×
01.06.2023
223.018.7486

Результат интеллектуальной деятельности: Способ получения керамического образца на основе β-трикальцийфосфата с использованием метода стереолитографии для восстановления костной ткани

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, в частности биокерамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Технический результат изобретения - получение керамических образцов на основе β-трикальцийфосфата с общей пористостью до 80%, размером пор 300-800 мкм с низкой температурой спекания. Смесь порошков β-ТКФ и 2-6 мас.% карбоната лития прокаливают при 400-700°С, измельчают и смешивают с фотополимером. Образцы печатают с использованием 3D принтера методом стереолитографии при воздействии ультрафиолетового излучения. Форма образцов керамики, пористость и размер пор задаются на стадии печати образцов. Напечатанный образец обжигают ступенчато с промежуточными выдержками. За счет применения добавки - карбоната лития - образцы спекаются при низкой температуре 850-900°С и имеют мелкокристаллическую структуру 0,8-1,0 мкм. 1 табл., 3 пр.

Композиционные материалы на основе β-трикальцийфосфата (β-ТКФ) с применением 3D печати методом лазерной стереолитографии (источник света - лазер) и проекционной микростереолитографии (источник света - экран, проектор) являются одними из наиболее перспективных в медицине для новых технологий регенерации костных тканей. Принцип получения образцов основан на полимеризации (затвердевании) фотополимера в 3D принтере под действием ультрафиолетового излучения. В настоящее время активно развиваются 3D технологии, основанные на возможности печати фотополимера, содержащего порошки оксида алюминия, диоксида циркония, трикальцийфосфата и других. После печати образцы подвергают обжигу, в процессе которого происходит удаление органической составляющей и достижение спеченного состояния, характеризующегося низкой открытой пористостью, высокой относительной плотностью, а также заданной печатью формой. Высокая биорезорбция материалов со структурой β-ТКФ и возможность получения пористых матриксов в результате применения 3D печати создает условия для быстрого восстановления костной ткани. Однако керамика на основе фосфатов кальция (β-ТКФ, гидроксиапатит) характеризуется высокой температурой спекания 1200-1350°С (Баринов С.М., Комлев В.С. Биокерамика на основе фосфатов кальция. - М.: Наука, 2005 - 204 с.), что может приводить к деформации образцов особенно сложной конфигурации. Это снижает процент выхода годных изделий и приводит к удорожанию готовой продукции. Получить спеченные образцы возможно также за счет отработки технологии спекания и применения добавок, повышающих термическую стойкость или способствующих снижению температуры спекания материалов.

Наиболее близким по техническому решению и достигаемому эффекту является способ получения 3D керамического образца на основе трикальцийфосфата, заключающийся в смешении порошка β-ТКФ со фотополимером [Schmidleithner, С., Malferrari, S., Palgrave, R.G., Bomze, D., Schwentenwein, M., & Kalaskar, D.M. Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration // Biomedical Materials. - 2019.]. Печать проводили с использованием 3D принтера при воздействии ультрафиолетового излучения. После печати образец помещали в термопечь, где в течение 96 часов проводили удаление органической составляющей и окончательный обжиг при 1200°С в течение 2 часов. Скорость нагрева варьировали между 0,17 и 0,52°С мин-1. Полученные керамические образцы имели пористость 0, 50 и 75%, размер пор около 400 мкм, относительная пористость 0,95%, размер кристаллов около 3,8 мкм. Недостатком данного способа является большая длительность и высокая температура обжига, что может привести к потере заданной формы керамических образцов.

Технический результат предлагаемого изобретения - снижение температуры обжига до 850-900°С керамического образца, получение образца с меньшим размером кристаллов 0,8-1,0 мкм, с пористостью до 80% и размерами пор до 800 мкм.

Технический результат достигается тем, что способ получения керамического образца на основе β-трикальцийфосфата с использованием метода стереолитографии для восстановления костной ткани, включающий операции: смешение порошка β-трикальцийфосфата с фотополимером, печать образца методом стереолитографии с использованием 3D принтера при воздействии ультрафиолетового облучения, обжиг образца для удаления органической составляющей и получения пористой или плотной структуры, отличается тем, что керамический образец получают в следующей последовательности операций: порошок β-ТКФ смешивают с добавкой карбоната лития в количестве 2-6 масс.%, полученную смесь прокаливают при температуре 400-700°С и измельчают до размера частиц менее 0,5 мкм, полученный порошок в количестве 20-70 масс.% смешивают с фотополимером и производят печать пористого или плотного образца при воздействии ультрафиолетового излучения с использованием 3D принтера методом стереолитографии, при этом размер пор и пористость закладывается при печати с учетом усадки образца в процессе последующего обжига, затем напечатанный образец обжигают по следующему температурному режиму: до 120-140°С - 1 час, до 230-250°С - 5 часов, выдержка при 240-250°С - 10 часов, до 300°С - 3 часа, до 850-900°С - 2 часа, выдержка - 2 часа при 850-900°С; в результате полученный керамический образец характеризуется следующими параметрами - средний размер кристаллов 0,8-1,0 мкм, пористость 0-80%, содержит крупные поры размером от 300 до 800 мкм.

