×
11.05.2023
223.018.53e1

Результат интеллектуальной деятельности: Способ получения катализатора полного окисления метана на основе LnFeSbO (Ln=La-Sm) со структурой розиаита

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гетерогенного катализа, конкретно к катализаторам окисления метана на основе сложных оксидов с нанесенными наночастицами благородных металлов, обладающим улучшенными каталитическими характеристиками, и может быть использовано в процессе очистки промышленных выбросов метана. Способ получения катализатора полного окисления метана заключается в термической обработке продукта взаимодействия носителя на основе сложных оксидов и раствора палладийсодержащего соединения, при этом высокодисперсный порошок состава LnFeSbO, где Ln=La, Се, Pr, Nd, Sm, со структурой розиаита, добавляют в раствор ацетилацетоната палладия в этиловом спирте так, чтобы номинальное содержание палладия в продукте составляло 0.5-1.9 масс. %. Далее выдерживают суспензию при перемешивании при температуре 78°С до полного выпаривания растворителя, затем прокаливают осадок при температуре 400-580°С в течение 2-4 ч в атмосфере воздуха. Технический результат заключается в создании композиционного материала, обладающего повышенной каталитической активностью в реакции окисления метана, и термической стабильностью. 7 ил., 2 табл., 17 пр.

Изобретение относится к области гетерогенного катализа, конкретно к катализаторам окисления метана на основе сложных оксидов с нанесенными наночастицами благородных металлов, обладающим улучшенными каталитическими характеристиками, и может быть использовано в процессе очистки промышленных выбросов метана.

На сегодняшний день в реакции каталитического окисления метана наибольшую активность демонстрируют катализаторы, содержащие частицы палладия на оксидных носителях, способных к окислительно-восстановительным превращениям. Активность палладийсодержащих катализаторов определяется количеством Pd и методом его введения. Большую роль также играет взаимодействие «металл-носитель», которое может приводить к образованию каталитически активных поверхностных форм. Одним из факторов, определяющих возможность возникновения промотирующего эффекта «металл-носитель» для катализаторов, являются окислительно-восстановительные свойства носителя, которые в значительной степени определяются его составом.

Известен катализатор на основе Pd-замещенных соединений со структурой перовскита LaFe0.95Pd0.05O3-δ [Misch L.М, Birkel A., Figg С.А., et al. Rapid microwave-assisted sol-gel preparation of Pd-substituted LnFeO3 (Ln=Y, La): phase formation and catalytic activity // Dalton Trans., 2014, 43, 2079]. Образцы приготовлены методом золь-гель синтеза с последующей микроволновой обработкой. Растворы нитрата лантана (III), ацетилацетонатов железа (III) и палладия (II) предварительно смешивали в заданном стехиометрическом соотношении, затем добавляли раствор лимонной кислоты и проводили выпаривание до полного испарения растворителя при температуре 65°С в течение 8-10 ч. Полученный продукт сушили при температуре 125°С в течение ночи. После этого образец был подвергнут микроволновому нагреву в течение 150 с при мощности 875 Вт. Удельная поверхность синтезированного образца составила 25 м2/г.

Недостатком данного катализатора является вхождение атомов палладия в объем материала, что приводит к снижению каталитической активности.

Известны катализаторы на основе CeO2 с частицами палладия на поверхности [Ma J., Lou Y., Cai Y., et al. The relationship between the chemical state of Pd species and the catalytic activity for methane combustion on Pd/CeO2 // Catalysis Science & Technology, 2018, 8, 2567-2577]. Самую высокую каталитическую активность в реакции полного окисления метана показал образец, в котором нанесение Pd на носитель CeO2 проводили при восстановлении нитрата палладия (II) в водной суспензии CeO2 гидразином при 100°С в течение 3 ч, затем прокаливали на воздухе при 450°С в течение 4 ч. Температура 90% окисления метана в смеси состава: СН4 - 1 об.%, O2 - 20 об.%, N2 - баланс (скорость потока газовой смеси 15000 мл⋅г-1⋅ч-1), в присутствии данного катализатора составила 336°С.

Недостатками данного катализатора являются использование токсичного восстановителя (нитрата палладия) при нанесении палладия на носитель. Другим важным недостатком является отсутствие стабильности катализатора. При проведении испытаний в течение 100 ч при 320°С температура 90%-окисления СН4 повышается до 354°С.

