×
17.06.2023
223.018.811f

Результат интеллектуальной деятельности: Монокристаллический материал для твердотельной дозиметрии

Вид РИД

Изобретение

Аннотация: Изобретение относится к материалам для термодозиметрических устройств, которые могут быть использованы в качестве твердотельных термолюминесцентных детекторов ионизирующих излучений. Монокристаллический материал для твердотельной дозиметрии - фторидоборат с «антицеолитной» структурой - характеризуется общей формулой Ba(BO)[BO][LiF]:Cu,Sr в виде каркаса [(Ba,Sr)(ВО)], сложенного чередующимися слоями АВАВ вдоль направления кристаллографической оси Z, при этом А-слои «антицеолитной» структуры включают гостевые (ВО) и (F) группы, В-слои включают гостевые анионные группы [LiF], [(Cu,Sr)(OH)], [CuF/(OH)4], и содержит одновременно ионы меди и стронция, обеспечивающие смещение положения основного дозиметрического пика в более высокотемпературную область до 437 K. Технический результат - расширение арсенала монокристаллических термолюминесцентных материалов с устойчивыми центрами захвата на основе ионов двухвалентной меди и дырочных центров на кислороде, а также излучательной рекомбинации на основе ионов одновалентной меди. Смещение в высокотемпературную область и увеличение температурного интервала между пиками важно для устойчивого хранения и считывания дозиметрической информации. Другим важным преимуществом кристаллов является их химическая, физическая и радиационная стойкость. 5 ил., 1 табл., 1 пр.

Изобретение относится к материалам для термодозиметрических устройств, которые могут быть использованы в качестве твердотельных термолюминесцентных детекторов ионизирующих излучений.

Проблема обнаружения и измерения радиационного излучения становится все более актуальной по мере возрастания его роли практически во всех областях человеческой деятельности. К наиболее важным задачам дозиметрии относятся контроль радиационной безопасности человека и окружающей среды, клиническая и технологическая дозиметрия, проблемы, связанные с утилизацией радиоактивных отходов.

Одним из наиболее активно развивающихся направлений дозиметрии ионизирующих излучений является твердотельная термолюминесцентная дозиметрия (ТЛД), в которой в качестве детектора излучений используются так называемые запасающие кристаллофосфоры, - твердые тела полупроводниковой или диэлектрической природы, обладающие определенным сочетанием дефектов кристаллической решетки примесного или собственного происхождения. Образующиеся в них под действием излучения свободные носители заряда могут локализовываться на центрах захвата, изменяя их энергетическое состояние и могут сохраняться в таком состоянии достаточно длительное время после прекращения действия излучения. При сообщении дополнительной энергии при нагревании происходит ионизация электронных центров и последующая рекомбинация зонных носителей с активаторными центрами, которые излучают в области спектра, соответствующие собственной люминесценции.

Для формирования требуемых служебных свойств материалов для ТЛД основным приемом является создание дефектов в структуре.

Технология получения аниондефицитного корунда для использования в ТЛД была разработана в середине 80-х годов в Уральском государственном политехническом университете [А.с. 1340365 СССР, МКИ GOIT I/II. Способ получения профилированных монокристаллов оксида алюминия для термолюминесцентной дозиметрии / Затуловский Л.М., Кравецкий Д.Я., Аксельрод М.С., Кортов В.С., Мильман И.И., Готлиб В.И., Бичев В.Р., Шварц К.К. (СССР). №4073772.31-25. Заявл. 19.06.86. - 1987.] Дозиметрические свойства α-Al2O3 определяются высокой концентрацией кислородных вакансий, что достигается выращиванием кристаллов в восстановительной обстановке в присутсвии графита. Детекторы ТЛД-500K, созданные на основе α-Al2O3:С, обладают высокой чувствительностью, широким диапазоном измеряемых доз излучения и применяются для мониторинга радиационного загрязнения окружающей среды и территории АЭС. Интегральная чувствительность детекторов ТЛД-500K зависит от скорости нагрева при считывании, что является одним из недостатков детектора. Также детекторы ТЛД-500K характеризуются существенной зависимостью чувствительности от энергии фотонного излучения, светочувствительны.