Полученный керамический образец характеризуется более низкой температурой обжига по сравнению с прототипом - 850-900°С, менее длительным режимом обжига образцов - 23 часа, однородной мелкокристаллической структурой 0,8-1,0 мкм. Введение добавки карбоната лития, имеющей температуру плавления около 732°С, приводит к образованию низкотемпературного расплава в процессе обжига, что способствует снижению температуры спекания (получению высокой плотности), мелкокристаллической структуры. Введение добавки менее 2,0 масс. % по отношению к β-ТКФ, а также использование порошка размером более 0,5 мкм не позволяет получить спеченный образец при температуре 850-900°С и размером кристаллов 0,8-1,0 мкм. При содержании добавки более 6 масс. % может происходить деформация образца керамики при его обжиге. Уменьшение времени обжига, увеличение скорости нагрева образца, а также изменение температуры и времени выдержек при обжиге образца может привести к деформации и разрушению образца, а также к появлению дефектов - трещин, отслоений, раковин. При введении порошка в фотополимеры менее 30 масс. % напечатанный образец в процессе обжига сильно деформируется и частично разрушается. При содержании порошка более 70 масс. % качество печатаемого образца снижается или становится невозможной его печать вследствие повышения вязкости эмульсии (смесь фотополимера и порошка β-ТКФ). Выход за указанные температуры прокаливания порошков (400-700°С) приводит к снижению качества печати - уменьшается разрешение напечатанного образца, в том числе, становится невозможно печатать образец с порами размером менее 500 мкм.

Пример 1. В порошок β-ТКФ добавили при перемешивании карбонат лития в количестве 6 масс. %, затем порошок прокалили при температуре 400°С, затем измельчили в планетарной мельнице до размера частиц менее 0,5 мкм. Полученный порошок в количестве 30 масс. % смешали с фотополимером, поместили в 3D принтер и произвели печать образца при воздействии ультрафиолетового излучения с размерами пор 1 мм методом стереолитографии. После печати произвели обжиг образцов по режиму до 120-140°С - 1 час, до 230-250°С - 5 часов, выдержка при 240-250°С - 10 часов, до 300°С - 3 часа, до 850-900°С - 2 часа, выдержка - 2 часа при 850°С. В результате был получен керамический образец со средним размером кристаллов 0,8-0,9 мкм, пористостью 50%, размерами пор 800 мкм.

Пример 2. В порошок β-ТКФ добавили при перемешивании карбонат лития в количестве 5 масс. %, затем порошок прокалили при температуре 650°С, затем измельчили в планетарной мельнице до размера частиц менее 0,5 мкм. Полученный порошок в количестве 50 масс. % смешали с фотополимером, поместили в 3D принтер и произвели печать беспористого образца при воздействии ультрафиолетового излучения методом стереолитографии. После печати произвели обжиг образца по режиму до 120-140°С - 1 час, до 230-250°С - 5 часов, выдержка при 240-250°С - 10 часов, до 300°С - 3 часа, до 850-900°С - 2 часа, выдержка - 2 часа при 880°С. В результате был получен плотный керамический образец со средним размером кристаллов около 0,9 мкм, пористостью менее 0,05%, крупные поры отсутствуют.

Также были изготовлены другие образцы керамики в пределах заявленного способа, и определены их свойства в сравнении с прототипом. Полученные результаты сведены в таблицу 1, где температурные режимы обжига обозначены: 1 - до 120-140°С - 1 час, до 240°С - 5 часов, выдержка при 240-250°С - 10 часов, до 300°С - 3 часа, до 850-900°С - 2 часа, выдержка - 2 часа при 850-900°С.

2 - скорость нагрева варьировали между 0,17 и 0,52°С мин-1, общая продолжительность составляет 96 часов.

