×
27.05.2013
216.012.4592

Результат интеллектуальной деятельности: СПОСОБ ПРЕДЭПИТАКСИАЛЬНОЙ ОБРАБОТКИ ПОВЕРХНОСТИ ГЕРМАНИЕВОЙ ПОДЛОЖКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области полупроводниковой опто- и микроэлектроники. Способ предэпитаксиальной обработки поверхности подложки из германия включает удаление с поверхности подложки оксидного слоя, очистку поверхности германия от неорганических загрязнений и пассивацию поверхности подложки. Удаление оксида с поверхности германия осуществляют погружением подложки в раствор соляной кислоты с концентрацией 30-40 мас.% в течение 2-4 минут. Очистку германия от неорганических примесей проводят погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду в течение 0,5-1,5 минут; пассивацию поверхности германия в растворе соляной кислоты с концентрацией 30-40 мас.% в течение 2-5 минут. Подготовку поверхности подложки ведут при температуре 19-23°С. Способ позволяет упростить процесс предэпитаксиальной обработки поверхности германиевой подложки за счет сокращения числа стадий обработки при минимальной модификации поверхности подложки.
Основные результаты: Способ предэпитаксиальной обработки поверхности подложки из германия, включающий последовательную обработку при температуре 19-23°С поверхности подложки раствором соляной кислоты с концентрацией 30-40 мас.% в течение 2-4 мин для удаления оксидного слоя, раствором, содержащим плавиковую кислоту, перекись водорода, винную кислоту и воду при следующем их соотношении в пересчете на литр раствора: в течение 0,5-1,5 мин для удаления неорганических загрязнений и пассивацию поверхности подложки раствором соляной кислоты с концентрацией 30-40 мас.% в течение 2-5 мин.

Изобретение относится к области полупроводниковой опто- и микроэлектроники и может быть использовано в электронной промышленности для создания приборов на основе полупроводниковых гетероструктур, в т.ч. каскадных фотопреобразователей на основе системы GaInP/GaAs/Ge.

Известен способ химического травления поверхности германиевой подложки (ГП) (см. патент US №2941875, опубликован 21.06.1960), основанный на воздействии на германиевую подложку травильного раствора, содержащего гипохлорит натрия, оксид германия (IV) в качестве ингибитора и растворенный в воде углекислый газ. Использование ингибитора позволило снизить селективность травления кристаллических граней германия и повысить однородность поверхности германиевой подложки. Отсутствие коррозионных реагентов в травителе позволило отказаться от использования дорогого коррозионно-стойкого оборудования для травления.

Недостатком такого способа является сложная конструкция системы подачи углекислого газа, сильная зависимость скорости травления ГП от температуры окружающей среды, осаждение ингибитора и ионов металлов на поверхности ГП.

Известен способ обработки полупроводниковых германиевых пластин (см. J.Kim, К.Saraswat and Y.Nishi. - Study of germanium surface in wet chemical solutions for surface cleaning applications / 208th ECS Meeting, Abstr. №779, 2005), заключающийся во взаимодействии поверхности ГП с растворенным в воде озоном. Использование озона в качестве травителя позволило снизить величину среднеквадратичной шероховатости поверхности подложки германия до 0,12 нм, что соответствует межатомному расстоянию в германии. Также, благодаря расщеплению озоном органических примесей на поверхности германия отпадает необходимость в предварительной стадии обезжиривания подложки.

Недостатком известного способа является сложная система приготовления озонированной дистиллированной воды, а также высокая зависимость концентрации озона в воде от температуры окружающей среды и, как следствие, различная скорость травления германия. Также, озон является канцерогенным веществом.

Известен способ предэпитаксиальной обработки поверхности ГП (см. S.K.Agarwal, R.Tyagi, M.Singh, R.K.Jain. Effect of growth parameters on the MOVPE of GaAs/Ge for solar cell applications / Solar Energy Materials & Solar Cells, V.59. 1999. P.1926), заключающийся в обезжиривании ГП в органическом растворителе (четыреххлористый углерод, изопропиловый спирт, ацетон), затем травлении в растворе состава HF:H2О2:H2O=1:1:5 в течение двух минут и последующей обработке разбавленной плавиковой кислотой для удаления поверхностного оксида.