Наиболее широко используемыми в настоящее время являются материалы на основе фторида лития, LiF:Mg,Ti ТЛД-100, США (TLD-100™ Thermoluminescent Dosimetry Material - https://www.thermofisher.com/order/catalog/product/SNO10106). Считается, что определяющую роль в механизме термолюминесценции фторида лития играют примесно-вакансионные комплексы, образованные собственными дефектами кристалла и иона активатора. Наибольшей чувствительностью из всех известных к настоящему времени ТЛ дозиметров на основе кристаллов LiF характеризуются дозиметры ТЛД-100Н (США) на основе поликристаллического LiF:Mg,Cu,P [Moscovitch М. Radiat. Prot. Dosim. 1999. V. 85. (1-4). P. 49-56; Freire, L. et al Radiat. Meas. 2008. 43(2-6), 646-650.]. Высокую чувствительность детекторов LiF:Mg,Cu,P, более чем в 20 раз превышающую чувствительность детекторов LiF:Mg,Ti, связывают с присутствием ионов одновалентной меди, способствующих реализации прямых переходов при рекомбинации. Коммерческие детекторы LiF:Mg,Ti и LiF:Mg,Cu,P представляют собой спрессованную поликристаллическую таблетку и, как следствие, характеризуются высоким уровнем хемилюминесцентного сигнала, ограничивающим их использование при измерении малых доз [ М. et al. Radiat. Prot. Dosim. 2006. V. 121(2). P. 195 - 201].

Технология получения монокристаллических детекторов ДТГ-4 на основе кристаллов LiF: Mg, Ti, соответствующих по своим параметрам стандартному ТЛД-100 (США), была разработана в Институте геохимии им. А.П. Виноградова СО РАН (диаметр детекторов 5 мм, толщина 1 мм) [Непомнящих А.И. и др. Атомная энергия, (1985) 58(4), 257-259.]. Оказалось, что выращивание кристаллов LiF:Cu+ методом Чохральского сопряжено с определенными трудностями, связанными с необходимостью специальной подготовки шихты для введения меди в расплав в одовалентном состоянии в виде CuCl, выращиванием кристаллов в условиях инертной атмосферы для предотвращения окисления меди до двухвалентного состояния [Шалаев А.А. и др. Известия Российской академии наук. Серия физическая. 2015. Т. 79 (2). С. 287-287]. Авторы отмечают, что вхождение меди в одновалентном состоянии в LiF затруднено, вследствие существенно большего радиуса Cu+ (0.96 ) по отнощению к радиусу лития (0.68 ), в то время как ионы двухвалентной меди имеют меньший радиус Cu2+ (0.72 ) и легче встраиваются в решетку. Ионы меди нестабильны в одновалентном состоянии и активно окисляются до двухвалентного состояния или восстанавливаются до металлического. Общим недостатком детекторов на основе LiF является недостаточная чувствительность при измерении фоновых доз, сложная форма кривой термовысвечивания.

Основным приемом для формирования требуемых термолюминесцентных свойств материалов является создание дефектов, собственных или примесных, в кристаллической структуре. Уникальность объекта настоящего патента, - фторидоборатов с «антицеолитной» структурой, открытых коллективом авторов изобретения, - заключается в способности каркаса структуры [Ва12(ВО3)6]6+ вмещать различные анионные группы [(Li, Na)F4]3-, [MnF6]4-, [Cu2+F6]4-, [Cu2+(OH)6]4-, [Cu+F4]3- и др., что открывает возможность направленного синтеза функциональных материалов с заданными свойствами [Rashchenko S.V. et. al J.Alloys Compd. 2017. V.694. P. 1196-1200; Bekker Т. B. et. al Inorg.Chem. 2017. V. 56 (9). P. 5411-5419; Bekker Т. B. et. al. J.Am.Ceram Soc. 2018. V. 101 (1). P. 450-457; Solntsev V. P et. al J.Phys.Chem. C. 2019. V. 123. P. 4469-4474; Bekker T. et. al Cryst.Growth Des. 2020. V. 20 (6). P. 4100-4107; Bekker Т. B. et. al Inorg. Chem. 2020. V. 59 (18). P. 13598-13606; патент RU2689596, опубл. 28.05.2019, С30В29/04]. При этом дефектность кристалла (присутствие электронных и дырочных центров, экситонов) определяется степенью упаковки каркаса анионными группами и является ключом для направленного изменения оптических и люминесцентных свойств путем изменения размера, заряда и атомной симметрии анионных групп.

