×
10.04.2013
216.012.338b

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНЫХ ПОКРЫТИЙ НА ТИТАНЕ И ЕГО СПЛАВАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения тонких пленок магнитных материалов, в частности магнитоактивных оксидных покрытий на титане и его сплавах, и может найти применение при изготовлении электромагнитных экранов и поглотителей электромагнитного и высокочастотного излучения для различной аппаратуры, экранированных помещений, защищенных от утечки информации, а также для космической и авиационной техники. Способ включает плазменно-электролитическое оксидирование титановой подложки в водном электролите, содержащем, г/л: фосфат натрия 10-15, наночастицы кобальта 1,0-1,5 и додецилсульфат натрия 0,1-0,2, в гальваностатическом режиме при плотности тока 0,05-0,2 А/см в течение 10-20 мин с последующей обработкой центрифугированием в водной суспензии, содержащей 55-60 мас.% ультрадисперсного политетрафторэтилена (ПТФЭ) и 8,0-8,5% от массы сухого ПТФЭ продукта обработки смеси моно- и диалкилфенолов окисью этилена, и отжиг при 360-370°С в течение 10-15 мин. Технический результат - повышение коррозионной стойкости и срока службы магнитоактивных покрытий, а также обеспечение их стабильного качества за счет увеличения стабильности и рабочего ресурса электролита. 2 пр., 4 ил.
Основные результаты: Способ получения магнитоактивных покрытий на титане и его сплавах, включающий плазменно-электролитическое оксидирование (ПЭО) титановой подложки в гальваностатическом режиме в водном электролите, содержащем фосфат натрия и частицы магнитного металла, отличающийся тем, что ПЭО осуществляют при плотности тока 0,05-0,2 А/см в течение 10-20 мин в электролите, который в качестве частиц магнитного металла содержит наночастицы кобальта и дополнительно включает додецилсульфат натрия при следующем содержании компонентов, г/л: затем подложку со сформированным ПЭО покрытием обрабатывают путем центрифугирования в водной суспензии, содержащей 55-60 мас.% ультрадисперсного политетрафторэтилена (ПТФЭ) и 8,0-8,5% от массы сухого ПТФЭ продукта обработки смеси моно- и диалкилфенолов окисью этилена, и подвергают отжигу при 360-370°С в течение 10-15 мин.

Изобретение относится к области получения тонких пленок магнитных материалов, а именно магнитоактивных оксидных покрытий на титане и его сплавах, и может найти применение при изготовлении электромагнитных экранов и поглотителей электромагнитного и высокочастотного излучения, применяемых для отдельных элементов, функциональных узлов и аппаратуры в целом, которые могут быть источниками либо рецепторами помех, в составе интегрированных панелей для облицовки внутренней поверхности специальных помещений, в частности, камер для настройки и испытаний электро- и радиоприборов на электромагнитную совместимость, экранированных помещений, защищенных от утечки информации, а также в космической и авиационной технике.

Для практического применения большое значение имеет возможность получения на металлической подложке материала заданного состава и структуры, от которых зависит его способность поглощать электромагнитное и высокочастотное излучение, при этом каждому конкретному составу соответствует максимальная поглощающая способность при определенных частотах. Электрохимическая обработка металлической подложки путем подбора соответствующего электролита и условий обработки обеспечивает такую возможность.

Известен способ получения наноструктурированных магнитных металл-оксидных слоев с заданными магнитными характеристиками толщиной 10-20 мкм на поверхности алюминия [Магнитные металлоксидные наноструктуры на поверхности алюминия. Болтушкин А.В. и др. Сборник докладов международной научной конференции «Актуальные проблемы физики твердого тела» ФТТ-2005, г.Минск 26-28 октября, с.244-247] путем электрохимической обработки алюминиевой подложки, включающий формирование пористой оксидной пленки анодированием в водном сернокислом электролите в течение 20-40 мин и последующее электролитическое осаждение Co-Cu и Fe-Cu в поры полученной анодной оксидной пленки переменным либо импульсным реверсивным токами из сернокислых электролитов. Однако полученные известным способом металл-оксидные слои обладают недостаточной коррозионной стойкостью, в ходе эксплуатации на их магнитных свойствах может отражаться воздействие высокой влажности, коррозионно-активных ионов и других неблагоприятных факторов окружающей среды.

