×
10.06.2013
216.012.49d8

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПОТРЕБЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

Вид РИД

Изобретение

№ охранного документа
0002484484
Дата охранного документа
10.06.2013
Аннотация: Изобретение относится к способу и средствам измерения электрической энергии. Техническим результатом, достигаемым при реализации заявленного изобретения, является достижение высокой точности определения потребляемой электрической энергии при частоте дискретизации измерений, подстраиваемой под колеблющуюся сетевую частоту. Технический результат достигается благодаря тому, что в способ определения потребления электрической энергии включена следующая последовательность действий: измеряемый сигнал, который соответствует переменному току и переменному напряжению на потребителе, подвергают комплексному Фурье-анализу, причем частота дискретизации подстраивается под колеблющуюся сетевую частоту сети распределения энергии, и для этого непрерывно из двух последовательных периодов измеренного сигнала определяют соответствующий вектор основного колебания, определяют заключенный между обоими векторами фазовый угол (Δφ), который применяется при подстройке частоты дискретизации. 2 н. и 7 з.п. ф-лы, 2 ил.

Область техники

Изобретение относится к способу определения потребления электрической энергии, которая поставляется в сети распределения энергии потребителю, причем измеренный сигнал, который соответствует переменному напряжению на потребителе, дискретизируется с частотой дискретизации и подвергается комплексному Фурье-анализу, причем частота дискретизации отслеживает колеблющуюся сетевую частоту сети распределения энергии.

Уровень техники

Для измерения электрической энергии, которая поставляется в сети распределения энергии потребителю, в настоящее время наряду с механическими счетчиками энергии все больше используются также электронные счетчики.

Электронный счетчик энергии определяет посредством дискретизации (взятия выборок) измеренного сигнала, который соответствует поданному потребителю переменному напряжению или переменному току, дискретные по времени значения выборок, подвергает их комплексному Фурье-анализу и определяет отсюда, путем перемножения комплексных показателей тока или напряжения, доставленную электрическую мощность или электрическую энергию, причем также принимаются во внимание высшие гармоники в сигнале тока или напряжения.

В сети распределения энергии основная частота или номинальная частота сетевого напряжения имеет заданное значение (в Европе 50 Гц, в США 60 Гц). Однако эта номинальная частота испытывает колебания, в зависимости от предоставляемой на стороне поставщика и текущей принимаемой потребителем электрической мгновенной мощности. При нормальных рабочих условиях посредством норм задается допустимый диапазон колебаний сетевой частоты. Норма EN 50160 предписывает, например, что 10-секундное среднее значение основной частоты в течение всего времени может отклоняться относительно 50 Гц только на 15% вверх или на 15% вниз.

Для электронного счетчика энергии это означает, что по меньшей мере в пределах этого заданного диапазона колебаний частота выборок адаптируется к колеблющейся сетевой частоте, то есть должна иметь возможность отслеживания. Только если число моментов выборок по отношению к основному колебанию колеблющейся сетевой частоты может поддерживаться постоянным, предотвращаются так называемые «эффекты утечки» и достигается требуемая точность измерений. При отсутствии синхронизации между частотой дискретизации и текущей сетевой частотой может иметь место недопустимо большая ошибка при определении потребления электрической энергии.

Наряду с постоянными изменениями частоты электронный счетчик энергии должен также отрабатывать скачкообразные изменения частоты, которые возникают, например, при включении счетчика энергии.

Верхний и нижний пределы постоянного или скачкообразного изменения частоты задаются официальной стороной или посредством норм.

Отслеживание частоты дискретизации может, например, быть реализовано таким образом, что частота дискретизации выводится из делителя частоты, и последний непрерывно подстраивается в зависимости от отклонения частоты. Предпосылкой является то, что отклонение частоты является известным. Для того чтобы определить отклонение частоты, известно, что определяются переходы через нуль сетевой частоты либо с помощью аппаратных средств, либо с помощью программного обеспечения.

Но в сети распределения энергии напряжение и ток не являются чисто синусоидальными, а могут содержать высшие гармоники и/или постоянную составляющую.

Относительно отслеживания частоты дискретизации как высшие гармоники, так и постоянная составляющая создают помехи, так как они обуславливают затягивание переходов через нуль. Из затянутых переходов через нуль лишь с высокими техническими затратами можно вывести правильную меру такта для дискретизации с достаточной точностью.