Наши дальнейшие исследования показали возможность вхождения меди в кристаллы Ba12(BO3)6[BO3][LiF4]:Cu, выращиваемые из высокотемпературного раствора, одновременно в одно- и двухвалентном состоянии в условиях воздушной атмосферы, при введении меди в раствор в двухвалентноми состоянии в виде оксида меди CuO. При этом создаются устойчивые центры захвата (Cu2+) и люминесценции (Cu+).

В известном способе авторы изобретения [Bekker Т. et. al Cryst. Growth Des. 2020. V. 20 (6). P. 4100-4107] проводили рост кристаллов Ba12(BO3)6[BO3][LiF4]:Cu из высокотемпературного раствора с соотношением компонентов BaO:BaF2:B2O3:Li2O = 24:32:22:20 (мол. %), содержащего 0.32 вес. % меди. Температура ликвидуса для данного состава 753 °С. Скорость снижения температуры после касания поверхности высокотемпературного раствора затравкой или платиновой петлей при температуре ликвидуса составляла 2 °С/сут. Методом оптической, люминесцентной спектроскопии и электронного парамагнитного резонанса установлено, что в структуре создаются устойчивые центры захвата на основе ионов двухвалентной меди (Cu2+) и люминесценции на основе ионов одновалентной меди (Cu+). Установлено, что двухвалетная медь входит в каналы структуры в виде комплексов [Cu2+(ОН)6]4-, одновалентная медь - в виде комплексов [Cu+F4]3-, [Cu+(OH)4]3-. Положение максимумов пиков термостимулированной люминесценции составляет 343 и 420 K.

Техническая проблема, решаемая изобретением, - в необходимости расширения арсенала монокристаллических термолюминесцентных материалов с устойчивыми центрами захвата на основе ионов двухвалентной меди и дырочных центров на кислороде а также излучательной рекомбинации на основе ионов одновалентной меди.

Технический результат достигается созданием фторидобората с «антицеолитной» структурой с общей формулой Ba12(BO3)6[BO3][LiF4]:Cu,Sr в виде каркаса [(Ba,Sr)12(ВО3)6]6+, сложенного чередующимися слоями АВАВ вдоль направления кристаллографической оси Z, при этом А-слои «антицеолитной» структуры включают гостевые (ВО3)3- и (F2)2- группы; В-слои включают гостевые анионные группы [LiF4]3-, [(Cu,Sr)2+(OH)6]4-, [Cu+F/(OH)4]3-, содержащего одновременно ионы меди и стронция, что позволяет смещать положение основного дозиметрического пика в более высокотемпературную область (437 K для Ba12(BO3)6[BO3][LiF4]:Cu,Sr, 421 K для Ва12(ВО3)6[ВО3][LiF4]:Cu) и увеличивать температурный интервал между пиками термолюминесценции (103 градуса для Ва12(ВО3)6[ВО3][LiF4]:Cu,Sr, 77 градусов для Ва12(ВО3)6[ВО3][LiF4]:Cu). Смещение в высокотемпературную область и увеличение температурного интервала между пиками важно для устойчивого хранения и считывания дозиметрической информации.

Другим важным преимуществом кристаллов является их химическая, физическая и радиационная стойкость.