Известен способ получения магнитоактивных оксидных покрытий на вентильных металлах и их сплавах (пат. РФ №2420614, опубл. 2011.06.10), включающий электрохимическую обработку, осуществляемую плазменно-электролитическим оксидированием в гальваностатическом режиме при эффективной плотности тока 0,05-0,20 А/см2 и конечном напряжении формирования 60-380 В в течение не менее 5 мин в водном электролите, содержащем, г/л: фосфат натрия 20-30, борат натрия 10-15, вольфрамат натрия 1-3, оксалат железа 13-26 и/или ацетат никеля 10-20. Однако оксидные покрытия, полученные известным способом, не обнаруживают достаточно высокой устойчивости по отношению к неблагоприятным воздействиям окружающей среды, к которым, в первую очередь, следует отнести высокую влажность, особенно при повышенной температуре, присутствие агрессивных ионов.

Наиболее близким к заявляемому является описанный в работе Fanya J., Honghui Т., Jiong L., Liru S., Paul K.C. Structure and microwave-absorbing properties of Fe-particle containing alumina prepared by micro-arc discharge oxidation. (Surface and Coatings Technology. 201 (2006), p.292-295) способ получения магнитоактивных покрытий, содержащих около 16 мас.% железа, включающий плазменно-электролитическое оксидирование подложки из сплава алюминия в водном электролите, содержащем вольфрамат натрия NaWO3, фосфат натрия Na3PO4·12H2O и частицы железа, в гальваностатическом режиме при напряжении 300-450 В и средней плотности тока 8 А/дм2. Значения магнитной и диэлектрической проницаемости в области частот 6,5-18 GHz и толщина (около 50 мкм) полученных известным способом магнитоактивных покрытий обеспечивают их применение для экранирования микроволнового излучения.

Недостатком известного способа является недостаточная коррозионная устойчивость получаемых магнитоактивных покрытий, вследствие чего их магнитные свойства могут испытывать воздействие неблагоприятных факторов окружающей среды, а срок службы таких покрытий сокращается. Кроме того, используемый для его осуществления электролит является недостаточно стабильным: в течение короткого времени начинается оседание и выпадение в осадок диспергированных в нем частиц железа, что приводит к уменьшению рабочего ресурса электролита, плохой воспроизводимости результатов и не позволяет получить покрытия стабильного качества.

Задачей изобретения является создание способа получения на титане и его сплавах коррозионностойких магнитоактивных кобальтсодержащих покрытий стабильного качества.

Актуальность задачи обусловлена тем, что титан, который относится к парамагнитным металлам, не взаимодействующим с магнитным полем, используется в производстве специального немагнитного оборудования, техники, приборов и машин.

Технический результат изобретения заключается в повышении коррозионной устойчивости и срока службы получаемых магнитоактивных покрытий при одновременном обеспечении их стабильного качества за счет увеличения стабильности и рабочего ресурса электролита.

Указанный технический результат достигается способом получения магнитоактивных покрытий на титане и его сплавах, включающим плазменно-электролитическое оксидирование (ПЭО) титановой подложки в гальваностатическом режиме в водном электролите, содержащем фосфат натрия и частицы магнитного металла, в котором, в отличие от известного, ПЭО осуществляют при плотности тока 0,05-0,2 А/см2 в течение 10-20 мин в электролите, который в качестве частиц магнитного металла содержит наночастицы кобальта и дополнительно включает додецилсульфат натрия при следующем содержании компонентов, г/л:

фосфат натрия Na3PO4·12H2O 10-15
наночастицы кобальта 1,0-1,5
додецилсульфат натрия C12H25NaO4S 0,1-0,2,

при этом подложку со сформированным ПЭО покрытием обрабатывают путем центрифугирования (spin coating) в водной суспензии, содержащей 55-60 мас.% ультрадисперсного политетрафторэтилена (ПТФЭ) и 8,0-8,5% от массы сухого ПТФЭ продукта обработки смеси моно- и диалкилфенолов окисью этилена, и подвергают отжигу при 360-370ºС в течение 10-15 мин.