Способ получения керамического образца на основе β-трикальцийфосфата с использованием метода стереолитографии для восстановления костной ткани, включающий операции: смешение порошка β-трикальцийфосфата с фотополимером, печать образца с использованием 3D принтера при воздействии ультрафиолетового облучения, обжиг образца для удаления органической составляющей и получения пористой структуры, отличающийся тем, что керамический образец получают в следующей последовательности операций: порошок β-ТКФ смешивают с добавкой карбоната лития в количестве 2-6 масс. %, полученную смесь прокаливают при температуре 400-700°С и измельчают до размера частиц менее 0,5 мкм, полученный порошок в количестве 30-70 масс. % смешивают с фотополимером и производят печать пористых или плотных образцов при воздействии ультрафиолетового излучения с использованием 3D принтера методом стереолитографии, при этом размер пор и пористость закладывается при печати с учетом усадки образца в процессе последующего обжига, затем напечатанный образец обжигают по следующему температурному режиму: до 120-140°С - 1 час, до 230-250°С - 5 часов, выдержка при 240-250°С - 10 часов, до 300°С - 3 часа, до 850-900°С 2 часа, выдержка - 2 часа при 850-900°С.
Источник поступления информации: Роспатент

Showing 1-10 of 108 items.
20.06.2013
№216.012.4b44

Композиционный материал на основе кальцийфосфатного цемента для заполнения костных дефектов

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Композиционный материал выполнен на основе реакционно-твердеющей смеси порошков: трикальцийфосфата, содержащих частицы гидроксиапатита размером от 38 до 220 мкм....
Тип: Изобретение
Номер охранного документа: 0002484850
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4fa1

Пористый кальций-фосфатный цемент

Изобретение относится к медицине. Описан пористый кальций-фосфатный гидравлический цемент для восстановления костных тканей, содержащий порошок β-трикальцийфосфата, монокальцийфосфата моногидрата, затворяющую жидкость, представляющую собой 7-9%-ный водный раствор лимонной кислоты, а также...
Тип: Изобретение
Номер охранного документа: 0002485978
Дата охранного документа: 27.06.2013
10.10.2013
№216.012.732b

Способ термической обработки деформируемых магнитотвердых сплавов на основе системы железо-хром-кобальт

Изобретение относится к области металлургии, в частности к обработке магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности и т.д. Для повышения коэрцитивной силы изделий из...
Тип: Изобретение
Номер охранного документа: 0002495140
Дата охранного документа: 10.10.2013
27.12.2013
№216.012.8fe0

Брушитовый гидравлический цемент (варианты)

Изобретение относится к медицине. Описан брушитовый гидравлический цемент для восстановления костных тканей, содержащий порошок α-трикальцийфосфата и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, где цементный порошок содержит гранулы карбоната кальция...
Тип: Изобретение
Номер охранного документа: 0002502525
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.8fe1

Покрытие на имплант из титана и его сплавов и способ его приготовления

Изобретение относится к области медицины. Описано покрытие на имплант из титана и его сплавов, состоящее из двух слоев. Первый слой состоит из оксидов титана, в основном TiO, второй слой состоит из оксида алюминия гамма-модификации, общая толщина двухслойного покрытия составляет от 40 до 180...
Тип: Изобретение
Номер охранного документа: 0002502526
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9004

Способ приготовления катализатора для очистки отработавших газов двигателей внутреннего сгорания и катализатор, полученный этим способом

Изобретение относится к способам получения блочных катализаторов, катализаторам очистки отработавших газов (ОГ) двигателей внутреннего сгорания (ДВС). Описан способ приготовления катализатора для очистки ОГ ДВС, в котором для нанесения промежуточного покрытия и активной фазы используют водную...
Тип: Изобретение
Номер охранного документа: 0002502561
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9e48

Способ получения мезопористого наноразмерного порошка диоксида церия (варианты)

Изобретение относится к химической промышленности, к производству наноразмерных порошков оксидов металлов для мелкозернистой керамики широкого спектра. Способ получения порошка диоксида церия включает стадии: получение водного 0,05М раствора нитрата церия или ацетата церия, используя Се(NО)·6НO...
Тип: Изобретение
Номер охранного документа: 0002506228
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b16d

Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт

Изобретение относится к области металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности. Для повышения остаточной индукции сплав...
Тип: Изобретение
Номер охранного документа: 0002511136
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.b9ef

Способ переработки лопаритового концентрата

Изобретение относится к переработке лопаритового концентрата. Заявляемый способ пирометаллургической переработки лопаритового концентрата включает три этапа: восстановительный, плавильный и окислительный. Восстановительный этап включает углетермическое восстановление концентрата при...
Тип: Изобретение
Номер охранного документа: 0002513327
Дата охранного документа: 20.04.2014
20.05.2014
№216.012.c4fc

Высокоазотистая мартенситная никелевая сталь

Изобретение относится к области металлургии, а именно к высокопрочной мартенситной стали, используемой для изготовления высоконагруженных изделий криогенной техники. Сталь содержит следующие компоненты, в мас.%: углерод 0,02-0,06, хром 1,5-2,0, никель 8,5-10,5, азот 0,08-0,22, марганец 0,3-0,6,...
Тип: Изобретение
Номер охранного документа: 0002516187
Дата охранного документа: 20.05.2014
Showing 1-10 of 55 items.
20.02.2013
№216.012.26d5