Известно, что вхождение стронция в структуру соединений стимулирует образование F-центров и стабилизирует дырочные центры при комнатной температуре [М. Batentschuk, P. Hackenschmied, A. Winnacker, М. Moll, and R. Fasbender, "Optimization of Mixed Storage Phosphors of the Type (Ba,Sr)F1+xBr1-x:Eu for Digital X-Ray Radiography," MRS Online Proc. Libr., vol. 560, no. 1, pp. 27-32, Dec. 1999, doi: 10.1557/PROC-560-27; P. Hackenschmied, H. Li, E. Epelbaum, R. Fasbender, M. Batentschuk, and A. Winnacker, "Energy transfer in Ba1-xSrxFBr:Eu storage phosphors as a function of Sr and Eu concentration," Radiat. Meas., vol. 33, no. 5, pp.669-674, Oct. 2001, doi: 10.1016/S1350-4487(01)00081-6].

На фиг. 1 представлен каркас [(Ba, Sr)12(ВО3)6]6+ в проекции по оси с (выделен один из структурных каналов); каркас [(Ва, Sr)12(ВО3)6]6+ в проекции вдоль оси b (последовательность «слоев» с параллельным (тип В) и наклонным (тип А) расположением треугольников (ВО3)3-); фрагмент структурного канала, населенный неупорядоченными анионными группами [ВО3]3- and [LiF4]3

На фиг. 2 - спектр пропускания пластинки толщиной 1.2 мм, вырезанной из кристалла Ва12(ВО3)6[ВО3][LiF4]:Cu,Sr. Спектр записан при температуре 300 K. Кристалл выращен из состава, указанного в примере.

На фиг. 3 - спектры фотолюминесценции пластинки толщиной 1.2 мм. вырезанной из кристалла Ва12(ВО3)6[ВО3][LiF4]:Cu при возбуждении длинами волн 325 нм (1) и 532 нм (1а). Спектры записаны при температуре 80 К.

На фиг. 4 - спектры электронного парамагнитного резонанса ионов двухвалетной меди кристалла Ва12(ВО3)6[ВО3][LiF4]:Cu,Sr, выращенного из состава 1 Таблицы 1, записанные при 300 K, Н⎟⎟[001]. Напряженность магнитного поля Н приведена в гауссах.

На фиг. 5 - спектры термостимулированной люминесценции кристаллов Ва12(ВО3)6[ВО3][LiF4]:Cu, Sr и Ва12(ВО3)6[BO3][LiF4]:Cu после облучения в течение 10 минут рентгеновским излучением (вольфрамовый антикатод), выращенных из состава (1), Таблица 1 и состава (3), Таблица 1, соответственно. Спектры записаны при температуре 300 K.

Расшифровка структуры кристаллов, солегированных медью и стронцием, Ва12(ВО3)6[ВО3][LiF4]:Cu,Sr, показала, что они кристаллизуются в пространственной группе P42/mbc, (а=13.5174 (3) , с=14.9399 (3) , V=2729.82 (10)3) (Фиг. 1). Ионы меди входят в структуру в позицию лития в тетраэдрическом (Cu+) и октаэдрическом (Cu2+) окружении. Концентрация стронция и меди слишком мала для точного определения позиций методом рентгеноструктурного анализа. Косвенным подтверждением вхождения стронция в каркас структуры является уменьшение параметров и объема элементарной ячейки кристалла Ва12(ВО3)6[ВО3][LiF4]:Cu,Sr по сравнению с кристаллом Ba12(BO3)6[BO3][LiF4]:Cu (а = 13.5387(2) , с = 14.9516(3) , V = 2740.57 (8) 3). Стронций Sr2+ (1.20 ) частично замещает барий Ва2+ (1.38 ) в каркасе [(Ва,Sr)12(BO3)6]6+в соответствии со схемой Ва2+→Sr2+. Также строний может частично замещать ионы двухвалентной меди в каналах структуры с образованием комплексов [Sr2+(OH)6]4-.

Содержание меди - 0.32 вес. %, содержание стронция - 0.4-2 вес. %. в исходном высокотемпературном растворе, содержащем BaO:BaF2:B2O3:Li2O = 25:25:35:15 (мол. %).

Решение технической проблемы изобретения реализовано на примере материала Ва12(ВО3)6[BO3][LiF4] легированного ионами меди и стронция, синтез которого обеспечивает возможность направленного изменения термолюминесцентных свойств, а именно, смещение основного дозиметрического пика в более высокотемпературную область и увеличение температурного интервала между пиками термолюминесценции.

