×
15.05.2023
223.018.5b43

Результат интеллектуальной деятельности: Нелинейный монокристалл литиевых халькогенидов и способ его получения

Вид РИД

Изобретение

Аннотация: Изобретение относится к кристаллам литиевых халькогенидов для нелинейной оптики. Нелинейный монокристалл литиевых халькогенидов общей формулы LiAgGaSe, где х принимает любое значение от 0,01 до 0,98 с соответствующим изменением пространственной группы от тетрагональной I2d до ромбической Pna2 (при х=0,98), параметры элементарной ячейки 5,9910,02, нелинейным коэффициентом 9,9-39,0 пм/В, порогом оптического разрушения 15-90 МВт/см при длительности импульса 6 нс, частоте повторения 100 Гц, длине волны 1,064 мкм. Способ получения монокристалла LiAgGaSe, где х принимает любое значение от 0,01 до 0,98, состоит в том, что предварительно синтезируют соединения LiAgGaSe из элементарных компонентов Ag, Se, Ga (4N) и Li (2N) в условиях обеспечения стехиометрического соотношения компонентов, затем выращивают монокристалл методом Бриджмена в вакуумированной ампуле, установленной в печи, при скорости выращивания от 5 до 10 мм/сут и среднем значении аксиального температурного градиента от 10 до 20°С/см и охлаждают печь при комнатной температуре. Полученные кристаллы прозрачны в широком интервале длин волн и позволяют реализовать перестройку лазерного излучения видимого и ближнего ИК-диапазона в средний ИК-диапазон. 3 ил., 1 табл., 3 пр.

Изобретение относится к кристаллам литиевых халькогенидов, предназначенных к применению в нелинейной оптике. Кристаллы прозрачны в широком интервале длин волн и позволяют реализовать перестройку лазерного излучения видимого и ближнего ИК-диапазона в средний РЖ-диапазон.

Кристаллы халькогенидов являются перспективными нелинейно-оптическими материалами для среднего инфракрасного (ИК) диапазона. Они необходимы для создания эффективных широкоперестраиваемых лазерных систем, которые используются для дистанционной связи, мониторинга и зондирования окружающей среды, визуализации органических тканей и многих других применений. Эффективный нелинейный ИК кристалл должен обладать комплексом характеристик: высокая оптическая прозрачность в широком диапазоне, особенно в двух атмосферных окнах, охватывающих 3-5 мкм и 8-13 мкм; эффективная генерация второй гармоники (ГВГ) с коэффициентами dij превышающими значения для AgGaS2 (d36=13 пм/В); высокий порог лазерного повреждения для получения лазера высокой мощности; умеренное двулучепреломление Δn (0.03-0.10); технологичность процессов выращивания кристаллов и их физико-химическая стабильность.

Получение материала, сочетающего все перечисленные условия, остается сложной и актуальной задачей. Так, эффективность ГВГ обычно обратно пропорциональна оптической стойкости, поскольку увеличение dij как правило сопровождается уменьшением ширины запрещенной зоны Eg [1, 2]. Поэтому достижение оптимального баланса между указанными характеристиками является ключевым моментом для создания эффективного ИК кристалла. До настоящего времени основными коммерческими нелинейными ИК материалами остаются кристаллы структурного типа халькопирита: AgGaC2 (С=S, Se) и ZnGeP2, которые характеризуются высокими значениями dij (13, 39.5 и 75 и пм/В, соответственно) [3]. Тем не менее, края ИК-поглощения для AgGaS2 и ZnGeP2 составляют менее 13 мкм, что затрудняет генерацию лазерного излучения в области второго атмосферного окна (8-13 мкм). Кроме того, AgGaC2 (С=S, Se) имеет довольно низкую оптическую стойкость, все три указанных материала характеризуются значительным двухфотонным поглощением и поэтому не подходят для лазерных систем с высокой мощностью.