Способ осуществляют следующим образом.

Готовят электролит плазменно-электролитического оксидирования.

В необходимое количество дистиллированной воды вносят расчетное количество наночастиц кобальта и с помощью ультразвуковой обработки частотой не менее 20 кГц в течение не менее 120 секунд получают водную дисперсию наночастиц кобальта, к которой добавляют водный раствор анионного поверхностно-активного вещества - додецилсульфата натрия (синонимы: додецилсульфат натриевой соли, натрий лаурилсульфат). Полученную смесь вновь подвергают ультразвуковой обработке с получением суспензии с достаточной седиментационной и агрегативной устойчивостью.

Отдельно готовят водный раствор фосфата натрия.

Смешивают в рассчитанном соотношении подготовленную суспензию и водный раствор фосфата натрия и механически перемешивают полученную смесь в течение не менее 30 мин.

Образец (подложку) из титана либо его сплава погружают в свежеприготовленный электролит и подвергают плазменно-электролитическому оксидированию в монополярном гальваностатическом режиме при эффективной плотности тока 0,05-0,2 А/см2 в течение 10-20 мин. Титановая подложка при этом является анодом.

После оксидирования образец промывают дистиллированной водой и высушивают при 100ºС в течение 1 часа.

Толщина сформированного ПЭО покрытия (оксидного слоя) составляет не менее 10 мкм.

На подготовленное ПЭО покрытие наносят защитный слой ультрадисперсного ПТФЭ.

Для этого готовят водную суспензию, содержащую 55-60 мас.% ультрадисперсного ПТФЭ с размером частиц 0,06-0,4 мкм, в которую для стабилизации суспензии и улучшения смачивания частиц ПТФЭ вводят неионогенное поверхностно-активное вещество в количестве 8,0-8,5% от массы сухого ПТФЭ.

Используемое в предлагаемом способе неионогенное поверхностно-активное вещество (ПАВ) представляет собой продукт обработки смеси моно- и диалкилфенолов окисью этилена с условной структурной формулой

где R - алкильный радикал, содержащий 8-12 атомов углерода; n=10-12 (вспомогательное вещество ОП-10 в соответствии с ГОСТ 8433-81).

Расчетное количество указанного неионогенного ПАВ, которое играет роль одновременно смачивателя и эмульгатора, вводят в виде водного раствора.

Водную дисперсию ПТФЭ с добавкой указанного неионогенного ПАВ перемешивают в течение 10-20 мин с помощью высокооборотной мешалки и наносят на титановую подложку со сформированным ПЭО покрытием. Нанесение осуществляют методом центрифугирования (spin coating) с последующим отжигом при 360-370ºС в течение 10-15 мин.

Полученное покрытие с нанесенным защитным слоем после отжига имеет толщину до 15 мкм. Поверхность покрытия темно-серого цвета, с порами «запечатанными» полимером.

Внешний вид поверхности покрытия показан на фиг.1 (фотография получена с помощью сканирующего электронного микроскопа Evex Mini-SEM при увеличении ×1000).

Состав магнитоактивного слоя покрытия, по данным рентгеновской фотоэлектронной спектроскопии, включает Со(ОН)2, СоО, Со2О3, а также металлический Со, при этом содержание Со, которое приходится на его ферромагнитные соединения, составляет в среднем 1,5 ат.%.

Значение коэрцитивной силы полученного магнитоактивного слоя покрытия составляет около 500 Э при комнатной температуре и не менее 1000 Э при температуре 2 К, что характеризует его ферромагнитные свойства.

Модуль импеданса (полного сопротивления переменному току) поверхности покрытия при частоте тестового сигнала 0,02 Гц (|Z|f=0,02Гц) составляет 7,7·108 Ом·см2, что свидетельствует о высоких защитных свойствах покрытия.