Пример получения фторидоборатов Ba12(BO3)6[BO3][LiF4]:Cu,Sr с термолюминесцентными свойствами.

Кристаллы с соодержанием меди в исходном высокотемпературном расплаве от 0.32 вес. %, вводимой в раствор в виде оксида меди CuO и стронция от 0.40 вес. %, вводимого в раствор в виде карбоната стронция SrCO3, выращивают из состава с соотношением BaO:BaF2:B2O3:Li2O = 25:25:35:15 (мол. %), методом Киропулоса на платиновую петлю или на затравку, ориентированную вдоль кристаллографической оси z. Кристаллы выращивали из раствор-расплава, массой 40 г, диаметр тигля 40 мм, максимальная температура нагревания раствор-расплава составила 835 °С. Температура ликвидуса для данного состава 817 °С. Скорость снижения температуры после касания поверхности высокотемпературного раствора затравкой или платиновой петлей при температуре ликвидуса составляла 2 °С/сут. Полученные кристаллы имеют светло-розовый оттенок. В спектре пропускания присутствует полоса поглощения в области 250-320 нм с максимумом около 275 нм, обусловленная ионами Cu+, слабая широкая полоса в области 400-700 нм, обусловленная ионами Cu2+ и собственными дефектами структуры (фиг. 2). В спектре фотолюминесценции при возбуждении 325 нм наблюдается интенсивный пик с максимумом около 412 нм, обусловленный ионами одновалентной меди, а также широкая интенсивная полоса с максимумом около 545 нм, обусловленная ионами двухвалетной меди и собственными дефектами структуры (фиг. 3, кривая 1). При возбуждении 532 нм в спектре фотолюминесценции наблюдается широкая полоса с максимумом около 590 нм (фиг. 3, кривая 1а), обусловленная ионами двухвалентной меди и собственными дефектами структуры. Присутствие меди в двухваленном состоянии подтверждено также методом электронного парамагнитного резонанса. Установлено, что ионы двухвалентной меди присутствуют в структуре в виде комплексов [Cu2+(ОН)6]4- (фиг. 3). На спектрах термостимулированной люминесценции присутствуют два пика термовысвечивания с максимумами около 330 и 433 K, соответственно (фиг. 5, кривая 1). Для сравнения на фиг. 5 представлена кривая термолюминесценции кристалла Ва12(ВО3)6[ВО3][LiF4]:Cu, выращенного из состава (3), Таблица 1.

В Таблице 1 представлен пример состава исходных высокотемпературных растворов для выращивания кристаллов Ва12(ВО3)6[ВО3][LiF4] легированных ионами меди и стронция.

С применением методов оптической, люминесцентной спектроскопии и электронного парамагнитного резонанса установлено, что в структуре создаются устойчивые центры захвата (Cu2+) и люминесценции (Cu+). Примесь стронция, вводимого в исходный высокотемпературный раствор в виде карбоната стронция, обуславливает возникновение более глубоких локализованных энергетических уровней в кристаллах Ba12(BO3)6[BO3][LiF4]:Cu,Sr и, соответственно, смещение основного дозиметрического пика в более высокотемпературную область. Интенсивность спектров ЭПР и оптического поглощения кристаллов Ba12(BO3)6[BO3][LiF4]:Cu,Sr практически не меняется после отжига при ~ 200 °С в течение 10 минут (стандартный режим). Другим важным преимуществом кристаллов является их химическая, физическая и радиационная стойкость.

Изобретение не ограничивается приведенными примерами и включает все модификации, эквиваленты и альтернативы в пределах сущности и объема изобретения.