Способ получения пористой керамики из гидроксиапатита, обладающей антимикробной активностью

Разработан способ получения пористой керамики из гидроксиапатита, обладающей антимикробной активностью, для использования в реконструктивно-пластической хирургии и стоматологии при замещении костных дефектов. Способ включает синтез цинк-, медь-, железо- или сереброзамещенного гидроксиапатита из...
Тип: Изобретение
Номер охранного документа: 0002475461
Дата охранного документа: 20.02.2013
20.05.2013
№216.012.3f9f

Способ изготовления пористых керамических изделий из β-трикальцийфосфата для медицинского применения

Изобретение относится к получению пористых β-трикальцийфосфатных керамических изделий, предназначенных для применения в качестве костных имплантатов. Заявленный способ изготовления заключается в проведении следующих стадий: предварительная термообработка гипсовых заготовок в течение 2,0-2,5...
Тип: Изобретение
Номер охранного документа: 0002481857
Дата охранного документа: 20.05.2013
20.06.2013
№216.012.4b44

Композиционный материал на основе кальцийфосфатного цемента для заполнения костных дефектов

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Композиционный материал выполнен на основе реакционно-твердеющей смеси порошков: трикальцийфосфата, содержащих частицы гидроксиапатита размером от 38 до 220 мкм....
Тип: Изобретение
Номер охранного документа: 0002484850
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4fa1

Пористый кальций-фосфатный цемент

Изобретение относится к медицине. Описан пористый кальций-фосфатный гидравлический цемент для восстановления костных тканей, содержащий порошок β-трикальцийфосфата, монокальцийфосфата моногидрата, затворяющую жидкость, представляющую собой 7-9%-ный водный раствор лимонной кислоты, а также...
Тип: Изобретение
Номер охранного документа: 0002485978
Дата охранного документа: 27.06.2013
27.09.2013
№216.012.6f09

Способ упрочнения пористой кальцийфосфатной керамики

Изобретение относится к композиционным материалам на основе кальцийфосфатной керамики с улучшенными прочностными характеристиками и может быть использовано для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Для получения...
Тип: Изобретение
Номер охранного документа: 0002494076
Дата охранного документа: 27.09.2013
27.12.2013
№216.012.8fe0

Брушитовый гидравлический цемент (варианты)

Изобретение относится к медицине. Описан брушитовый гидравлический цемент для восстановления костных тканей, содержащий порошок α-трикальцийфосфата и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, где цементный порошок содержит гранулы карбоната кальция...
Тип: Изобретение
Номер охранного документа: 0002502525
Дата охранного документа: 27.12.2013
20.07.2014
№216.012.dd7d

Способ получения конструкционной алюмооксидной керамики

Изобретение относится к технологии пористых керамических материалов конструкционного назначения и может быть использовано для изготовления изделий, сочетающих высокие показатели по пористости и прочности при невысокой теплопроводности (теплоизоляция, фильтры для очистки жидких и газовых сред,...
Тип: Изобретение
Номер охранного документа: 0002522487
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e143

Способ получения шихты для композиционного материала на основе карбоната кальция и гидроксиапатита и/или карбонатгидроксиапатита для восстановления костной ткани при реконструктивно-пластических операциях

Изобретение относится к способу получения шихты для композиционного материала на основе карбоната кальция - гидроксиапатита и/или карбонатгидроксиапатита для восстановления костной ткани при реконструктивно-пластических операциях. Заявленный способ включает получение шихты для спекания...
Тип: Изобретение
Номер охранного документа: 0002523453
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e5c8

Способ увеличения прочности цементов для медицины

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Описаны кальцийфосфатные цементные материалы, которые получают на основе порошков тетракальциевого фосфата и/или трикальцийфосфата. В качестве цементной жидкости...
Тип: Изобретение
Номер охранного документа: 0002524614
Дата охранного документа: 27.07.2014
20.02.2015
№216.013.2ae6

Способ получения пористого керамического матрикса на основе карбоната кальция для заполнения костных дефектов при реконструктивно-пластических операциях

Изобретение относится к области медицины и касается керамических материалов для пластической реконструкции поврежденных костных тканей. Описан способ пропитки пористых полимерных матриц жидким шликером на основе порошка карбоната кальция, содержащим спекающие добавки карбоната или карбонатов...
Тип: Изобретение
Номер охранного документа: 0002542439
Дата охранного документа: 20.02.2015
+ добавить свой РИД