Чтобы в электронном счетчике энергии уменьшить мешающее влияние высших гармоник или постоянной составляющей, известно, что эти помеховые параметры устраняются посредством (относительно крутых) фильтров нижних частот и полосовых фильтров.

Такие фильтры, которые могут быть реализованы посредством аппаратных средств или программного обеспечения, увеличивают технические затраты и, тем самым, также затраты на изготовление электронного счетчика энергии.

Представления изобретения

Задачей предложенного изобретения является предложить способ для определения потребления электрической энергии, при котором по возможности простым способом частота дискретизации может отслеживать колеблющуюся сетевую частоту и может достигаться высокая точность измерений.

Эта задача решается способом с признаками пункта 1 формулы изобретения и электронным счетчиком энергии с признаками пункта 9 формулы изобретения.

Предпочтительные варианты осуществления изобретения определены в зависимых пунктах формулы изобретения.

Согласно основной идее изобретения, в электронном счетчике энергии непрерывно из двух последовательных периодов измеренного сигнала, выведенного из напряжения, определяется разность фаз основного колебания посредством комплексного Фурье-анализа и применяется в качестве тактовой меры при отслеживании частоты дискретизации. Определенная разность фаз, то есть фазовый угол, заключенный между двумя векторами, непосредственно отображает отклонение частоты. Это означает, что если в двух последовательных периодах дискретизируемого измеренного сигнала сетевая частота постоянна, то разность фаз равна нулю. Если, напротив, сетевая частота испытывает колебания, мера этого колебания непосредственно отображается в величине разностного угла между обоими векторами основного колебания измеренной величины. Если величина отклонения частоты однажды установлена, то фазовый угол может быть пересчитан в соответствующее цифровое значение и может подаваться известным образом на делитель частоты, который соответственно подстраивает частоту дискретизации.

Существенное преимущество соответствующего изобретению способа следует усматривать в том, что алгоритм для определения разности фаз может быть реализован сравнительно просто. Аппаратные средства или программное обеспечение для определения переходов через нуль не требуются. Это упрощает техническую реализацию электронного счетчика энергии.

Предпочтительные формы выполнения соответствующего изобретению способа применяют для отслеживания частоты дискретизации фазовый угол, который рассчитывается с помощью поясненных далее уравнений (9), (11), (12а) и (12b).

Относительно вычислительно-технических затрат может быть выгодным, если при определении разности фаз определяется частное из векторного произведения и скалярного произведения согласно уравнению (9). За счет этого ошибка при определении электрической энергии может поддерживаться очень малой и в том случае, если при вычислении арктангенса применяются известные алгоритмы приближения (разложения в ряд). Как только регулирование «фиксируется», возникают очень малые углы разности фаз, которые и при приближенном вычислении посредством функции арктангенса могут определяться достаточно точно (arctan(x)~x для х<<1, и при этом почти отсутствует неточность вычисления).

Если должна допускаться большая ширина колебаний сетевой частоты, может быть благоприятным, если при преобразовании методами вычислительной техники согласно уравнению (9) в знаменателе выполняется формирование суммы, и разность фаз вычисляется согласно уравнению (11). За счет этого увеличивается «область захвата» алгоритма отслеживания.

Чтобы также в случаях, когда сетевая частота изменяется более чем на 25% по отношению к мгновенной частоте, по возможности быстро достичь адаптации, в особом выполнении изобретения предусмотрено различение случаев:

- если скалярное произведение отрицательно и определенный фазовый угол больше чем нуль, то тактовая мера для частоты дискретизации определяется согласно уравнению (12а);

- если скалярное произведение отрицательно и определенный фазовый угол меньше чем нуль, то тактовая мера для частоты дискретизации определяется согласно уравнению (12b). Это сокращает время выполнения алгоритма отслеживания и, тем самым, время для коррекции частоты дискретизации.

Особенно благоприятное выполнение соответствующего изобретению способа может отличаться тем, что частота дискретизации выводится из делителя частоты, и перед этим делителем частоты включен предварительный делитель, причем на предварительный делитель непрерывно подается цифровой параметр, который соответствует разности фаз, и при этом данный параметр согласуется с диапазоном колебания +/-19% номинальной частоты.

Особенно благоприятное соотношение между вычислительно-техническими затратами, скоростью вычислений и точностью измерений можно достичь за счет того, что период измеренного сигнала дискретизируется с 256 дискретными значениями.