Монокристаллический материал для твердотельной дозиметрии - фторидоборат с «антицеолитной» структурой, характеризующийся общей формулой Ba(BO)[BO][LiF]:Cu,Sr в виде каркаса [(Ba,Sr)(ВО)], сложенного чередующимися слоями АВАВ вдоль направления кристаллографической оси Z, при этом А-слои «антицеолитной» структуры включают гостевые (ВО) и (F) группы, В-слои включают гостевые анионные группы [LiF], [(Cu,Sr)(OH)], [CuF/(OH)4], содержащий одновременно ионы меди и стронция, обеспечивающие смещение положения основного дозиметрического пика в более высокотемпературную область до 437 K.
Источник поступления информации: Роспатент

Showing 31-40 of 59 items.
30.05.2019
№219.017.6b8c

Способ гидрооблагораживания триглицеридов жирных кислот в смеси с нефтяными фракциями

Изобретение относится к способу гидрооблагораживания предварительно обработанных триглицеридов жирных кислот (ТЖК) и прямогонной дизельной фракции при повышенной температуре и давлении водорода на сульфидных катализаторах MoS/AlO и NiMoS/AlO в две стадии, на первой из которых проводят...
Тип: Изобретение
Номер охранного документа: 0002689416
Дата охранного документа: 28.05.2019
22.06.2019
№219.017.8e0d

Комбинированный модуль раскрытия солнечных панелей и антенн наноспутника класса cubesat

Изобретение относится к бортовым системам малого космического аппарата. Каркас модуля наноспутника формируют направляющие (1), связующие планки (6) и планки (7) системы раскрытия. На выдвижных панелях (3), размещенных в пазах направляющих (1), установлены отсеки (8) для скрученных антенн (9) из...
Тип: Изобретение
Номер охранного документа: 0002692014
Дата охранного документа: 19.06.2019
25.07.2019
№219.017.b909

Устройство для создания периодических структур показателя преломления внутри прозрачных материалов

Изобретение относится к области оптического приборостроения и может найти применение для изготовления волоконных брэгговских решеток, длиннопериодных решеток показателя преломления. Устройство состоит из оптически последовательно связанных источника фемтосекундного лазерного излучения,...
Тип: Изобретение
Номер охранного документа: 0002695286
Дата охранного документа: 22.07.2019
23.08.2019
№219.017.c237

Способ измерения профиля торца оптического волокна возбуждением аксиальных мод шепчущей галереи и расстояния от точки возбуждения до торца (варианты)

Изобретение относится к области измерения и контроля качества оптических волноводов. Способ измерения профиля торца оптического волокна возбуждением аксиальных мод шепчущей галереи и расстояния от точки возбуждения до торца состоит в следующем. В качестве источника пробного излучения, в...
Тип: Изобретение
Номер охранного документа: 0002697921
Дата охранного документа: 21.08.2019
06.09.2019
№219.017.c7d3

Устройство для определения длины распространения поверхностной электромагнитной волны инфракрасного диапазона за время одного импульса излучения

27 Изобретение относится к области исследования поверхности материалов оптическими методами и касается устройства для определения длины распространения поверхностной электромагнитной волны (ПЭВ) инфракрасного диапазона за время одного импульса излучения. Устройство содержит источник излучения,...
Тип: Изобретение
Номер охранного документа: 0002699304
Дата охранного документа: 04.09.2019
24.10.2019
№219.017.d9a0

Способ неразрушающего контроля качества приповерхностного слоя оптических материалов

Изобретение относится к производству высококачественных оптических приборов, в частности к контролю качества обрабатываемых поверхностей оптических материалов как аморфных, так и монокристаллических. Предложен способ оперативного неразрушающего контроля качества приповерхностного слоя...
Тип: Изобретение
Номер охранного документа: 0002703830
Дата охранного документа: 22.10.2019
19.11.2019
№219.017.e3ba

Способ приготовления катализатора для процесса гидроочистки прямогонной дизельной фракции

Изобретение относится к способам приготовления катализатора для процесса гидроочистки прямогонной дизельной фракции. Способ приготовления катализатора NiMo/АlО для процесса гидроочистки прямогонной дизельной фракции содержит активный компонент, в состав которого входят окислы никеля,...
Тип: Изобретение
Номер охранного документа: 0002706335
Дата охранного документа: 18.11.2019
29.11.2019
№219.017.e76b