В качестве носителей представляют интерес материалы на основе системы Fe-Sb-O, применяемые в промышленности в качестве катализаторов окисления и аммоксидации олефинов. Предпосылкой проявления каталитической активности в данных системах в реакции окисления является низкий редокс-потенциал протекающих превращений и Так, известен катализатор окисления СО состава Pd/FeSbO4 [Gadgil М.М., Kulshreahtha S.K. CO oxidation over Pd/FeSbO4 catalyst // Journal of Molecular Catalysis A: Chemikal. 1995, 95, 211-222]. Синтез катализатора включает два этапа: получение носителя FeSbO4, импрегнирование активной фазы палладия с последующим восстановлением. Носитель синтезировали путем соосаждения гидроксидов железа (III) и сурьмы (V) с последующим отделением от жидкой фазы, сушкой при температуре 120°С в течение 12 ч и последующим прокаливанием при температуре 850°С в течение 8 ч. Полученный таким образом носитель пропитывали раствором хлорида палладия и затем восстанавливали в потоке водорода при температуре 175°С в течение 4 ч.

Недостатком данного катализатора является низкая дефектность носителя FeSbO4, имеющего структуру рутила, а также полученное в результате полного восстановления прекурсора металлическое состояние палладия на поверхности, что приводит к снижению каталитической активности.

Высокую каталитическую активность в реакции окисления СО демонстрируют высокодефектные материалы LnFe0.5Sb1.5O6, где Ln - La-Sm, имеющие слоистую структуру розиаита, состоящие из квазисферических частиц размером 400-100 нм, сгруппированных в нерегулярные сетки, удельная поверхность которых составляет 2.1-5.5 м2/г, [Egorysheva A.V., Ellert O.G., Liberman E.Yu, et al. Synthesis and characterization of new isostructural series LnFe0.5Sb1.5O6 (Ln=La-Sm) exhibiting high catalytic activity in CO oxidation // Journal of Alloys and Compounds, 2019, 777, 655-662]. Необходимо отметить, что помимо проявляемой каталитической активности, данный материал является термостойким соединением, что позволяет рассматривать его в качестве носителя активной фазы для применения при температурах до 1000°С.Однако, по нашим данным, в реакции окисления метана без нанесенных на поверхность частиц благородных металлов данные соединения неактивны.

Использование частиц оксида палладия вместо металлического палладия также позволяет повысить активность катализаторов. В реакции окисления метана наиболее близким техническим решением является катализатор PdO/LaFeO3 [Eyssler A., Mandaliev P., Winkler A., et al. The Effect of the State of Pd on Methane Combustion in Pd-Doped LaFeO3 // J. Phys. Chem. C. 2010, 114, 4584-4594], принятый за прототип. Температура полного окисления метана (СН4 - 1 об.%, O2 - 4,4 об.%, N2 - баланс, объемная скорость 18400 ч-1) в его присутствии составляет 600°С. Катализатор был синтезирован с использованием золь-гель метода. Растворы нитратов лантана и железа смешивали в заданном стехиометрическом соотношении. К полученной смеси добавляли раствор лимонной кислоты в соотношении 1:1. Концентрирование до гелеобразного состояния проводили в роторном испарителе при температуре 60°С. Затем образец измельчали и прокаливали при температуре 700°С в течение 2 ч в атмосфере синтетического воздуха. Нанесение активного компонента PdO проводили путем пропитки из водного раствора нитрата палладия (II) в количестве 2 масс. % в пересчете на металл с последующей термической обработкой при температуре 500°С в течение 2 ч.

Недостатками прототипа являются как использование в качестве прекурсора токсичного нитрата палладия, так и высокое содержание палладия (2 масс. %). Однако, главный недостаток PdO/LaFeO3 состоит в высокой температуре полного окисления метана (температуры 50% и 90% конверсии 460 и 540°С, соответственно). Таким образом, для достижения 100% конверсии метана необходима температура (~600°С), при которой происходит процесс восстановления РdO до металлического Pd, что, в свою очередь, приводит к потере активности катализатора.

Изобретение направлено на создание композиционного материала, обладающего повышенной каталитической активностью в реакции окисления метана, и термической стабильностью.

