа: 0002714344
Дата охранного документа: 14.02.2020
13.03.2020
№220.018.0b07

Тигель для выращивания кристаллов на затравку

Изобретение относится к устройствам для выращивания кристаллов на затравку методами Бриджмена, вертикальной зонной плавки, температурного градиента, а также их модификациями. Тигель состоит из корпуса 1 и хвостовика 2 с затравочной камерой 3, выполненной в виде сквозного отверстия в...
Тип: Изобретение
Номер охранного документа: 0002716447
Дата охранного документа: 11.03.2020
21.03.2020
№220.018.0e3a

Сверхпроводящая цепь с участком слабой связи

Использование: для сверхпроводящих логических элементов вычислительной техники. Сущность изобретения заключается в том, что сверхпроводящая цепь с участком слабой связи включает два последовательно расположенных металлических сверхпроводящих контакта, нанесенных на поверхность...
Тип: Изобретение
Номер охранного документа: 0002717253
Дата охранного документа: 19.03.2020
25.03.2020
№220.018.0f34

Способ изготовления холодного катода

Изобретение относится к нанотехнологии и может быть использовано при изготовлении электронных приборов, а также для инжекции зарядов в объём конденсированных сред при криогенных температурах. Слой углеродных нанотрубок наносят на металлическую подложку осаждением в дуговом разряде. После этого...
Тип: Изобретение
Номер охранного документа: 0002717526
Дата охранного документа: 23.03.2020
28.03.2020
№220.018.115d

Коллинеарный электрод

Изобретение относится к плазменной технике, применяемой в электрометаллургии, и может быть использовано для инициирования высокочастотной плазмы на промышленной частоте 2,45 ГГц для плавления металлических порошков и изготовления деталей сложной геометрической формы в атмосфере защитных газов....
Тип: Изобретение
Номер охранного документа: 0002717841
Дата охранного документа: 26.03.2020
25.04.2020
№220.018.197c

Способ слежения за глубиной промораживания ткани при криодеструкции и система для его осуществления

Группа изобретений относится к медицинской технике. Технический результат состоит в упрощении способа слежения за положением ледяного фронта при криодеструкции, повышении пространственной чувствительности измерения глубины ледяного фронта в ткани с применением спектроскопии рассеяния, не...
Тип: Изобретение
Номер охранного документа: 0002719911
Дата охранного документа: 23.04.2020
Показаны записи 61-70 из 71.
06.07.2020
№220.018.2fb7

Трансформатор импульсов электроэнергии однополярного тока

Изобретение относится к электротехнике и может быть использовано в электрометаллургии для гальванической развязки в источниках питания высокочастотной дуги, используемой для плавления металлических порошков, электроэрозионной обработки поверхности и изготовления деталей сложной формы....
Тип: Изобретение
Номер охранного документа: 0002725610
Дата охранного документа: 03.07.2020
20.04.2023
№223.018.4abb

Устройство защиты цепей питания постоянного тока от короткого замыкания

Изобретение относится к электротехнике и может использоваться в силовой электронике для повышения надежности работы цепей питания постоянного тока напряжением 310 В при работе на индуктивную нагрузку. Технический результат достигается за счет того, что в схеме прототипа драйвер «нижнего плеча»...
Тип: Изобретение
Номер охранного документа: 0002778553
Дата охранного документа: 22.08.2022
20.04.2023
№223.018.4c95

Способ легирования кристаллов селенида цинка хромом

Изобретение относится к области выращивания кристаллов. Способ легирования кристаллов селенида цинка хромом включает смешивание порошков селенида цинка и легирующей добавки и последующее выращивание кристалла из расплава под давлением аргона, при этом хром вводится в исходную загрузку в виде...
Тип: Изобретение
Номер охранного документа: 0002751059
Дата охранного документа: 07.07.2021
20.04.2023
№223.018.4cda

Способ легирования кристаллов сульфида цинка железом или хромом

Изобретение относится к области выращивания кристаллов. Способ легирования кристаллов сульфида цинка железом или хромом включает смешивание порошков сульфида цинка и порошка моносульфида легирующего металла с последующим выращиванием кристалла из расплава вертикальной зонной плавкой. Способ...
Тип: Изобретение
Номер охранного документа: 0002755023
Дата охранного документа: 09.09.2021
21.04.2023
№223.018.4fc4

Способ синтеза шпинели ganbse

Изобретение может быть использовано при создании мемристивных структур на основе шпинелей семейства «изоляторов Мотта». Способ синтеза шпинели GaNbSe из элементарных веществ включает твердофазную химическую реакцию в вакуумированной и герметично запаянной кварцевой ампуле. Твердофазную...
Тип: Изобретение
Номер охранного документа: 0002745973
Дата охранного документа: 05.04.2021
14.05.2023
№223.018.56cc

Осевой неразгруженный компенсатор

Изобретение относится к технологическому оборудованию, предназначенному для выращивания кристаллов халькогенидов в условиях микрогравитации – важном направлении в космическом материаловедении. Осевой компенсатор пружинно-поршневого типа содержит неразгруженный компенсирующий элемент,...
Тип: Изобретение
Номер охранного документа: 0002732334
Дата охранного документа: 15.09.2020
15.05.2023
№223.018.5c25

Сверхпроводящая цепь с эффектом близости

Устройство относится к сверхпроводящим цепям с эффектом близости, позволяющим управлять спектром связанных Андреевских состояний. Предлагается сверхпроводящая цепь с эффектом близости, включающая монокристаллическую пластину силицида кобальта CoSi, ориентированную в кристаллографической...
Тип: Изобретение
Номер охранного документа: 0002753673
Дата охранного документа: 19.08.2021
15.05.2023
№223.018.5c26

Сверхпроводящая цепь с эффектом близости

Устройство относится к сверхпроводящим цепям с эффектом близости, позволяющим управлять спектром связанных Андреевских состояний. Предлагается сверхпроводящая цепь с эффектом близости, включающая монокристаллическую пластину силицида кобальта CoSi, ориентированную в кристаллографической...
Тип: Изобретение
Номер охранного документа: 0002753673
Дата охранного документа: 19.08.2021
15.05.2023
№223.018.5c68

Опора тигля для выращивания кристаллов

Изобретение относится к оборудованию для выращивания кристаллов прямоугольной формы из расплава. Опора тигля выполнена в виде прямоугольного в поперечном сечении корпуса 1 с посадкой для установки тигля на опору 6 и посадкой для установки опоры на шток 5, и имеющего сквозные пазы 4,...
Тип: Изобретение
Номер охранного документа: 0002759623
Дата охранного документа: 16.11.2021
16.05.2023
№223.018.5ecf

Электродуговой способ получения слитков timnal

Изобретение относится к области металлургии, в частности к получению сплава Гейслера в виде слитков, пригодных для изучения свойств спин-поляризованного бесщелевого полупроводника TiMnAl. Способ получения слитков сплава TiMnAl из смеси алюминия, марганца и титана включает подготовку смеси...
Тип: Изобретение
Номер охранного документа: 0002754540
Дата охранного документа: 03.09.2021
+ добавить свой РИД