Недостатком известного способа является высокая скорость травления германия (более 1 мкм/мин), что приводит, при малой вязкости раствора, к увеличению шероховатости поверхности. К тому же, при использовании плавиковой кислоты происходит неполное удаление оксида с поверхности германиевой подложки. Очищенные от оксида участки поверхности подложки покрыты слоем атомов водорода, который неустойчив на воздухе, вследствие чего поверхность подложки неравномерно покрывается оксидной пленкой.

Наиболее близким к настоящему изобретению является способ предэпитаксиальной обработки поверхности германиевой подложки (см. Н.Okumura. - Applied Surface Science. - V.125, 1998. PP.125-128), совпадающий с настоящим изобретением по наибольшему числу существенных признаков, принятый за прототип. Способ-прототип заключается в очистке ГП от органических загрязнений в метаноле (10 минут), затем в дихлорметане, затем снова в метаноле. Естественный оксид с поверхности германия удаляли кратковременным (несколько минут) опусканием подложки в плавиковую кислоту (2,5 мас.%). После чего следовало окисление германия в перекиси водорода (30 мас.%) в течение 30 секунд с образованием на поверхности оксидной пленки, а затем растворение оксида в соляной кислоте (35 мас.%) в течение 30 секунд. Процедуру окисления-растворения повторяли три раза. На последнем этапе проводили пассивацию поверхности германиевой подложки, для чего подложку помещали в водный раствор, содержащий гидроксид аммония и перекись водорода в соотношении 1:2, на одну минуту, где на поверхности ГП формировался толстый слой оксида, защищающий подложку от примесей из атмосферы. Затем следовала сушка подложки и помещение ее в реактор для эпитаксии.

Недостатком способа-прототипа является большое количество стадий обработки (более 10-ти) и значительная модификация поверхности ГП вследствие высокой скорости травления на последнем этапе.

Задачей настоящего технического решения является упрощение процесса предэпитаксиальной обработки поверхности германиевой подложки за счет сокращения числа стадий обработки ГП при минимальной ее модификации.

Поставленная задача решается тем, что способ предэпитаксиальной обработки германиевой подложки включает удаление с поверхности оксидного слоя, очистку поверхности германия от неорганических загрязнений и пассивацию поверхности германия при температуре 19-23°С. Новым в способе является удаление оксида с поверхности германиевой подложки обработкой раствором соляной кислоты с концентрацией 30-40 мас.% в течение 2-4 минут; очистка германиевой подложки от неорганических примесей обработкой раствором, содержащим плавиковую кислоту, перекись водорода, винную кислоту и воду, при следующем их соотношении в пересчете на литр раствора:

плавиковая кислота (40 мас.%) 10-30 мл
перекись водорода (30 мас.%) 200-400 мл
винная кислота 36-72 г
вода остальное;

в течение 0,5-1,5 минут и пассивация поверхности подложки раствором соляной кислоты с концентрацией 30-40 мас.% в течение 2-5 минут.

Помещение ГП в раствор соляной кислоты приводит к удалению оксидов германия с поверхности подложки. При этом происходит удаление крупных частиц примеси с поверхности. При использовании соляной кислоты с концентрацией менее 30 мас.% велика вероятность повторного окисления германия растворенным в кислоте кислородом. Использование соляной кислоты с концентрацией выше 40 мас.% нецелесообразно вследствие снижения степени диссоциации молекул НСl и следовательно, неполного восстановления оксида германия на поверхности подложки. При времени взаимодействия соляной кислоты с поверхностью ГП менее 2 минут происходит неполное восстановление поверхностного оксида. При времени более 4 минут возможно осаждение на поверхность германия примесей из раствора.