Было установлено, что замена катионов серебра литием в структурах AgGaC2 может существенно улучшить оптическую стойкость и оптимизировать двухфотонное поглощение [1, 3], однако кристаллы состава LiGaC2 имеют ряд недостатков, включая достаточно низкие значения dij (<10 пм/В) и относительно узкий диапазон прозрачности (например, ИК-край для LiGaSe2 - 13 мкм, тогда как для AgGaSe2 - 18 мкм). Авторы [2] исследовали соединение смешанного халькогенида LixAg2-xGa2S4. Результаты показали, что введение лития позволяет достичь значительного нелинейного эффекта при высоких значениях порога разрушения: для состава Li1.2Ag0.8Ga2S4 ширина запрещенной зоны равна 3.4 эВ, нелинейная восприимчивость в 1.1 раза больше, а оптическая стойкость в 8.6 раз выше по сравнению с AgGaS2 [2]. Селениды обладают более широким диапазоном прозрачности, поэтому при получении нового перспективного соединения в качестве аниона был выбран селен.

Известен способ получения монокристалла литиевых халькогенидов общей формулы LiGaxIn1-xTe2 (патент RU 2699639), который включает предварительный синтез соединения из элементарных компонентов в условиях обеспечения их стехиометрического соотношения и выращивание монокристалла модифицированным методом Бриджмена-Стокбаргера в вакуумированной ампуле при изменении соотношения температурных градиентов в расплаве и растущем кристалле. Этот способ наиболее близок к предлагаемому тем, что включает стадии синтеза и кристаллизации, однако условия осуществления обеих стадий для нового монокристалла являются предметом исследований и установления неизвестных параметров процесса, не следующих из уровня техники.

Задачей настоящего изобретения является создание нелинейного материала на базе твердых растворов LixAg1-xGaSe2, характеризующегося комплексом оптимальных характеристик нелинейно-оптического преобразователя: значительные нелинейные коэффициенты, высокая оптическая стойкость, умеренные значения двулучепреломления, широкий диапазон прозрачности.

Поставленная задача решена созданием нелинейного монокристалла литиевых халькогенидов общей формулы LixAg1-xGaSe2, где x принимает любое значение от 0.01 до 0.98.

Монокристаллы получали следующим образом:

Взвешивание и загрузку исходных элементарных веществ проводили в сухой камере, продуваемой чистым аргоном. Шихту для выращивания кристаллов получали методом пиросинтеза путем сплавления элементарных Ag, Se, Ga (4N) и Li (2N). Синтез проводили в кварцевом контейнере, внутреннюю поверхность которого графитизировали во избежание взаимодействия кварца с литием. Взвешенные в стехиометрическом соотношении компоненты помещали в контейнер, вакуумировали до 10-2 мм рт.ст. и герметично запаивали, затем помещали в горизонтальную двузонную печь так, чтобы Se находился в «холодной» зоне при Т=500°С, а все металлы в «горячей» зоне при Т=1000°С. Контейнер со скоростью 1 см/час перемещали из холодной зоны в горячую до тех пор, пока не заканчивался селен, после чего печь выключали и смесь охлаждали до комнатной температуры.

Кристаллы выращивали методом Бриджмена. Шихту загружали в графитизированную квацевую ампулу с коническим дном, вакуумировали до 10-2 мм рт.ст. и герметично запаивали. Ампулу устанавливали в вертикальную двузонную печь. Температура в горячей зоне составляла 900°С, в холодной -700°С. Температура плавления LixAg1-xGaSe2 по мере увеличения значения x варьируется от 850°С [4] до 890°С [5]. В печи в точке плавления температурный градиент составлял от 10 до 20°/cм. Ампулу перемещали из горячей зоны в холодную со скоростью 5-10 мм/сутки, по окончании кристаллизации печь выключали и охлаждали до комнатной температуры. Полученную монокристаллическую булю перекристаллизовывали повторно. В результате получали прозрачный слиток длиной до 35 мм и диаметром до 25 мм.