Технический результат достигается тем, что предложен способ получения катализатора полного окисления метана, заключающийся в термической обработке продукта взаимодействия носителя на основе сложных оксидов и раствора палладийсодержащего соединения, отличающийся тем, что высокодисперсный порошок состава LnFe0.5Sb1.5O6, где Ln= La, Се, Pr, Nd, Sm, со структурой розиаита, добавляют в раствор ацетилацетоната палладия в этиловом спирте так, чтобы номинальное содержание палладия в продукте составляло 0.5-1.9 масс. %, выдерживают суспензию при перемешивании при температуре 78°С до полного выпаривания растворителя, затем прокаливают осадок при температуре 400-580°С в течение 2-4 ч в атмосфере воздуха.

Использование в качестве носителя высокодисперсного порошка состава LnFe0.5Sb1.5O6, где Ln - La-Sm, со структурой розиаита обусловлено высокой способностью к редокс-превращениям и и наличием большого количества кислородных вакансий на поверхности, что способствует высокой подвижности кислорода в приповерхносном слое [Egorysheva A.V., Ellert O.G., Liberman E.Yu, et al Synthesis and characterization of new isostructural series LnFe0.5Sb1.5O6 (Ln=La-Sm) exhibiting high catalytic activity in CO oxidation // Journal of Alloys and Compounds, 2019, 777, 655-662] и возможности его переноса к частицам PdO.

Температура выдержки суспензии определяется температурой кипения этилового спирта.

Параметры отжига находятся во взаимосвязи, подобраны экспериментально и обуславливают оптимальный размер частиц оксида палладия, который влияет на каталитические характеристики материала. Частицы оксида палладия должны обладать таким размером, чтобы не слипаться друг с другом, поскольку это приведет к снижению удельной поверхности катализатора и, соответственно, уменьшению его активности. Установлено экспериментально, что использование размеров частиц оксида палладия более 15 нм ухудшает каталитические характеристики предлагаемого материала.

Использование для получения наноразмерных частиц оксида палладия в качестве прекурсора нетоксичного ацетилацетоната палладия (II) позволяет повысить дисперсность нанесенных частиц палладия, образующихся после термической деструкции органического комплекса, а также каталитическую активность материала по сравнению с традиционными предшественниками: нитратом палладия (II) или HPdCl4 [Daniell W., Landes H., Fouad N.E., Knozinger H. Influence of pretreatment atmosphere on the nature of silica-supported Pd generated via decomposition of Pd(acac)2: an FTIR spectroscopic study of adsorbed CO // Journal of Molecular Catalysis A: Chemical, 2002, 178. 211-218].

Массовое содержание палладия установлено экспериментально и обусловлено проявлением наиболее высокой каталитической активности материала. При содержании менее 0.5 или более 1.9 масс. % каталитическая активность падает в связи с недостаточным или избыточным количеством оксида палладия на поверхности матрицы, соответственно.

Выбор температур отжига обусловлен тем, что при температурах менее 400°С продукт остается загрязненным органическими примесями, что снижает каталитическую активность, а при температурах выше 580°С происходит укрупнение палладийсодержащих частиц, что также ухудшает каталитические качества материала.

Продолжительность термической обработки обусловлена теми же причинами, что и выбор температур отжига и влияет на каталитическую активность получаемого материала.

Сущность изобретения заключается в том, что использование в качестве носителя высокодисперсного порошка соединения LnFe0.5Sb1.5O6, где Ln - La-Sm, со структурой розиаита, обладающего промотирующим эффектом за счет высокой способности к редокс-превращениям и наличием большого количества кислородных вакансий на поверхности, способствует активному переносу кислорода с приповерхностного слоя носителя к наночастицам PdO, активации имеющихся кислородных форм и формированию активных центров в наночастицах PdO, находящихся на поверхности LnFe0.5Sb1.5O6, что обеспечивает высокую каталитическую активность, низкие температуры конверсии и стабильность катализатора в реакциях окисления метана.

Изобретение проиллюстрировано следующими фигурами.

Фиг. 1. Морфология катализатора PdO/LaFe0.5Sb1.5O6, синтезированного по примеру 1, (а) и распределение частиц PdO по размеру (б).

Фиг. 2. Температурная зависимость конверсии СН4 в присутствии 1 масс. % PdO/LnFe0.5Sb1.5O6 (Ln=La-Sm), синтезированных при 500°С в течение 2 ч, в условиях примеров 1-5.