После предыдущего этапа на поверхности ГП могут оставаться неорганические примеси, например, адсорбированные ионы железа, никеля, меди, а также углерод. Для их удаления используется травильный раствор, содержащий 40 мас.% плавиковую кислоту, 30 мас.% перекись водорода, винную кислоту и воду. Плавиковая и винная кислоты являются хорошими комплексообразователями для ионов металлов, т.е. связывают их в устойчивый комплекс и уносят с поверхности ГП. Перекись водорода создает на поверхности ГП тонкий оксидный слой, который далее растворяется при помощи вышеуказанных комплексообразователей. В результате такого процесса происходит удаление с поверхности германия крепкосвязанного адсорбированного углерода. При содержании плавиковой кислоты в травильном растворе менее 10 мл (на 1 литр раствора) происходит неполное удаление неорганических примесей с поверхности ГП. При содержании более 30 мл - проявляется адсорбция анионов фтора на поверхности ГП. При содержании винной кислоты в травильном растворе менее 36 г/литр происходит неполное удаление неорганических примесей с поверхности ГП. При содержании более 72 г вследствие высокой вязкости полученного раствора скорость травления ГП значительно понижается, и происходит переосаждение на поверхность удаленных примесей. При содержании перекиси водорода в травильном растворе менее 200 мл (на 1 литр раствора) скорость удаления поверхностного слоя германия достаточна низка, в результате чего происходит осаждение на поверхность подложки удаленных примесей. При содержании перекиси более 400 мл - скорость травления ГП достаточно высока, что проявляется в увеличении шероховатости поверхности ГП. При обработке ГП менее 0,5 минуты удаляется менее 300 нм германия, что недостаточно для полного удаления примесей с поверхности подложки, за время обработки более 1,5 минут велика вероятности деградации поверхности ГП. Пассивацию обработанной поверхности ГП производят в концентрированном растворе соляной кислоты. При времени взаимодействия соляной кислоты с поверхностью ГП менее двух минут происходит неполное удаление поверхностного оксида, соответственно не вся поверхность ГП оказывается пассивированной. При обработке более 5 минут возможно осаждение на поверхность германия примесей из раствора.

При температуре окружающей среды менее 19°С наблюдается торможение скорости реакций восстановления оксидов, травления и пассивации. При температуре более 23°С снижается вязкость травителя, повышается скорость селективного травления германия.

Заявляемый способ предэпитаксиальной обработки полированных германиевых подложек ведут в несколько стадий: удаление естественного оксида с поверхности германия осуществляют погружением подложки в раствор соляной кислоты на 2-4 минуты; очистку германия от неорганических примесей проводят погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при следующем их соотношении (на литр раствора):

HF (40 мас.%) 10-30 мл
H2O2 (30 мас.%) 200-400 мл
Винная кислота 36-72 г
Н2О остальное,

в течение 0,5-1,5 минут; пассивацию поверхности германия осуществляют в растворе соляной кислоты в течение 2-5 минут. Температура окружающей среды 19-23°С. Качество обработанной подложки из германия оценивают по отсутствию дефектов и оксидных пленок на поверхности ГП (по результатам сканирующей электронной, атомно-силовой микроскопии, а также по данным рентгеноспектрального анализа).

Пример 1

Была осуществлена предэпитаксиальная обработка поверхности германиевых подложек. Процесс обработки осуществляли в несколько стадий: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при следующем их соотношении (на литр раствора):

HF (40 мас.%) 10 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 36 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 2

Была осуществлена предэпитаксиальная обработка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 4 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при следующем их соотношении (на литр раствора):

HF (40 мас.%) 10 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 36 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 3

Была осуществлена предэпитаксиальная обработка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 1 10 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 36 г
Н2О остальное,

в течение 1,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 4

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 10 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 36 г
Н2О остальное,

в течение 1,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 23°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 5

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 4 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 10 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 36 г
H2O остальное

в течение 1,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 23°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 6

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 30 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 36 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 7

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 10 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 72 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 8

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 10 мл
H2O2 (30 мас.%) 400 мл
Винная кислота 72 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 9

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 30 мл
H2O2 (30 мас.%) 400 мл
Винная кислота 72 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 10

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 4 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 30 мл
H2O2 (30 мас.%) 400 мл
Винная кислота 72 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 11

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличительными признаками: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 4 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 30 мл
H2O2 (30 мас.%) 400 мл
Винная кислота 72 г
Н2О остальное,

в течение 1,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 12

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 4 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

НF (40 мас.%) 30 мл
H2O2 (30 мас.%) 400 мл
Винная кислота 72 г
Н2О остальное,

в течение 1,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 5 минут. Температура окружающей среды 19°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствуют дефекты травления и оксидные пленки.