Полученный халькогенидный монокристалл имеет формулу LixAg1-xGaSe2, где х принимает любое значение от 0.01 до 0.98 с соответствующим изменением пространственной группы от тетрагональной до ромбической Pna21 (при x=0.98), параметры элементарной ячейки 5.99<a<6.842 , 5.99<b<8.251 , 10.884>с>6.549 , объем 390.584>V>369.711

Монокристалл состава LixAg1-xGaSe2 представляет собой ряд твердых растворов тетрагональной модификации при x от 0.01 до 0.98 и характеризуется оптимальным сочетанием функциональных параметров: при x=0.5 диапазон прозрачности составляет от 0.57 до 19.6 микрон, ширина запрещенной зоны равна 2.365 эВ при 300 К, рассчитанное значение двулучепреломления Δn>0.02, нелинейный коэффициент оценен методом Куртца-Перри - 26.0 пм/В. Значения порога оптического разрушения в 5 раз превышают соответствующее значение для AgGaSe2 при длительности импульса 6 нc (длина волны 1.053 мкм, частота повторения 100 Гц), при 0.5 нc (длина волны 1.064 мкм, частота повторения 1 кГц) эта величина составляет 1 ГВт/см2.

Результаты показывают, что частичное замещение ионов Li+ на Ag+ позволяет получить материал, превосходящий по совокупности параметров тройные аналоги AgGaSe2, LiGaSe2: нелинейный коэффициент, значительно превышающий показатель литиевого кристалла, более длинноволновый край поглощения - до 19 мкм, более высокую оптическую стойкость.

На фиг. 1 представлен выращенный слиток LixAg1-xGaSe2 (а), образец в проходящем поляризованном свете (b), призма для исследований дисперсионных характеристик (с).

На фиг. 2 приведена кристаллическая структура LixAg1-xGaSe2.

На фиг. 3 представлены спектры пропускания кристаллов LixAg1-xGaSe2 при х=0.01; 0.5; 0.98 (а, кривые 1, 2 и 3, соответственно) и построение по Тауцу для прямых межзонных электронных переходов при 300 (1) и 80 (2) К для Li0.5Ag0.5GaSe2 (b).

Примеры конкретного выполнения.

Пример 1. Для получения монокристаллического образца Li0.98Ag0.02GaSe2 (х=0.98) используют шихту, полученную описанным выше методом из исходных элементарных компонентов: литий, серебро, галлий, и селен высокой чистоты, взятых в стехиометрическом соотношении.

Кристаллы выращивают методом Бриджмена (вертикальный вариант). Температура плавления равна 890°С. Температурный градиент в зоне роста составляет около 20°/см. В результате получают слитки состава Li0.98Ag0.02GaSe2 массой до 30 г. Кристаллы относятся к ромбической симметрии с пространственной группой Pna21, параметры элементарной ячейки а=6.842 , b=8.251 , с=6.549 , V=369.711 Диапазон прозрачности составляет от 0.37 до 13.2 микрон, ширина запрещенной зоны 3.34 эВ при 300 К, рассчитанное значение двулучепреломления Δn>0.05, нелинейный коэффициент равен 9.9 пм/В (2.3 мкм), порог оптического разрушения составляет 90 МВт/см2 (длительность импульса 6 не, частота повторения 100 Гц, длина волны 1.064 мкм).

Пример 2. Для получения образца Li0.5Ag0.5GaSe2 (х=0.5) массой 30 г используют исходные элементарные компоненты: литий, серебро, галлий и селен высокой чистоты, взятые в стехиометрическом соотношении. Условия /получения, как в примере 1. Температура плавления составляет 868°С. Температурный градиент в зоне роста равен около 15°/см. Структура кристаллов - тетрагональная с параметрами решетки: а=5.929 с=10.794, V=379.50(4) Диапазон прозрачности от 0.57 до 19.6 мкм, ширина запрещенной зоны 2.365 эВ при 300 К, рассчитанные значения двулучепреломления Δn>0.02; нелинейный коэффициент измерен методом Куртца-Перри 26.0 пм/В. Значение порога оптического разрушения составляет 70 МВт/см2 (6 нc, 100 Гц, 1.064 мкм).