Способ подготовки пылеугольного топлива для сжигания

Изобретение относится к теплоэнергетике, а именно к технологии сжигания углеводородных топлив, в том числе низкого качества. Описан способ подготовки пылеугольного топлива для сжигания, заключающийся в сушке и дроблении сырого угля, причем на этот уголь наносят окислы и/или гидроокислы железа в...
Тип: Изобретение
Номер охранного документа: 0002707276
Дата охранного документа: 26.11.2019
22.12.2019
№219.017.f0ca

Способ обнаружения объекта на выпуклой металлической поверхности за линией её горизонта

Изобретение относится к области зондирования удаленных объектов электромагнитным излучением и касается способа обнаружения объекта на выпуклой металлической поверхности за линией ее горизонта. Способ включает в себя генерацию на поверхности коллимированного пучка плазмон-поляритонов (ППП) с...
Тип: Изобретение
Номер охранного документа: 0002709705
Дата охранного документа: 19.12.2019
22.12.2019
№219.017.f0cb

Способ определения поглощенной дозы от тепловых нейтронов при бор-нейтронозахватной терапии злокачественных опухолей

Изобретение относится к ядерной медицине, а именно к нейроонкологии, и может быть использовано для определения поглощенной дозы от тепловых нейтронов при бор-нейтронозахватной терапии злокачественных опухолей. Вводят пациенту препарат адресной доставки бора. Облучают потоком эпитепловых...
Тип: Изобретение
Номер охранного документа: 0002709682
Дата охранного документа: 19.12.2019
Showing 11-15 of 15 items.
29.05.2019
№219.017.67b0

Устройство диагностирования межканальной неустойчивости в реакторе с водой под давлением

Изобретение относится к ядерной энергетике, в частности к области контроля теплоносителя в активной зоне реактора, и предназначено для контроля возникновения межканальной неустойчивости (регулярных пульсаций расхода) в активной зоне реактора в режиме реального времени и может быть использовано...
Тип: Изобретение
Номер охранного документа: 0002414759
Дата охранного документа: 20.03.2011
29.05.2019
№219.017.67ea

Способ диагностики возникновения межканальной неустойчивости в реакторе с водой под давлением

Изобретение относится к ядерной энергетике, в частности к области контроля теплоносителя в активной зоне реактора с водой под давлением, и предназначено для контроля возникновения межканальной неустойчивости (регулярных пульсаций расхода) в активной зоне в режиме реального времени. Регистрируют...
Тип: Изобретение
Номер охранного документа: 0002427937
Дата охранного документа: 27.08.2011
31.05.2019
№219.017.7137

Дихроичный материал - фторидоборат с "антицеолитной" структурой

Изобретение относится к материалам для поляризационных оптических устройств. Дихроичный материал представляет собой фторидоборат с «антицеолитной» структурой с общей формулой ; при х=0, у=(0÷0.1) в виде каркаса [Ва(ВО)], сложенного чередующимися слоями (АВАВ) вдоль направления...
Тип: Изобретение
Номер охранного документа: 0002689596
Дата охранного документа: 28.05.2019
08.09.2019
№219.017.c941

Нелинейный монокристалл литиевых халькогенидов общей формулы ligainte и способ его получения

Изобретение относится к монокристаллам литиевых халькогенидов, предназначенных к применению в нелинейной оптике для реализации перестройки лазерного излучения видимого и ближнего ИК-диапазона в средний ИК-диапазон. Получен нелинейный монокристалл литиевых халькогенидов общей формулы LiGaInTe,...
Тип: Изобретение
Номер охранного документа: 0002699639
Дата охранного документа: 06.09.2019
15.05.2023
№223.018.5b43

Нелинейный монокристалл литиевых халькогенидов и способ его получения

Изобретение относится к кристаллам литиевых халькогенидов для нелинейной оптики. Нелинейный монокристалл литиевых халькогенидов общей формулы LiAgGaSe, где х принимает любое значение от 0,01 до 0,98 с соответствующим изменением пространственной группы от тетрагональной I2d до ромбической Pna2...
Тип: Изобретение
Номер охранного документа: 0002763463
Дата охранного документа: 29.12.2021
+ добавить свой РИД