Пример 13

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 4 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 30 мл
H2O2 (30 мас.%) 400 мл
Винная кислота 72 г
Н2О остальное,

в течение 1,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 5 минут. Температура окружающей среды 23°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 14

Была осуществлена предэпитаксиальная подготовка поверхности германиевых подложек из германия способом, описанным в примере 1, со следующими отличиями: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при их соотношении (на литр раствора):

HF (40 мас.%) 30 мл
H2O2 (30 мас.%) 400 мл
Винная кислота 72 г
Н2О остальное,

в течение 1,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 5 минут. Температура окружающей среды 23°С. Качество поверхности ГП соответствовало требованиям эпитаксиального наращивания, на поверхности подложек отсутствовали дефекты травления и оксидные пленки.

Пример 15

Была осуществлена предэпитаксиальная обработка поверхности германиевых подложек. Процесс обработки осуществляли в несколько стадий: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при следующем их соотношении (на литр раствора):

HF (40 мас.%) 5 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 36 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП не соответствовало требованиям эпитаксиального наращивания, на поверхности подложек присутствовали следы неорганических примесей.

Пример 16

Была осуществлена предэпитаксиальная обработка поверхности германиевых подложек. Процесс обработки осуществляли в несколько стадий: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при следующем их соотношении (на литр раствора):

HF (40 мас.%) 10 мл
H2O2 (30 мас.%) 600 мл
Винная кислота 36 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 19°С. Качество поверхности ГП не соответствовало требованиям эпитаксиального наращивания, на поверхности подложек присутствовали многочисленные неровности и шероховатости.

Пример 17

Была осуществлена предэпитаксиальная обработка поверхности германиевых подложек. Процесс обработки осуществляли в несколько стадий: удаление естественного оксида с поверхности германия осуществляли погружением подложки в раствор соляной кислоты на 2 минуты; очистку германия от неорганических примесей проводили погружением подложки в раствор, содержащий плавиковую кислоту, перекись водорода, винную кислоту и воду при следующем их соотношении (на литр раствора):

HF (40 мас.%) 10 мл
H2O2 (30 мас.%) 200 мл
Винная кислота 36 г
Н2О остальное,

в течение 0,5 минут; пассивацию поверхности германия осуществляли в растворе соляной кислоты в течение 2 минут. Температура окружающей среды 15°С. Качество поверхности ГП не соответствовало требованиям эпитаксиального наращивания, на поверхности подложек присутствовали следы оксидов.

Способ предэпитаксиальной обработки поверхности подложки из германия, включающий последовательную обработку при температуре 19-23°С поверхности подложки раствором соляной кислоты с концентрацией 30-40 мас.% в течение 2-4 мин для удаления оксидного слоя, раствором, содержащим плавиковую кислоту, перекись водорода, винную кислоту и воду при следующем их соотношении в пересчете на литр раствора: в течение 0,5-1,5 мин для удаления неорганических загрязнений и пассивацию поверхности подложки раствором соляной кислоты с концентрацией 30-40 мас.% в течение 2-5 мин.
Источник поступления информации: Роспатент

Показаны записи 91-100 из 121.
17.07.2019
№219.017.b5e8

Устройство определения характеристик для определения характеристик сцинтилляционного материала

Группа изобретений относится к устройству определения характеристик для определения характеристик сцинтилляционного материала, в частности, для датчика ПЭТ. Первый источник излучения облучает сцинтилляционный материал первым излучением с длиной волны менее 450 нм. Второй источник излучения...
Тип: Изобретение
Номер охранного документа: 0002694592
Дата охранного документа: 16.07.2019
26.07.2019
№219.017.b955

Способ измерения магнитного поля

Изобретение относится к области измерительной техники и касается способа измерения магнитного поля. Способ включает воздействие на кристалл карбида кремния, содержащего спиновые центры с основным квадруплетным спиновым состоянием, сфокусированным лазерным излучением, перестраиваемым по частоте...
Тип: Изобретение
Номер охранного документа: 0002695593
Дата охранного документа: 24.07.2019
03.08.2019
№219.017.bbdf

Оптоволоконный фотоэлектрический преобразователь лазерного излучения

Изобретение относится к оптоэлектронике и фотоэнергетике и может быть использовано для создания оптоволоконных систем передачи энергии по лазерному лучу. Заявленный оптоволоконный фотоэлектрический преобразователь лазерного излучения включает оптически последовательно соединенные лазер,...
Тип: Изобретение
Номер охранного документа: 0002696355
Дата охранного документа: 01.08.2019
02.10.2019
№219.017.cbc1