Пример 3. Для получения образца Li0.01Ag0.99GaSe2 (x=0.01) массой до 30 г используют исходные элементарные компоненты: литий, серебро, галлий и селен высокой чистоты, взятые в стехиометрическом соотношении. Условия получения, как в примере 1. Температура плавления составляет 850°С. Температурный градиент в зоне роста равен около 10%м. Выращенные кристаллы описываются тетрагональной симметрией (пространственная группа ), параметры ячейки: а=5.991 с=10.884 V=390.584 Прозрачность от 0.76 до 18.0 мкм, ширина запрещенной зоны 1.8 эВ при 300 К, рассчитанные значения двулучепреломления Δn>0.04; нелинейный коэффициент составляет 39.0 пм/В (1.06 мкм), величина порога оптического разрушения равна 15 МВт/см2 (6 нc, 100 Гц, 1.064 мкм).

В таблице 1 приведены основные параметры и физические характеристики полученных монокристаллов.

Список использованной литературы:

[1] L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V. Petrov, J.-J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin. J. Smirnova, Cryst. Res. Technol. (2003), 38, 379.

[2] H.-M. Zhou, L. Xiong, L. Chen, L. -M. Wu, Angew. Chem., Int. Ed. (2019), 58, 9979.

[3] D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, Springer, New York, NY 2005.

[4] A. Yelisseyev, P. Krinitsin, L. Isaenko, J. of Crystal Growth (2014), 387, 41-47.

[5] L.I. Isaenko, A.P. Yelisseyev. Semiconductor Science and Technology (2016), 31, 123001.

Источник поступления информации: Роспатент

Showing 1-10 of 59 items.
27.08.2016
№216.015.4d53

Способ создания термозависимой угольной пленочной оболочки

Изобретение относится к способу создания термозависимой угольной пленочной оболочки путем нанесения жидкой фазы на поверхности угля, при этом в качестве жидкой фазы используют «натриевое жидкое стекло» с силикатным модулем более 3,5, пленку наносят толщиной не более 250 мкм, после чего...
Тип: Изобретение
Номер охранного документа: 0002595344
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.89d7

Синхронно-накачиваемый рамановский полностью волоконный импульсный лазер на основе кварцевого оптоволокна, легированного оксидом фосфора

Изобретение относится к лазерной технике. Синхронно-накачиваемый рамановский полностью волоконный импульсный лазер на основе кварцевого оптоволокна, легированного оксидом фосфора, содержит линейный резонатор, образованный двумя брэгговскими решетками, одна брэгговская решетка резонатора...
Тип: Изобретение
Номер охранного документа: 0002602490
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.bf8f

Лекарственное средство, обладающее противовоспалительной активностью

Изобретение относится к лекарственному средству, обладающему противовоспалительной активностью, содержащему в качестве активного ингредиента N-(2-гидроксиэтил)-3β-гидроксиурс-12-ен-28-амид формулы Технический результат: получено новое эффективное лекарственное средство, обладающее...
Тип: Изобретение
Номер охранного документа: 0002617123
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c61f

Волоконный импульсный лазер с нелинейным петлевым зеркалом

Изобретение относится к лазерной технике. Волоконный лазер содержит источник накачки и резонатор, выполненный полностью из элементов, сохраняющих поляризацию, и состоящий из двух волоконных петель - пассивной и активной, соединяющихся посредством сплавного волоконного четырехпортового...
Тип: Изобретение
Номер охранного документа: 0002618605
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.d03a