Примеры конкретного осуществления способа

Магнитные измерения осуществляли с помощью SQUID магнетометра MPMS XL фирмы Quantum Design, используя две методики: охлаждение образца без внешнего магнитного поля - zero field cooling (ZFC) и охлаждение во внешнем магнитном поле - field cooling (FC).

Толщину покрытий определяли с помощью вихретокового толщиномера ВТ-201.

Пример 1

Для приготовления электролита готовят суспензию наночастиц кобальта: к 300 мл дистиллированной воды добавляют 0,45 г Со и обрабатывают с помощью ультразвукового гомогенизатора Bandelin SONOPULS HD 3200 при мощности 125 Вт в течение 120 с. В полученную суспензию добавляют 100 мл водного раствора додецилсульфата натрия (0,1 г на 100 мл дистиллированной воды); смесь подвергают обработке в ультразвуковой ванне Bandelin RK 31 в течение 30 мин. Далее в электролит вводят фосфат натрия в виде водного раствора (10 г на 600 мл воды), при этом на 400 мл подготовленной суспензии, включающей наночастицы Со и додецил сульфат натрия, используют 600 мл подготовленного фосфата натрия. Электролит перемешивают с помощью механической высокооборотной мешалки Heidolph RZR-1 (верхнеприводная с крыльчаткой лопастного типа) в течение 30 мин.

Пластину из технически чистого титана ВТ 1-0 размером 2х2 см толщиной 0,2 см подвергают плазменно-электролитической обработке в гальваностатическом режиме при плотности тока 0,05 А/см2 в течение 20 мин в подготовленном электролите, содержащем, г/л:

фосфат натрия 10
наночастицы кобальта 1,5
додецилсульфат натрия 0,1.

Для нанесения защитного слоя готовят водную суспензию, содержащую на 100 мл дистиллированной воды: 55 г ультрадисперсного ПТФЭ и 4,4 г продукта обработки смеси моно- и диалкилфенолов окисью этилена, которую перемешивают с помощью механической высокооборотной мешалки Heidolph RZR-1 в течение 15 мин.

Подготовленную водную суспензию наносят на сформированное ПЭО покрытие методом центрифугирования (spin coating) с помощью SpinCoater VTC-100 в 2 этапа: сначала в течение 30 сек при 500 об/мин, затем в течение 30 сек при 2000 об/мин.

После высыхания нанесенной эмульсии на воздухе образец помешают в муфельную печь SNOL 7,2/1100 L на 10 мин при 360ºС.

На поверхности магнитоактивного ПЭО покрытия образуется равномерная тонкая полимерная пленка толщиной примерно 2 мкм с диэлектрическими свойствами, устойчивая по отношению к различным неблагоприятным факторам окружающей среды, обеспечивающая его защиту при механических воздействиях и стабильность свойств при изменении температуры, влажности и т.д.

Общая толщина магнитоактивного покрытия - 12 мкм, значение коэрцитивной силы при комнатной температуре 524 Э, при 2 К - 1024 Э.

Значение модуля импеданса поверхности |Z|f=0,02Гц составляет 7,7·108 Ом·см2.

Кривые намагничивания и петля гистерезиса для полученного покрытия показаны на фиг.1 (а - при 300 К (комнатная температура); б - при 2 К (охлаждение без внешнего магнитного поля); в - при 2 К (охлаждение во внешнем магнитном поле).

Пример 2

Аналогично примеру 1 предварительно готовят суспензию наночастиц кобальта (на 300 мл дистиллированной воды 0,30 г Со), к которой добавляют 200 мл водного раствора додецилсульфата натрия (0,1 г на 100 мл воды). К полученной суспензии, включающей наночастицы Со и додецил сульфат натрия, добавляют фосфат натрия в виде водного раствора (15 г на 500 мл воды), при этом на 500 мл суспензии берут 500 мл раствора фосфата натрия.