Особенно благоприятным является, если при отслеживании частоты дискретизации перекрывается больший диапазон колебаний изменения сетевой частоты, чем предусмотрено нормой. Поэтому особое выполнение изобретения отличается тем, что определенный в соответствии с изобретением фазовый угол ограничивается диапазоном колебаний +/-19% сетевой частоты относительно сетевой частоты, соответствующей сети распределения энергии. Это эквивалентно резерву при подстройке частоты дискретизации.

Электронный счетчик энергии, который оснащен вычислительным устройством, на котором реализован программный код согласно способу, соответствующему изобретению, может изготавливаться сравнительно просто. Тем самым можно с хорошей точностью и в течение длительного срока службы надежно измерять электрическую энергию, поставляемую потребителю.

Краткое описание чертежей

Для дальнейшего пояснения изобретения далее даются ссылки на чертежи, на которых представлены другие предпочтительные формы выполнения, детали и дальнейшее развитие изобретения и на которых показано следующее:

фиг.1 - векторное представление основного колебания измеренного сигнала в двух последовательных периодах, причем измеренный сигнал соответствует напряжению потребителя в сети распределения энергии, и причем согласно изобретению фазовый угол, заключенный между векторам (разность фаз), используется для настройки частоты дискретизации на колеблющуюся сетевую частоту;

фиг.2 - диаграмма, на которой разность фаз изображена по отношению к сетевой частоте, причем наглядно представлены различные варианты соответствующего изобретению определения фазового угла посредством поля характеристик, и причем выбран случай номинальной сетевой частоты 50 Гц.

Выполнение изобретения

Как уже отмечено выше, требуемая точность электронного счетчика энергии может достигаться только тем, что число точек дискретизации по отношению к основному колебанию поддерживается постоянным, так как иначе за счет так называемого «эффекта утечки» возникли бы неточности измерения. Иными словами, частота дискретизации должна синхронизироваться с фактической сетевой частотой, то есть методами регулирования подстраиваться (подстройка частоты). Обычно для этой подстройки частоты применяется устанавливаемый с помощью программного обеспечения делитель частоты, выходная частота которого служит в качестве частоты дискретизации, и коэффициент деления обеспечивает возможность соответствующей точной юстировки частоты дискретизации. Электронный счетчик энергии определяет потребление энергии путем дискретизации и Фурье-анализа. Если мгновенная сетевая частота и частота дискретизации незначительно рассогласованы, то это сказывается на Фурье-анализе таким образом, что векторы основного колебания двух последовательных периодов поворачиваются противоположно друг другу (см. фиг.1). Фазовый угол Δφ между обоими векторами предоставляет при этом непосредственный критерий для длительности периода и, тем самым, для актуальной сетевой частоты. Предложенное изобретение использует этот эффект и применяет фазовый угол для подстройки частоты дискретизации. Так как фазовый угол получается из дискретного комплексного преобразования Фурье, то он далее также упоминается как DFT фазовый угол.

С точки зрения техники регулирования DFT фазовый угол представляет собой отклонение регулируемой величины. Текущая сетевая частота может рассматриваться как задающий параметр. В качестве управляющего параметра функционирует поданное на делитель частоты цифровое значение с (предварительного) делителя.

Прежде чем более подробно пояснять различные выполнения соответствующего изобретению способа на основе моделирования, будут представлены математические основы.

Фиг.1 показывает представление комплексной плоскости с двумя векторами . Оба вектора и являются результатом комплексного Фурье-анализа двух последовательных периодов измеренного сигнала, выведенного из сетевого напряжения. Вектор с индексом а обозначает при этом ранее дискретизированный период измеренного сигнала, а вектор с индексом n обозначает текущий дискретизированный период. Оба вектора непрерывно определяются из дискретизированных значений посредством Фурье-анализа.

Уравнения (1) и (2) показывают математическую взаимосвязь для определения действительной части aa,n и мнимой части ba,n комплексного вектора основного колебания и колебания высшей гармоники.

(1)
(2)

Для основного колебания справедливо k=1.

Из действительной и мнимой части этих векторов можно известным способом и соответственно уравнениям (3) и (4) получить амплитудную информацию и фазовую информацию измеряемого сигнала (ток или напряжение)

(3)
(4)

Из уравнения (4) можно вычислить фазовый угол из отдельных углов векторов. Но так это является затратным с точки зрения вычислительной техники, не в последнюю очередь из-за разложения в ряд функции арктангенса, в изобретении выбран другой путь.