Способ управления обтеканием сверхзвукового летательного аппарата

Изобретение относится к маневрирующим в атмосфере сверхзвуковым летательным аппаратам (ЛА). Управление обтеканием основывается на изменении направления набегающего воздушного потока со встречного на радиальное истечение относительно ЛА с использованием нагреваемой по команде газопроницаемой...
Тип: Изобретение
Номер охранного документа: 0002621195
Дата охранного документа: 01.06.2017
26.08.2017
№217.015.e196

Способ управления спектром пучка широкополосного терагерцевого излучения

Изобретение относится к области оптического приборостроения и касается способа управления спектром пучка широкополосного терагерцевого излучения. Способ включает в себя размещение на пути пучка излучения селективно поглощающего фильтра в виде поверхности проводящей пластины, придание излучению...
Тип: Изобретение
Номер охранного документа: 0002625635
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e199

Стенд для испытаний на ударные воздействия

Изобретение относится к испытательной технике, в частности к устройствам для испытаний на ударные воздействия различных приборов и оборудования. Стенд состоит из силового каркаса в виде прямоугольной рамы на ножках с продольными направляющими для установки через амортизаторы подпружиненной...
Тип: Изобретение
Номер охранного документа: 0002625639
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e19a

Устройство для промера распределения поля инфракрасной поверхностной электромагнитной волны над её треком

Изобретение относится к области исследования поверхности металлов и полупроводников и касается устройства для промера распределения поля инфракрасной поверхностной электромагнитной волны (ПЭВ) над ее треком. Устройство содержит источник монохроматического излучения, элемент преобразования...
Тип: Изобретение
Номер охранного документа: 0002625641
Дата охранного документа: 17.07.2017
29.12.2017
№217.015.f388

Способ приготовления металл-нанесенного катализатора для процесса фотокаталитического окисления монооксида углерода

Изобретение относится к области разработки способа получения катализатора на основе высокодисперсного диоксида титана с нанесенными наночастицами благородного металла, проявляющего активность под действием ультрафиолетового излучения в реакции фотокаталитического окисления монооксида углерода...
Тип: Изобретение
Номер охранного документа: 0002637120
Дата охранного документа: 30.11.2017
29.12.2017
№217.015.f5f2

Способ приготовления катализатора гидродеоксигенации алифатических кислородсодержащих соединений

Изобретение относится к способу получения катализатора для гидродеоксигенации органических кислородсодержащих соединений, а именно растительных масел, животных жиров, сложных эфиров жирных кислот, свободных жирных кислот, с образованием н-алканов - компонентов дизельного топлива. Способ...
Тип: Изобретение
Номер охранного документа: 0002637117
Дата охранного документа: 30.11.2017
Showing 1-10 of 10 items.
10.03.2016
№216.014.c0b4

Монокристаллический материал srmgf и способ его получения

Изобретение относится к области получения сегнетоэлектрических монокристаллов фторидов, применяемых в нелинейной оптике. Получен монокристаллический материал фторида SrMgF, обладающий способностью к преобразованию лазерного излучения в ВУФ/УФ области спектра от длины волны 0,122 мкм до 11,8...
Тип: Изобретение
Номер охранного документа: 0002576638
Дата охранного документа: 10.03.2016
19.01.2018
№218.016.0419

Кристаллический материал для регистрации рентгеновского излучения

Изобретение относится к технологии получения кристаллического материала, являющегося твердым раствором общей формулы ВаSr(ВО)F, где 0≤x≤1 и 0≤y≤0,5, пригодного для регистрации рентгеновского излучения. Кристаллический материал ВаSr(ВО)F имеет центры окраски, образованные под воздействием...
Тип: Изобретение
Номер охранного документа: 0002630511
Дата охранного документа: 11.09.2017
15.03.2019
№219.016.e07b