Фиг. 3. Температурная зависимость конверсии СН4 в присутствии PdO/LaFe0.5Sb1.5O6 с различным количеством нанесенного PdO, катализаторы синтезированы в условиях примеров 1,6-10.

Фиг.4. Температурная зависимость конверсии СН4 в присутствии l%PdO/LaFe0.5Sb1.5O6, синтезированных при различных температурах в течение 2 ч в условиях примеров 1, 11-12.

Фиг. 5. Температурная зависимость конверсии СН4 в присутствии l%PdO/LaFe0.5Sb1.5O6, синтезированных при различных температурах в течение 4 ч в условиях примеров 13-15.

Фиг. 6. Распределение по размеру частиц PdO, нанесенных на носитель в условиях примера 16.

Фиг. 7. Температурная зависимость конверсии СН4 в присутствии PdO/LaFe0.5Sb1.5О6, для 7 циклов нагрева и охлаждения в потоке модельной газовой смеси в условиях примера 17.

Фазовый состав материалов, представленных иллюстрациями и табличными данными, исследовали с использованием дифрактометра Bruker D8 Advance (СuКα излучение, Ni-фильтр и детектор LYNXEYE). Анализ морфологии синтезированных образцов проводили с помощью сканирующего микроскопа высокого разрешения Carl Zeiss NVision 40.

Степень конверсии СН4 для полученных материалов определяли проточным методом с помощью газохроматографического анализа. Для этого в U-образный кварцевый реактор загружали 0.85 г катализатора, нагревали до заданной температуры, после чего через реактор пропускали газовую смесь 1% СН4, 6% O2, 93% N2 (производства ОАО "Линде Газ Рус"). Скорость подачи газа составляла 3 л/ч. Концентрацию реагентов и продуктов определяли на хроматографе CHROM-5 (Чехия). Конверсию СН4 (α) рассчитывали по уравнению: α=([СН4]0-[СН4]1)/[СН4]0, где [СН4]0 - концентрация СН4 в исходной газовой смеси (об.%), [СН4]1 -концентрация СН4 на выходе из реактора (об.%). Активность катализаторов оценивали по температурам достижения 50%- и 90%-ной конверсии СН4 (T50% и Т90%, соответственно).

Ниже приведены примеры иллюстрирующие, но не ограничивающие предложенный способ.

Синтез носителя LnFe0.5Sb1.5О6 осуществляли методом соосаждения с последующим отжигом [Egorysheva A.V., Ellert O.G., Liberman E.Yu, et al. Synthesis and characterization of new isostructural series LnFe0.5Sb1.5O6 (Ln=La-Sm) exhibiting high catalytic activity in CO oxidation // Journal of Alloys and Compounds, 2019, 777, 655-662]. А именно, в качестве прекурсоров использовали Ln(NO3)3*xH2O (ос.ч.) (Ln=La, Се, Pr, Nd, Sm x=5, 6 в зависимости от лантанида), Fe(NO3)3⋅9H2O (х.ч.), Sb2O3 (х.ч.), НСlконц (ос.ч.), NH4OHконц (ос.ч.) и дистиллированную воду. Из-за летучести оксида сурьмы навески оксида сурьмы брали с 20% избытком. Смесь твердых компонентов растворяли в 9 мл концентрированной соляной кислоты (35% HCl), после чего в раствор добавляли 9 мл H2O. В результате обратного соосаждения в 20 мл 25% раствора NH3 получали осадок, которые перемешивали на магнитной мешалке до достижения равновесия, после чего отмывали до нейтральной рН среды и высушивали при 50°С.Отжиг полученных осадков проводили в муфельной печи СНОЛ 6/12-В в платиновых тиглях на воздухе путем ступенчатого нагрева при температурах 650, 900°С в течение 24 ч и 1050°С в течение 48 ч.

Пример 1. В качестве носителя использовали LaFe0.5Sb1.5О6, имеющий структуру розиаита с размером частиц 200-400 нм, что показано на Фиг. 1а. Навеску 1.00 г LaFe0.5Sb1.5O6 добавляли в 250 мл раствора ацетилацетоната палладия в этиловом спирте. Номинальное содержание палладия в продукте составило 1.0 масс. %. Выдерживали суспензию при перемешивании при температуре 78°С до полного выпаривания растворителя, затем прокаливали осадок при температуре 500°С в течение 2 ч в атмосфере воздуха. Средний размер частиц оксида палладия на поверхности LaFe0.5Sb1.5O6 составил 13 нм, что показано на Фиг. 1б.