В уравнении (5) синус фазового угла Δφ представлен как векторное произведение (×)

(5)

В уравнении (6) косинус фазового угла Δφ представлен как скалярное произведение (о)

(6)

Из (5) и (6) следует тангенс фазового угла Δφ как частное векторного произведения и скалярного произведения

(7)

Исходя из этих математических основ, соответствующий изобретению способ описан ниже более подробно с помощью моделирования.

На фиг.2 представлена разность фаз (в радианах) в зависимости от сетевой частоты (в Гц). По оси абсцисс представлен диапазон колебания сетевой частоты от 30 Гц до 70 Гц; характеристики 2, 3 и 4 наглядно представляют в этой области различные реализации изобретения.

Если сетевая частота отклоняется от номинальной сетевой частоты внутри показанного на фиг.2 диапазона колебания (от 30 Гц до 70 Гц), то это отклонение выражается как разность фаз между векторами, что показано в «идеализированном» представлении характеристикой 1. «Идеализированное» потому, что характеристика 1 отражает реальное отклонение фазы; его можно получить путем вычисления или точного измерения переходов через нуль. Характеристика 1 может рассматриваться как указание заданного значения для алгоритма подстройки частоты дискретизации к колеблющейся сетевой частоте.

По сравнению с характеристикой 1, характеристики 2, 3 и 4 показывают различные характеристики изменения фазового угла, которые были получены путем моделирования соответствующих изобретению алгоритмов (уравнение 9, 11, 12а и 12b) для определения фазового угла.

При моделировании применяется, например, частота дискретизации 12,8 кГц; это означает 256 дискретных значений за период. Частота дискретизации выводится с делителя частоты. Входная частота делителя частоты составляет 133,3248 МГц (номинальный коэффициент деления 10,416), так что при изменении коэффициента деления возможно очень точное ступенчатое изменение частоты дискретизации (в области 0,01%). На практике оказалось, что приведенные выше значения примера выполнения представляют хороший компромисс между точностью при измерении энергии и эффективностью используемых вычислительно-технических ресурсов.

Как можно видеть из фиг.2, в области малых отклонений частоты (т.е. в области номинальной частоты 50 Гц) каждая из определенных в соответствии с изобретением характеристик DFT фазового угла (характеристики 2, 3 и 4) дает результат, совпадающий с характеристикой 1. Однако существенное преимущество изобретения следует усматривать в том, что результаты 2, 3 и 4 могут быть достигнуты при сравнительно весьма незначительных программно-технических затратах.

Из уравнения (7) получают фазовый угол Δφ согласно соотношению

(8)

Согласно предпочтительному выполнению изобретения, фазовый угол Δφ вычисляется согласно следующему уравнению (9)

(9)

Моделирование этого вычисления представлено на фиг.2 с помощью характеристики 2.

При этом при вычислении длины интервала INT в дуговой мере применяется следующее уравнение (10):

(10)

Если между обоими рассматриваемыми периодами измеренного сигнала сетевая частота не изменяется, то длина интервала равна 2π, так как фазовый угол Δφ равен нулю. Напротив, если сетевая частота колеблется, то фазовый угол Δφ не равен нулю, и на делитель частоты подается соответствующее длине интервала цифровое значение для выработки новой (подстроенной) частоты дискретизации.

В пределах диапазона колебания от 40 Гц до 65 Гц моделированная характеристика в значительной степени соответствует реальной характеристике 1. Вне этой области от 40 Гц до 65 Гц в общем случае это выполнение соответствующего изобретению алгоритма согласно уравнению (9) перестает действовать. Причина заключается в том, что при вычислении фазового угла Δφ при скачке сетевой частоты, который соответствует скачку фазы более π/2, возникает смена знака DFT фазового угла (как видно из фиг.2, характеристика 2, для случая, когда сетевая частота меньше 40 Гц, регулирование было бы неправильным в направлении более высоких частот; соответствующее справедливо для подлежащей регулированию сетевой частоты больше 65 Гц). Изобретение решает эту проблему тем, что уравнение (9) модифицируется таким образом, что вместо скалярного произведения обоих векторов применяется абсолютная величина скалярного произведения (уравнение 11)

(11)

За счет этой меры может быть реализована расширенная область захвата при подстройке частоты дискретизации (частотной подстройке), которая соответствует схеме фазового следящего контура. На фиг.2 этот результат моделирования представлен характеристикой 3.