Пластину размерами по примеру 1 из сплава титана ОТ4-0 (%: Ti 96,3-98,6, Al 0,4-1,4, Mn 0,5-1,3, Fe до 0,3, Zr до 0,3, прочие примеси 0,4) подвергают плазменно-электролитической обработке в гальваностатическом режиме при плотности тока 0,2 А/см2 в течение 10 мин в электролите, содержащем, г/л:

фосфат натрия 15
наночастицы кобальта 1,0
додецилсульфат натрия 0,2.

Далее обработку проводят аналогично примеру 1, используя подготовленную суспензию: на 100 мл дистиллированной воды 60 г ультрадисперсного ПТФЭ и 5,1 г продукта обработки смеси моно- и диалкилфенолов окисью этилена.

Отжиг защитного покрытия осуществляют при 370ºС в течение 15 мин.

Общая толщина покрытия - 14 мкм, значение коэрцитивной силы при комнатной температуре 510 Э, при 2 К - 1004 Э.

Значение модуля импеданса поверхности |Z|f=0,02Гц составляет 7,7·108 Ом·см2.

Способ получения магнитоактивных покрытий на титане и его сплавах, включающий плазменно-электролитическое оксидирование (ПЭО) титановой подложки в гальваностатическом режиме в водном электролите, содержащем фосфат натрия и частицы магнитного металла, отличающийся тем, что ПЭО осуществляют при плотности тока 0,05-0,2 А/см в течение 10-20 мин в электролите, который в качестве частиц магнитного металла содержит наночастицы кобальта и дополнительно включает додецилсульфат натрия при следующем содержании компонентов, г/л: затем подложку со сформированным ПЭО покрытием обрабатывают путем центрифугирования в водной суспензии, содержащей 55-60 мас.% ультрадисперсного политетрафторэтилена (ПТФЭ) и 8,0-8,5% от массы сухого ПТФЭ продукта обработки смеси моно- и диалкилфенолов окисью этилена, и подвергают отжигу при 360-370°С в течение 10-15 мин.
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНЫХ ПОКРЫТИЙ НА ТИТАНЕ И ЕГО СПЛАВАХ
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНЫХ ПОКРЫТИЙ НА ТИТАНЕ И ЕГО СПЛАВАХ
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНЫХ ПОКРЫТИЙ НА ТИТАНЕ И ЕГО СПЛАВАХ
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОАКТИВНЫХ ПОКРЫТИЙ НА ТИТАНЕ И ЕГО СПЛАВАХ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 136.
03.03.2019
№219.016.d237

Сорбционный материал для селективного извлечения радионуклидов стронция из сложных по ионному составу растворов и способ извлечения радионуклидов стронция с его помощью

Группа изобретений относится к сорбционным материалам и способам сорбционного извлечения радионуклидов стронция из многокомпонентных растворов и может найти применение для очистки сложных по ионному составу растворов и водных сред. Сорбционный материал для селективного извлечения радионуклидов...
Тип: Изобретение
Номер охранного документа: 0002680964
Дата охранного документа: 01.03.2019
03.03.2019
№219.016.d289

Способ получения гидрофобных материалов

Изобретение относится к способам получения материалов с гидрофобными свойствами и может быть использовано в производстве строительных материалов и для получения гидрофобных сорбентов на основе природных алюмосиликатов для очистки жидких сред. Способ предусматривает термообработку исходного...
Тип: Изобретение
Номер охранного документа: 0002681017
Дата охранного документа: 01.03.2019
14.03.2019
№219.016.df31

Способ изготовления объёмных композиционных панелей

Изобретение относится к серийному изготовлению объемных крупногабаритных композиционных панелей и может быть использовано в производстве панелей с многоуровневой поверхностью с выступающими и утопленными площадками различной формы и с различным рельефом поверхности, предназначенных для...
Тип: Изобретение
Номер охранного документа: 0002681814
Дата охранного документа: 12.03.2019
08.04.2019
№219.016.fe65