Температура 90% конверсии в реакции окисления СН4 составила 379°С (Фиг. 2, Таблица 1).

Пример 2. По примеру 1, отличающийся тем, что используют CeFe0.5Sb1.5O6 со средним размером частиц 180 нм. Температура 90% конверсии в реакции окисления СН4 составила 382°С (Фиг. 2, Таблица 1).

Пример 3. По примеру 1, отличающийся тем, что используют PrFe0.5Sb1.5O6 со средним размером частиц 140 нм. Температура 90% конверсии в реакции окисления СН4 составила 377°С (Фиг. 2, Таблица 1).

Пример 4. По примеру 1, отличающийся тем, что используют NdFe0.5Sb1.5O6 со средним размером частиц 130 нм. Температура 90% конверсии в реакции окисления СН4 составила 378°С (Фиг. 2, Таблица 1).

Пример 5. По примеру 1, отличающийся тем, что используют SmFe0.5Sb1.5O6 со средним размером частиц 125 нм. Температура 90% конверсии в реакции окисления СН4 составила 367°С (Фиг. 2, Таблица 1).

Видно, что все исследованные катализаторы проявили высокую активность. Температуры 90% конверсии метана изученных образцов лежат в температурном диапазоне 367-382°С.Явной зависимости активности катализаторов от величины ионного радиуса лантаноида не обнаружено.

Пример 6. По примеру 1, отличающийся тем, что номинальное содержание палладия составляет 1.9 масс. %. Температура 90% конверсии в реакции окисления СН4 составила 420°С (Фиг. 3, Таблица 1).

Пример 7. По примеру 1, отличающийся тем, что номинальное содержание палладия составляет 1.5 масс. %. Температура 90% конверсии в реакции окисления СН4 составила 375°С (Фиг. 3, Таблица 1).

Пример 8. По примеру 1, отличающийся тем, что номинальное содержание палладия составляет 0.75 масс. %. Температура 90% конверсии в реакции окисления СН4 составила 414°С (Фиг. 3, Таблица 1).

Пример 9. По примеру 1, отличающийся тем, что номинальное содержание палладия составляет 0.5 масс. %. Температура 90% конверсии в реакции окисления СН4 составила 450°С (Фиг. 3, Таблица 1).

Пример 10 (негативный). По примеру 1, отличающийся тем, что номинальное содержание палладия составляет 0.1 масс. %. Температура 50% конверсии в реакции окисления СН4 составила 550°С (Фиг. 3, Таблица 1).

Пример 11. По примеру 1, отличающийся тем, что осадок прокаливают при температуре 400°С в течение 2 ч. Температура 90% конверсии в реакции окисления СН4 составила 371°С (Фиг. 4, Таблица 2).

Пример 12. По примеру 1, отличающийся тем, что осадок прокаливают при температуре 580°С в течение 2 ч. Температура 90% конверсии в реакции окисления СН4 составила 374°С (Фиг. 4, Таблица 2).

Пример 13. По примеру 1, отличающийся тем, что осадок прокаливают при температуре 400°С в течение 4 ч. Температура 90% конверсии в реакции окисления СН4 составила 386°С (Фиг. 5, Таблица 2).

Пример 14. По примеру 1, отличающийся тем, что осадок прокаливают при температуре 500°С в течение 4 ч. Температура 90% конверсии в реакции окисления СН4 составила 386°С (Фиг. 5, Таблица 2).

Пример 15. По примеру 1, отличающийся тем, что осадок прокаливают при температуре 580°С в течение 4 ч. Температура 90% конверсии в реакции окисления СН4 составила 387°С (Фиг. 5, Таблица 2).

Пример 16 (негативный). По примеру 1, отличающийся тем, что полученный материал прокаливают при температуре 650°С в течение 24 ч. Температура 90% конверсии в реакции окисления СН4 составила 550°С.Длительное повышение температуры прокаливания катализатора приводит к восстановлению PdO до металла и укрупнению частиц (средний размер частиц d=15 нм) и, как следствие, снижению каталитической активности (Фиг. 6, Таблица 2).