Как можно видеть из этой характеристики 3 на фиг.2, вне области, которая соответствует скачку фазы по абсолютной величине больше π/2, DFT фазовый угол Δφmod1 хотя и имеется теперь с правильным знаком, однако теперь имеет противоположно направленную характеристику (характеристика 3 спадает для частот ниже 40 Гц и возрастает для частот выше 65 Гц, эти области можно распознать по отрицательному знаку скалярного произведения).

Улучшение скорости адаптации соответствующего изобретению способа может быть достигнуто тем, что используется различение случаев, и вычисленный DFT фазовый угол Δφmod1, в соответствии с его знаком, вычитается из +π или -π.

Это различение случаев выражено в уравнениях (12а) и (12b) следующим образом:

С помощью этого особенно предпочтительного варианта изобретения (Δφmod2) можно достичь наилучшего результата. Как легко видеть из фиг.2, характеристика 4, вычисленная с помощью уравнения (12а) или (12b), проходит ближе всего к идеальной характеристике (характеристика подстройки 1).

Как упомянуто выше, согласно норме EN 50160, требуется отработка отклонения частоты +/-15% от номинального значения 50 Гц, то есть от 42,5 Гц до 57,5 Гц.

Однако предпочтительным является, если в частотной подстройке реализован резерв, и перекрывается рабочий диапазон +/-19% (то есть от 40,5 Гц до 59,5 Гц).

Техническая предпосылка для установления этих нижнего предела и верхнего предела состоит в следующем: теоретическая граница этого алгоритма регулирования при скачках частоты лежит при +/-50% по отношению к мгновенной частоте. Это обусловлено тем, что с этой границы и при вычислении DFT угла разности фаз согласно уравнению (11) или уравнениям (12а) и (12b) происходило бы обращение знака. Если, например, при включении электронного счетчика энергии текущая частота составляла бы 30 Гц, то следовало бы отработать скачок частоты с 50 Гц (начальная частота алгоритма регулирования после разгона) до 30 Гц. Возможно "отрегулирование" (доведение ошибки до нуля или до минимума) этого скачка (-40% относительно 50 Гц). Если бы затем снова возник обратный скачок от 30 Гц до 50 Гц, то алгоритм в общем случае перестал бы работать, так как это отклонение составляет более чем 50% относительно 30 Гц. Однако вышеназванные границы гарантируют то, что при возврате в «рабочую область» подстройка осуществляется без проблем, а именно независимо от того, какое значение частота имела до этого, а также независимо от того, куда выполняется скачок. В предложенном примере при скачке на 30 Гц регулирование остановилось бы на нижней границе 40,5 Гц, но обратный скачок на 50 Гц не создает проблем (даже был бы возможен скачок на верхнюю границу). Границы выбирались таким образом, что при скачке снизу вверх (это критический скачок с более высоким процентным отклонением, чем снизу вверх) отклонение относительно нижней частоты составляло менее 50%.

Как уже упомянуто выше, фиг.2 показывает случай номинальной сетевой частоты 50 Гц. В случае, когда сетевая частота уходит от этой номинальной сетевой частоты, например, до 45 Гц, тактовая частота приводится на эту новую «целевую частоту» 45 Гц. Как только этот процесс подстройки (подрегулирования) завершается, фиг.2 следует считывать таким образом, что на оси абсцисс точка пересечения с характеристиками 1-4 уже не соответствует 50 Гц, а соответствует 45 Гц. Аналогичное условие справедливо, разумеется, если в дальнейшем процессе сетевая частота отклоняется также от этого нового значения 45 Гц. Иными словами, если сетевая частота непрерывно колеблется, абсциссу на фиг.2 необходимо непрерывно вновь масштабировать.

Обозначение применяемых ссылочных позиций

1 - реальная («идеализированная») характеристика (подстройки), заданная частота

2 - характеристика согласно уравнению (9)

3 - характеристика согласно уравнению (11)

4 - характеристика согласно уравнению (12а) и (12b)


СПОСОБ ОПРЕДЕЛЕНИЯ ПОТРЕБЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПОТРЕБЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПОТРЕБЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПОТРЕБЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПОТРЕБЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПОТРЕБЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПОТРЕБЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПОТРЕБЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПОТРЕБЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПОТРЕБЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПОТРЕБЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПОТРЕБЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 1 427.
20.10.2013
№216.012.7734