Способ изготовления слоистых стеклометаллокомпозитов

Изобретение относится к способу получения слоистого стеклометаллокомпозита. Способ включает формирование стеклометаллопакета путем укладки чередующихся пластин из алюминия или его сплава, предварительно выдержанных в течение 5-10 минут в расплаве стекла с температурой стеклования 450-550°С,...
Тип: Изобретение
Номер охранного документа: 0002684255
Дата охранного документа: 04.04.2019
16.05.2019
№219.017.520d

Способ очистки нефтесодержащих вод и устройство для его осуществления

Группа изобретений относится к очистке нефтесодержащих вод и может найти применение для очистки сточных вод промышленных предприятий, деятельность которых связана с использованием нефтесодержащих жидкостей, нефтебаз, АЗС, нефтедобывающих платформ, а также судовых льяльных вод. Способ очистки...
Тип: Изобретение
Номер охранного документа: 0002687461
Дата охранного документа: 13.05.2019
18.05.2019
№219.017.53c9

Способ получения нанодисперсного магнитоактивного рентгеноконтрастного средства

Изобретение относится к медицине, в частности к рентгенологии, и может быть использовано в качестве рентгеноконтрастного средства при рентгенологических исследованиях различных органов. Способ включает осаждение магнетита FeO из раствора, содержащего соли железа (II) и железа (III),...
Тип: Изобретение
Номер охранного документа: 0002687748
Дата охранного документа: 16.05.2019
20.05.2019
№219.017.5c3e

Способ получения сорбционного материала для сбора нефти и нефтепродуктов

Изобретение относится к материалам для сорбции нефтепродуктов и может быть использовано для ликвидации аварийных разливов нефти и нефтепродуктов на водной поверхности природных и искусственных водоемов, для очистки сточных вод. Способ включает изготовление полипропиленового волокна методом...
Тип: Изобретение
Номер охранного документа: 0002687913
Дата охранного документа: 16.05.2019
04.06.2019
№219.017.72af

Способ получения композитного материала, обладающего фотокаталитическими свойствами

Изобретение касается функциональных полимерных композиционных материалов, содержащих частицы металлов и/или оксидов металлов, и более конкретно, относится к способам получения гибридных композитных материалов, содержащих диоксид титана в полимерной матрице и обладающих выраженными...
Тип: Изобретение
Номер охранного документа: 0002690378
Дата охранного документа: 03.06.2019
08.06.2019
№219.017.75ac

Способ получения борсодержащего биоактивного стекла

Изобретение относится к медицине, а именно к способу получения борсодержащего биоактивного стекла, которое может быть использовано в травматологии, ортопедии, челюстно-лицевой хирургии для создания на имплантатах биоактивного покрытия. Способ включает в себя смешение олеата кальция, олеата...
Тип: Изобретение
Номер охранного документа: 0002690854
Дата охранного документа: 06.06.2019
19.06.2019
№219.017.83cc

Металлооксидный электрод для потенциометрических измерений и способ его изготовления

Изобретение относится к металлооксидному электроду для потенциометрических измерений, содержащему титановую основу с покрытием из оксидов титана, сформированным методом плазменно-электролитического оксидирования. Электрод характеризуется тем, что внешний слой покрытия толщиной 1 мкм...
Тип: Изобретение
Номер охранного документа: 0002691661
Дата охранного документа: 17.06.2019
Показаны записи 81-90 из 91.
17.10.2019
№219.017.d6ec

Способ получения защитных антикоррозионных покрытий на сплавах алюминия со сварными швами

Изобретение относится к способам получения защитных антикоррозионных покрытий на изделиях, конструкциях и сооружениях со сварными соединениями, выполненных из сплавов алюминия, преимущественно конструкционных, которые предназначены для эксплуатации в неблагоприятных условиях под воздействием...
Тип: Изобретение
Номер охранного документа: 0002703087
Дата охранного документа: 15.10.2019
22.10.2019
№219.017.d8d3