Пример 17. По примеру 1, отличающийся тем, что катализатор прошел 7 непрерывных циклов нагрева и охлаждения в потоке модельной газовой смеси без дополнительной активации. Активность катализатора после циклических испытаний без дополнительной активации и регенерации возросла. Температура 90% конверсии в реакции окисления СН4 после 7 циклов испытаний составила 350°С (Фиг. 7).

Способ получения катализатора полного окисления метана, заключающийся в термической обработке продукта взаимодействия носителя на основе сложных оксидов и раствора палладийсодержащего соединения, отличающийся тем, что высокодисперсный порошок состава LnFeSbO, где Ln=La, Се, Pr, Nd, Sm, со структурой розиаита, добавляют в раствор ацетилацетоната палладия в этиловом спирте так, чтобы номинальное содержание палладия в продукте составляло 0.5-1.9 масс. %, выдерживают суспензию при перемешивании при температуре 78°С до полного выпаривания растворителя, затем прокаливают осадок при температуре 400-580°С в течение 2-4 ч в атмосфере воздуха.
Способ получения катализатора полного окисления метана на основе LnFeSbO (Ln=La-Sm) со структурой розиаита
Способ получения катализатора полного окисления метана на основе LnFeSbO (Ln=La-Sm) со структурой розиаита
Способ получения катализатора полного окисления метана на основе LnFeSbO (Ln=La-Sm) со структурой розиаита
Способ получения катализатора полного окисления метана на основе LnFeSbO (Ln=La-Sm) со структурой розиаита
Способ получения катализатора полного окисления метана на основе LnFeSbO (Ln=La-Sm) со структурой розиаита
Способ получения катализатора полного окисления метана на основе LnFeSbO (Ln=La-Sm) со структурой розиаита
Способ получения катализатора полного окисления метана на основе LnFeSbO (Ln=La-Sm) со структурой розиаита
Источник поступления информации: Роспатент

Showing 21-30 of 50 items.
25.08.2017
№217.015.ba0d

Способ определения удельной электропроводности ионпроводящих материалов

Изобретение относится к физико-химическим исследованиям и может быть использовано в химической и других родственных с ней отраслях промышленности для определения удельной электропроводности ионпроводящих материалов, в том числе полимерных пленок и тканей. Предложен способ определения удельной...
Тип: Изобретение
Номер охранного документа: 0002615601
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.bab7

Способ получения стабильных водных коллоидных растворов наночастиц диоксида церия

Изобретение может быть использовано в химической промышленности, биохимии, медицине. Для получения стабильных водных коллоидных растворов наночастиц диоксида церия готовят водный раствор гексанитроцерата(IV) аммония, тщательно перемешивая до его полного растворения. Проводят гидротермальную...
Тип: Изобретение
Номер охранного документа: 0002615688
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.bae7

Способ получения композиционного порошка mb-sic, где m=zr, hf

Изобретение относится к неорганической химии и неорганическому материаловедению, конкретно к получению порошковых материалов состава MB-SiC, где М = Zr, Hf, содержащих нанокристаллический карбид кремния. Получаемые композиционные порошки ZrB-SiC и/или HfB-SiC могут быть применены для нанесения...
Тип: Изобретение
Номер охранного документа: 0002615692
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.d135

Индикаторный элемент для обнаружения утечки гидразиновых ракетных горючих

Изобретение относится к химмотологии, а именно к химическим индикаторам на твердофазных носителях для определения компонентов ракетных, авиационных и автомобильных топлив, и может быть использовано для экспрессного обнаружения утечки гидразиновых ракетных горючих на месте сварных швов и...
Тип: Изобретение
Номер охранного документа: 0002622026
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d2ee

Мембрана ионоселективного электрода для определения октагидротриборатного аниона

Изобретение относится к потенциометрическим методам количественного определения веществ (ионометрия) и может быть использовано для неразрушающего контроля и автоматического регулирования содержания октагидротриборатного аниона в водных, включая технологические, растворах. Предложена мембрана...
Тип: Изобретение
Номер охранного документа: 0002621888
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d40c

Способ получения керамического прекурсора для синтеза лейкосапфира

Изобретение относится к области неорганической химии, в частности к способу получения прекурсора для синтеза лейкосапфира. Предложенный способ заключается в том, что смесь гидраргиллита с 1÷15 мас.% электрокорунда с размером зерна от 10 до 50 мкм заливают 0,5÷2 мас.% водного раствора соляной...
Тип: Изобретение
Номер охранного документа: 0002622133
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d75a