Способ проверки функционирования вакуумного выключателя тягового выпрямителя тока

Изобретение касается способа проверки функционирования вакуумного выключателя (12) тягового выпрямителя тока с по меньшей мере одним четырехквадратным исполнительным элементом (2) сетевой стороны и импульсным выпрямителем (4) тока нагрузочной стороны, которые через конденсатор (C)...
Тип: Изобретение
Номер охранного документа: 0002496176
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.7754

Устройство и способ для формирования, накопления и передачи электрической энергии

Использование: в области электротехники. Технический результат - повышение надежности энергоснабжения. Устройство включает в себя по меньшей мере один источник (1) энергии, по меньшей мере один первый накопительный блок (4) и один второй накопительный блок (5) для накопления энергии и блок (6)...
Тип: Изобретение
Номер охранного документа: 0002496208
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.791f

Головная часть для образования лобовой стороны транспортного средства, по меньшей мере, с одним энергопоглощающим элементом

Изобретение относится к железнодорожному транспорту, в частности к конструкции головной части транспортного средства. Головная часть (1), размещаемая на лобовой стороне транспортного средства, содержит несущую конструкцию (2) с присоединительными средствами (11) для механического закрепления на...
Тип: Изобретение
Номер охранного документа: 0002496669
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7aa4

Печной агрегат

Изобретение относится к области металлургии, в частности к очистительному устройству для удаления и/или устранения блокирующего материала из или внутри люка для обслуживания печного агрегата. Печной агрегат содержит электродуговую печь, очистительное устройство для удаления и/или устранения...
Тип: Изобретение
Номер охранного документа: 0002497058
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b6e

Электрическая машина с повышенной степенью защиты с улучшенным охлаждением ротора

Изобретение относится к области электротехники, в частности к электрическим машинам. Предлагаемая электрическая машина содержит статор (1) и роторный вал (3), установленный относительно статора (1) с возможностью вращения вокруг оси (5) вала, так что ось (5) вала определяет осевое направление,...
Тип: Изобретение
Номер охранного документа: 0002497260
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b6f

Корпусная насадка для электрической машины со степенью защиты ip 24w

Изобретение относится к корпусной насадке для электрической машины. Корпусная насадка (10) имеет первую свисающую кромку (28), которая таким образом расположена на первой ограничительной стенке (19), что вода (47), находящаяся на среднем участке (20) на первой ограничительной стенке (19),...
Тип: Изобретение
Номер охранного документа: 0002497261
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b70

Система, снабженная электрической машиной, а также способ эксплуатации электрической машины

Изобретение касается способа эксплуатации и системы, снабженной электрической машиной, которая включает в себя статор (4) и ротор (1), а также инфракрасным температурным сенсором, при этом поле детекции инфракрасного температурного сенсора ориентировано по поверхности корпуса ротора....
Тип: Изобретение
Номер охранного документа: 0002497262
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7d17

Рельсовое транспортное средство, которое в качестве приводного двигателя снабжено синхронным двигателем, возбуждаемым постоянными магнитами

Изобретение касается рельсового транспортного средства, которое в качестве приводного двигателя снабжено синхронным двигателем, возбуждаемым постоянными магнитами. При этом между преобразователем и приводным двигателем расположено переключающее устройство, которое в режиме движения соединяет...
Тип: Изобретение
Номер охранного документа: 0002497696
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7e9b

Осевая турбомашина с малыми потерями через зазоры

Осевая турбомашина (1) включает рабочую лопаточную решетку, которая образована рабочими лопатками (3), у каждой из которых имеется передняя кромка (8) и расположенная в радиальном направлении снаружи свободная вершина (15) лопатки. Рабочую лопаточную решетку охватывают стенки (13) кольцевого...
Тип: Изобретение
Номер охранного документа: 0002498084
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7ee7

Горелка для газотурбинного двигателя

Изобретение относится к горелке для газотурбинного двигателя. Горелка содержит радиальную центробежную форсунку для создания завихренной топливовоздушной смеси, камеру сгорания, в которой происходит сгорание завихренной топливовоздушной смеси, и предкамеру. Предкамера расположена между...
Тип: Изобретение
Номер охранного документа: 0002498160
Дата охранного документа: 10.11.2013
Показаны записи 91-100 из 943.
20.09.2013
№216.012.6bdd

Устройство для опрокидывания металлургического плавильного сосуда, металлургическая плавильная система и способ с применением такой плавильной системы