Способ получения композиционных оптических хемосенсорных пленок

Изобретение относится к нанотехнологиям, в частности к получению оптических структурированных хемосенсорных пленок на основе фотонно-кристаллической опаловой матрицы, которые могут найти применение при экспрессном анализе вредных примесей. Готовую пленку-матрицу с размером монодисперсных...
Тип: Изобретение
Номер охранного документа: 0002399584
Дата охранного документа: 20.09.2010
20.03.2019
№219.016.e509

Нелинейный монокристалл литиевых халькогенидов

Изобретение относится к кристаллам литиевых халькогенидов, предназначенных для применения в нелинейной оптике. Нелинейный монокристалл литиевых халькогенидов характеризуется формулой LiGaInSe, где х принимает любое значение больше 0,25 и меньше 0,75, имеет пространственную группу mm2...
Тип: Изобретение
Номер охранного документа: 0002344208
Дата охранного документа: 20.01.2009
20.03.2019
№219.016.e5f5

Инфракрасная лазерная матрица на основе кристаллов калия и рубидия пентобромплюмбита

Изобретение относится к получению и использованию новой инфракрасной лазерной матрицы для инфракрасной оптики. Предлагается инфракрасная лазерная матрица на основе кристаллов калия и рубидия пентобромплюмбита, которые описываются формулой КRbPbBr, где х изменяется в диапазоне 0,2≤х≤0,5....
Тип: Изобретение
Номер охранного документа: 0002354762
Дата охранного документа: 10.05.2009
04.04.2019
№219.016.fc62

Способ получения хемосенсорных пленок

Изобретение относится к способу получению структурированных хемосенсорных пленок на основе наночастиц кремнезема, модифицированного органическими растворителями, который включает получение золя сферических частиц кремнезема, модификацию полученного золя органическим красителем, нанесение...
Тип: Изобретение
Номер охранного документа: 0002370310
Дата охранного документа: 20.10.2009
17.04.2019
№219.017.15c1

Способ получения композиционной оптической хемосенсорной пленки

Изобретение относится к нанотехнологиям, в частности к получению водостойких и термостойких структурированных хемосенсорных пленок на основе фотонно-кристаллической опаловой матрицы, которые могут найти применение при экспрессном анализе вредных примесей в газообразных и жидких отходах. Способ...
Тип: Изобретение
Номер охранного документа: 0002399585
Дата охранного документа: 20.09.2010
31.05.2019
№219.017.7137

Дихроичный материал - фторидоборат с "антицеолитной" структурой

Изобретение относится к материалам для поляризационных оптических устройств. Дихроичный материал представляет собой фторидоборат с «антицеолитной» структурой с общей формулой ; при х=0, у=(0÷0.1) в виде каркаса [Ва(ВО)], сложенного чередующимися слоями (АВАВ) вдоль направления...
Тип: Изобретение
Номер охранного документа: 0002689596
Дата охранного документа: 28.05.2019
08.09.2019
№219.017.c941

Нелинейный монокристалл литиевых халькогенидов общей формулы ligainte и способ его получения

Изобретение относится к монокристаллам литиевых халькогенидов, предназначенных к применению в нелинейной оптике для реализации перестройки лазерного излучения видимого и ближнего ИК-диапазона в средний ИК-диапазон. Получен нелинейный монокристалл литиевых халькогенидов общей формулы LiGaInTe,...
Тип: Изобретение
Номер охранного документа: 0002699639
Дата охранного документа: 06.09.2019
17.06.2023
№223.018.811f

Монокристаллический материал для твердотельной дозиметрии

Изобретение относится к материалам для термодозиметрических устройств, которые могут быть использованы в качестве твердотельных термолюминесцентных детекторов ионизирующих излучений. Монокристаллический материал для твердотельной дозиметрии - фторидоборат с «антицеолитной» структурой -...
Тип: Изобретение
Номер охранного документа: 0002763462
Дата охранного документа: 29.12.2021
+ добавить свой РИД