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства улучшенного катодного активного материала литий-ионных аккумуляторных батарей с повышенной удельной емкостью при циклировании токами высокой плотности. Предложен композиционный катодный материал...
Тип: Изобретение
Номер охранного документа: 0002623212
Дата охранного документа: 23.06.2017
26.08.2017
№217.015.e058

Способ получения наполнителей для строительных материалов

Изобретение относится к получению наполнителя для строительных материалов. Соль алюминия в количестве от 40 до 100 г/л растворяют в кипящем водном 10-50 мас.% растворе углевода, добавляют разрыхлитель в виде 5-50 мас.% раствора нитрата алюминия с обеспечением содержания алюминия в растворе до...
Тип: Изобретение
Номер охранного документа: 0002625388
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.e1ba

Экстракционный способ получения наноразмерных кристаллов оксидов металлов

Изобретение может быть использовано в производстве компонентов полупроводниковых приборов, датчиков, УФ-фильтров, солнечных батарей, гетерогенных катализаторов. Для получения наноразмерных кристаллов оксидов металлов экстракционным способом в дистиллированной воде готовят гетерогенную систему...
Тип: Изобретение
Номер охранного документа: 0002625877
Дата охранного документа: 19.07.2017
29.12.2017
№217.015.f4e7

Рециркуляционный способ экстракционно-хроматографического разделения смеси компонентов

Изобретение относится к области процессов разделения веществ. Предложен рециркуляционный способ экстракционно-хроматографического разделения смеси компонентов в устройстве с многократным контактом первой и второй жидких фаз. Смесь подают в устройство с первой жидкой фазой, которую до достижения...
Тип: Изобретение
Номер охранного документа: 0002637960
Дата охранного документа: 08.12.2017
Showing 1-5 of 5 items.
10.10.2015
№216.013.8133

Способ получения высокопористого носителя катализатора

Изобретение относится к способу получения высокопористого носителя катализатора. Данный способ включает пропитку ретикулированного пенополиуретана керамическим шликером, содержащим инертный наполнитель, включающий электрокорунд, дисперсный порошок оксида алюминия с добавками, и раствор...
Тип: Изобретение
Номер охранного документа: 0002564672
Дата охранного документа: 10.10.2015
01.07.2018
№218.016.6979

Способ получения поликристаллического ортогерманата висмута

Изобретение относится к материалам для сцинтилляционной техники, к эффективным быстродействующим сцинтилляционным детекторам гамма- и альфа-излучений в приборах для экспресс-диагностики в медицине, промышленности, космической технике и ядерной физике. Предложен способ получения...
Тип: Изобретение
Номер охранного документа: 0002659268
Дата охранного документа: 29.06.2018
24.05.2019
№219.017.5de0

Способ получения высокодисперсного каталитически активного материала для очистки газовых выбросов от монооксида углерода

Изобретение относится к способу получения высокодисперсного каталитически активного материала для очистки газовых выбросов от монооксида углерода, заключающемуся в соосаждении гидроксидов церия, и олова, и меди при мольном соотношении Ce:Sn:Cu = 8:1:1 или гидроксидов церия, и олова, и...
Тип: Изобретение
Номер охранного документа: 0002688945
Дата охранного документа: 23.05.2019
13.02.2020
№220.018.01aa

Способ получения сорбента на основе природного бентонита

Изобретение относится к способу получения сорбента для очистки сточных вод гальванических, текстильных, кожевенных и других предприятий. Предложен способ получения сорбента для извлечения бихромат-анионов из водного раствора. Способ включает перемешивание суспензии бентонита в 20%-ном растворе...
Тип: Изобретение
Номер охранного документа: 0002714077
Дата охранного документа: 11.02.2020
17.06.2023
№223.018.81b7

Спрей для лечения инфицированных и неинфицированных ран при сахарном диабете i типа

Изобретение относится к области медицины и фармацевтики и может быть использовано для лечения инфицированных и неинфицированных ран при сахарном диабете I типа. Для этого предложен спрей, содержащий в качестве активных ингредиентов 2-этил-6-метил-3-гидроксипиридиния N-ацетил-6-аминогексаноат,...
Тип: Изобретение
Номер охранного документа: 0002790837
Дата охранного документа: 28.02.2023
+ добавить свой РИД