Способ формирования каталитического слоя твердополимерного топливного элемента

Изобретение относится к способу формирования каталитического слоя твердополимерного топливного элемента. Согласно изобретению способ включает обработку углеродных нановолокон в растворе сильной неорганической кислоты, отфильтровывание обработанных углеродных нановолокон, их промывку и сушку,...
Тип: Изобретение
Номер охранного документа: 0002701549
Дата охранного документа: 30.09.2019
04.10.2019
№219.017.d20f

Полупроводниковая структура многопереходного фотопреобразователя

Изобретение относится к электронной технике, а именно к полупроводниковым многопереходным фотоэлектрическим преобразователям мощного оптического излучения с соединительными туннельными диодами. Полупроводниковая структура многопереходного фотопреобразователя содержит верхнюю субструктуру (1),...
Тип: Изобретение
Номер охранного документа: 0002701873
Дата охранного документа: 02.10.2019
12.10.2019
№219.017.d4b4

Устройство для регистрации оптических параметров жидкого аналита

Изобретение относится к области анализа материалов с помощью оптических средств, а более конкретно - к устройствам для определения изменений в жидкой среде путем измерения ее оптических параметров, и может быть использовано в диагностике патологий живых организмов, состояния природных объектов...
Тип: Изобретение
Номер охранного документа: 0002702519
Дата охранного документа: 09.10.2019
24.10.2019
№219.017.d9de

Способ изготовления вертикально-излучающего лазера с внутрирезонаторными контактами и диэлектрическим зеркалом

Изобретение относится к технике полупроводников. Способ изготовления вертикально-излучающего лазера с внутрирезонаторными контактами и диэлектрическим зеркалом включает последовательное эпитаксиальное выращивание на полуизолирующей подложке из GaAs полупроводниковой гетероструктуры, содержащей...
Тип: Изобретение
Номер охранного документа: 0002703938
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.d9ee

Длинноволновый вертикально-излучающий лазер с внутрирезонаторными контактами

Изобретение относится к электронной технике. Длинноволновый вертикально-излучающий лазер включает полуизолирующую подложку из GaAs, нижний нелегированный распределенный брэгговский отражатель (РБО), внутрирезонаторный контактный слой n-типа, композиционную решетку n-типа, содержащую по меньшей...
Тип: Изобретение
Номер охранного документа: 0002703922
Дата охранного документа: 22.10.2019
26.10.2019
№219.017.db2d

Вертикально-излучающий лазер с внутрирезонаторными контактами и диэлектрическим зеркалом

Изобретение относится к технике полупроводников. Полупроводниковый вертикально-излучающий лазер с внутрирезонаторными контактами содержит полуизолирующую подложку (1) из GaAs, нижний нелегированный РБО (2), внутрирезонаторный контактный слой (3) n-типа, композиционную решетку (5) n-типа,...
Тип: Изобретение
Номер охранного документа: 0002704214
Дата охранного документа: 24.10.2019
25.12.2019
№219.017.f1de

Источник спонтанного ультрафиолетового излучения с длиной волны менее 250 нм

Изобретение может быть использовано в системах очистки воды/воздуха/продуктов, системах химического анализа, медицине, УФ спектрометрии, системах скрытой помехоустойчивой оптической связи и др. Источник спонтанного ультрафиолетового излучения с длиной волны менее 250 нм включает подложку (1)...
Тип: Изобретение
Номер охранного документа: 0002709999
Дата охранного документа: 23.12.2019
Показаны записи 91-100 из 109.
29.05.2019
№219.017.689a

Концентраторный солнечный элемент

Концентраторный солнечный элемент (8) выполнен в форме в форме прямоугольника с соотношением длин сторон, находящимся в интервале от 1 до 1,5. Он содержит подложку (3), многослойную структуру (4), сформированную на подложке (3), с центральной фоточувствительной областью (12), контактный слой...
Тип: Изобретение
Номер охранного документа: 0002407108
Дата охранного документа: 20.12.2010
08.06.2019
№219.017.75ad

Низкотемпературный способ формирования полупроводниковых слоев фосфида галлия и твердых растворов на его основе на подложках кремния