Анодный материал для литий-ионного аккумулятора и способ его получения

Изобретение может быть использовано при получении анодного материала литий-ионных аккумуляторов, применяемых для энергообеспечения крупногабаритных энергоустановок гибридного и электрического автотранспорта, систем бесперебойного электроснабжения, робототехнических средств и автономных...
Тип: Изобретение
Номер охранного документа: 0002703629
Дата охранного документа: 21.10.2019
30.10.2019
№219.017.dbc1

Способ формирования композиционных покрытий на магнии

Изобретение относится к способу обработки магниевых сплавов, а именно к композиционным покрытиям, формируемым сочетанием плазменного электролитического оксидирования и распыления фторполимера, и может быть применено в машиностроении, в том числе автомобильной промышленности, приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002704344
Дата охранного документа: 28.10.2019
29.11.2019
№219.017.e781

Способ получения супергидрофобных покрытий с антиобледенительными свойствами на алюминии и его сплавах

Изобретение относится к получению на поверхности алюминия и его сплавов супергидрофобных покрытий, обладающих влагозащитными и антиобледенительными свойствами, и может быть использовано для обеспечения долговременной защиты от гололедно-изморозевых отложений и сопутствующей коррозии различных...
Тип: Изобретение
Номер охранного документа: 0002707458
Дата охранного документа: 26.11.2019
29.11.2019
№219.017.e7ff

Сферический порошок псевдосплава на основе вольфрама и способ его получения

Изобретение относится к сферическому порошку псевдосплава на основе вольфрама. Ведут гранулирование порошка наноразмерного композита, состоящего из металлических частиц с размерами менее 100 нм и полученного водородным восстановлением в термической плазме смеси порошков оксидов вольфрама с...
Тип: Изобретение
Номер охранного документа: 0002707455
Дата охранного документа: 26.11.2019
31.12.2020
№219.017.f45f

Способ получения композиционного материала для биорезорбируемого магниевого имплантата

Изобретение относится к способу получения материала с композиционным антикоррозионным покрытием для биосовместимых имплантатов с ограниченным сроком нахождения в организме, служащих для замены и/или регенерации поврежденных костных тканей, и может найти применение в имплантационной хирургии....
Тип: Изобретение
Номер охранного документа: 0002710597
Дата охранного документа: 30.12.2019
13.02.2020
№220.018.0210

Способ восстановления повреждённых покрытий на титановых изделиях

Изобретение может быть использовано для восстановления эксплуатационных свойств изношенных изделий из титана и титановых сплавов и может быть использовано в различных отраслях промышленности, в том числе: в судостроении, авиационной, космической, автомобильной промышленностях. Способ...
Тип: Изобретение
Номер охранного документа: 0002714009
Дата охранного документа: 11.02.2020
12.04.2023
№223.018.4861

Способ получения защитных покрытий на магнийсодержащих сплавах алюминия

Изобретение относится к области гальванотехники и может быть использовано при формировании композиционных полимерсодержащих покрытий для защиты от коррозии изделий и конструкций, эксплуатируемых в неблагоприятных погодных условиях, в частности в открытом море на нефтяных платформах, в...
Тип: Изобретение
Номер охранного документа: 0002734426
Дата охранного документа: 16.10.2020
22.04.2023
№223.018.50e4

Способ очистки порошков титана и его сплавов от примеси кислорода

Изобретение относится к области порошковой металлургии, в частности к способам очистки порошков титана и его сплавов от примесей кислорода. Очистку порошков титана и его сплавов осуществляют путем взаимодействия с порошком магния или гидрида кальция в потоке термической плазмы инертных газов,...
Тип: Изобретение
Номер охранного документа: 0002794190
Дата охранного документа: 12.04.2023
17.06.2023
№223.018.7e3c

Способ получения защитных супергидрофобных покрытий на сплавах алюминия

Изобретение относится к получению на конструкциях и сооружениях из сплавов алюминия, преимущественно содержащих магний, защитных супергидрофобных покрытий, препятствующих контакту с коррозионной средой и образованию корки льда с высокой прочностью адгезии к поверхности конструкций. Способ...
Тип: Изобретение
Номер охранного документа: 0002771886
Дата охранного документа: 13.05.2022
+ добавить свой РИД