Изобретение относится к области металлургии, в частности к устройству (1) для опрокидывания металлургического плавильного сосуда (50, 55) электродуговой печи (101, 101'). Устройство содержит опрокидываемую рабочую площадку (2) печи, которая имеет отверстие (3) для размещения плавильного сосуда...
Тип: Изобретение
Номер охранного документа: 0002493264
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c8b

Направляющая или рабочая лопатка для осевого компрессора

Направляющая лопатка компрессора или рабочая лопатка осевого компрессора с осевым направлением, радиальным направлением (R), ступицей компрессора и корпусом компрессора. Направляющая лопатка или рабочая лопатка содержит аэродинамическую поверхность (1) с профильными сечениями (3, 5, 15А-15Е),...
Тип: Изобретение
Номер охранного документа: 0002493438
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d04

Селективный детектор монооксида углерода

Изобретение относится к селективному детектору монооксида углерода. Предложен детектор монооксида углерода, который базируется на двух чувствительных слоях. Второй чувствительный слой является каталитически активным и реагирует равным образом на спирты, в частности этанол, и на монооксид...
Тип: Изобретение
Номер охранного документа: 0002493559
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d07

Способ для определения и оценки индикации вихревых токов, в частности трещин, в испытываемом объекте из электропроводного материала

Изобретение относится к способу определения и оценки трещин в испытываемом объекте из электропроводного материала. Способ включает: нагружение испытываемого объекта электромагнитным переменным полем с предварительно определенной постоянной или переменной частотой (f), определение вихревых...
Тип: Изобретение
Номер охранного документа: 0002493562
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.6fe1

Улавливающий подшипник для улавливания роторного вала машины

Изобретение относится к улавливающему подшипнику для улавливания роторного вала машины. Улавливающий подшипник (2) имеет проходящие вокруг воображаемой геометрической средней оси (М) первое опорное тело (7) и роликовые тела (5). Роликовые тела (5) имеют, каждое, зону (19), которая расположена...
Тип: Изобретение
Номер охранного документа: 0002494292
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.7029

Способ и устройство для распознавания состояния исследуемой создающей шумы машины

Использование: в способе и устройстве для распознавания состояния исследуемой создающей шумы машины. Сущность: в способе и устройстве распознавания состояния исследуемого создающего шумы объекта сгенерированная для по меньшей мере одного эталонного объекта статистическая основная модель...
Тип: Изобретение
Номер охранного документа: 0002494364
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70bd

Способ управления при резервировании многофазного выпрямителя переменного тока с распределенными накопителями энергии

Изобретение относится к области электротехники и может быть использовано для управления выпрямителем переменного тока с распределенными накопителями энергии с тремя фазными модулями, которые имеют соответственно одну верхнюю и одну нижнюю ветвь вентилей, которые снабжены соответственно по...
Тип: Изобретение
Номер охранного документа: 0002494512
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.71f2

Непрерывный прокатный стан с введением и/или выведением прокатных клетей в процессе функционирования

Изобретение предназначено для повышения качества проката. Способ включает непрерывную прокатку в нескольких клетях. Плавность выведения/введения прокатных клетей для замены валков обеспечивается за счет того, что при выведения одной (1'') из прокатных клетей (1, 1'') из непрерывного прокатного...
Тип: Изобретение
Номер охранного документа: 0002494827
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7327

Способ определения меры кусковатости твердого материала в электродуговой печи, электродуговая печь, устройство обработки сигнала, а также программный код и носитель данных

Изобретение относится к области получения металла в электродуговой печи. Технический результат - повышение точности прогнозирования состояния твердого материала в электродуговой печи. Согласно способу определения кусковатости для твердого материала, в особенности скрапа, в электродуговой печи...
Тип: Изобретение
Номер охранного документа: 0002495136
Дата охранного документа: 10.10.2013
20.10.2013
№216.012.755f

Способ и устройство для отделения диоксида углерода от отходящего газа работающей на ископаемом топливе электростанции

Изобретение относится к способу отделения диоксида углерода от отходящего газа работающей на ископаемом топливе электростанции. Способ включает в себя абсорбционный процесс, в котором содержащий диоксид углерода отходящий газ приводят в контакт с абсорбентом, в результате чего образуется...
Тип: Изобретение
Номер охранного документа: 0002495707
Дата охранного документа: 20.10.2013
+ добавить свой РИД