Изобретение относится к области полупроводниковой опто- и микроэлектроники и может быть использовано при создании приборов на основе полупроводниковых гетероструктур, в том числе многопереходных фотоэлектрических преобразователей. Задачей, решаемой настоящим изобретением, является снижение...
Тип: Изобретение
Номер охранного документа: 0002690861
Дата охранного документа: 06.06.2019
09.06.2019
№219.017.7c22

Способ получения структуры многослойного фотоэлектрического преобразователя

Способ получения многослойной структуры двухпереходного фотоэлектрического преобразователя, включающий последовательное осаждение из газовой фазы на подложку p-типа GaAs тыльного потенциального барьера из триметилгаллия (TMGa), триметилалюминия (TMAl), арсина (AsH) и источника p-примеси, базы...
Тип: Изобретение
Номер охранного документа: 0002366035
Дата охранного документа: 27.08.2009
09.06.2019
№219.017.7d2a

Способ изготовления наноструктурного омического контакта фотоэлектрического преобразователя

Изобретение относится к технологии изготовления полупроводниковых приборов. Сущность изобретения: в способ изготовления наноструктурного омического контакта проводят предварительную очистку поверхности GaSb р-типа проводимости ионно-плазменным травлением на глубину 5-30 нм с последующим...
Тип: Изобретение
Номер охранного документа: 0002426194
Дата охранного документа: 10.08.2011
09.06.2019
№219.017.7d72

Способ формирования контакта для наногетероструктуры фотоэлектрического преобразователя на основе арсенида галлия

Изобретение относится к области создания полупроводниковых приборов, чувствительных к излучению, и может использоваться в технологиях по изготовлению омических контактных систем к фотоэлектрическим преобразователям (ФЭП) с высокими эксплуатационными характеристиками, и, в частности, изобретение...
Тип: Изобретение
Номер охранного документа: 0002428766
Дата охранного документа: 10.09.2011
03.08.2019
№219.017.bbdf

Оптоволоконный фотоэлектрический преобразователь лазерного излучения

Изобретение относится к оптоэлектронике и фотоэнергетике и может быть использовано для создания оптоволоконных систем передачи энергии по лазерному лучу. Заявленный оптоволоконный фотоэлектрический преобразователь лазерного излучения включает оптически последовательно соединенные лазер,...
Тип: Изобретение
Номер охранного документа: 0002696355
Дата охранного документа: 01.08.2019
04.10.2019
№219.017.d20f

Полупроводниковая структура многопереходного фотопреобразователя

Изобретение относится к электронной технике, а именно к полупроводниковым многопереходным фотоэлектрическим преобразователям мощного оптического излучения с соединительными туннельными диодами. Полупроводниковая структура многопереходного фотопреобразователя содержит верхнюю субструктуру (1),...
Тип: Изобретение
Номер охранного документа: 0002701873
Дата охранного документа: 02.10.2019
31.12.2020
№219.017.f458

Способ изготовления фотоэлектрического преобразователя на основе gasb

Изобретение относится к способам изготовления фотоэлектрических преобразователей на основе GaSb, применяемых в солнечных элементах, термофотоэлектрических генераторах, в системах с расщеплением спектра солнечного излучения, в преобразователях лазерного излучения. Во всех перечисленных случаях...
Тип: Изобретение
Номер охранного документа: 0002710605
Дата охранного документа: 30.12.2019
24.01.2020
№220.017.f928

Рост gan нанотрубок, активированный легирующей примесью si на подложках si с тонким буферным слоем aln

Использование: для синтеза полых квазиодномерных наноструктур. Сущность изобретения заключается в том, что способ роста GaN нанотрубок, активированного легирующей примесью Si на подложке Si с тонким буферным слоем AlN, включает осаждение материалов методом молекулярно-пучковой эпитаксии, перед...
Тип: Изобретение
Номер охранного документа: 0002711824
Дата охранного документа: 22.01.2020
06.03.2020
№220.018.098f

Установка слежения за солнцем и способ ее ориентации

Установка слежения за Солнцем включает промежуточную раму в виде круглой цилиндрической балки (1), установленную с возможностью вращения посредством первых цилиндрических шарниров (2), (5) на двух стойках (3), (6), прикрепленных к основанию (4), раму (13) солнечных панелей, прикрепленную с...
Тип: Изобретение
Номер охранного документа: 0002715901
Дата охранного документа: 04.03.2020
+ добавить свой РИД