×
26.08.2017
217.015.e1ba

ЭКСТРАКЦИОННЫЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ КРИСТАЛЛОВ ОКСИДОВ МЕТАЛЛОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение может быть использовано в производстве компонентов полупроводниковых приборов, датчиков, УФ-фильтров, солнечных батарей, гетерогенных катализаторов. Для получения наноразмерных кристаллов оксидов металлов экстракционным способом в дистиллированной воде готовят гетерогенную систему из водорастворимого полимера и фазообразующей соли металла или соли аммония. При этом образуются водно-полимерная и водно-солевая фазы. В одну из фаз добавляют водный раствор сульфата экстрагируемого металла, выбранного из меди или цинка. В другую фазу добавляют водный раствор гидроксида натрия или аммиака. После этого приготовленную гетерогенную систему с введенными добавками выдерживают при температуре 25-80°С и атмосферном давлении в течение 1-24 ч. Полученный в межфазном слое осадок выделяют, промывают дистиллированной водой и сушат на воздухе до прекращения изменения массы. Получают наноразмерные кристаллы оксидов меди или цинка. В качестве водорастворимого полимера используют полиэтиленоксид (полиэтиленгликоль) с молекулярной массой 1500-20000. В качестве фазообразующей соли металла используют сульфат металла, выбранного из ряда Na, Li, Cu, Zn, Mg, Cd, Co. В качестве соли аммония используют сульфат. Изобретение позволяет упростить получение нанокристаллов оксидов металлов без использования токсичных, горючих и взрывоопасных органических растворителей. 6 пр., 6 ил.
Реферат Свернуть Развернуть

Изобретение относится к области синтеза наноразмерных оксидов металлов и может быть использовано для производства компонентов полупроводниковых приборов, датчиков, УФ-фильтров, солнечных батарей, гетерогенных катализаторов и т.д.

Изобретение может быть использовано для создания проводящих покрытий в электронных и оптоэлектронных устройствах, в газовых и ионоселективных сенсорах, полевых транзисторах, солнечных батареях, а также в качестве фотокатализаторов благодаря ряду электрофизических свойств: температуре плавления, теплопроводности, фоточувствительности, пьезо- и пироэффекту, наличию запрещенной зоны, химической стабильности [ ., Alivov Ya. I., Liu С, et al. A comprehensive review of ZnO materials and devices // Journal of Applied Physics. 2005. V. 98, P. 041301 (103 pages); Akermi M., Sakly N., Chaabane R.B., Ouada H.B. Effect of PEG-400 on the morphology and electrical properties of ZnO nanoparticles application for gas sensor // Materials Science in Semiconductor Processing. 2013. V. 16, Is. 3. Р. 807-817].

Известен способ получения наноразмерных частиц оксида цинка [Duan J., Huang X., Wang E. PEG-assisted synthesis of ZnO nanotubes // Materials Letters. 2006. V. 60. P. 1918-1921], основанный на золь-гель реакции получения суспензии в присутствии водорастворимого полимера как катализатора и поверхностно-активного вещества. Смешивают 0,3 г полиэтиленгликоля с молекулярной массой 2000, 1 г гексагидрата нитрата цинка и 150 мл дистиллированной воды. К полученному прозрачному раствору приливают с постоянной скоростью 1,25 мл гидроксида аммония при 30°С и выдерживают при 80°С в течение нескольких часов. Затем суспензию разбавляют до объема 80 мл дистиллированной водой, переносят в тефлоновый автоклав, вертикально помещают стеклянную пластину и выдерживают при 100°С в течение 10 часов. Полученный на стеклянной подложке оксид цинка промывают деионизованной водой и сушат на воздухе при 100°С. Полученный оксид цинка представляет собой полые гексагональные нанотрубки диаметром свыше 80 нм и длиной до 2 мкм.

К недостаткам данного способа следует отнести усложненное аппаратурное оформление, связанное с необходимостью использования подложки, и трудоемкость процесса.

Известен способ получения частиц оксида цинка [Parra M.R., Haque F.Z. Poly(ethylene glycol) (PEG)-assisted shape-controlled synthesis of one-dimensional ZnO nanorods // Optik. 2015. V. 126. P. 1562-1566], состоящий в осаждении частиц оксида цинка при добавлении в условиях интенсивного перешивания к 0.01М водному раствору ацетата цинка структурообразующего агента - полиэтиленгликоля с молекулярной массой 400 при значении рН раствора 8, которое регулируют добавлением NaOH. Полученную смесь выдерживают при 80°С в течение 24 ч. Полученный осадок отфильтровывают, промывают этанолом и деионизованной водой и прокаливают при 200°С в течение 3 ч. Полученный оксид цинка представляет собой одномерные микро- и наностержни.

К недостаткам данного метода можно отнести то, что способ усложнен дополнительной стадией прокаливания и требует высокой степени гомогенизации системы в условиях интенсивного перемешивания.

Известен способ получения частиц оксида меди [Chen Н., Zhao G., Liu Y. Low-temperature solution synthesis of CuO nanorods with thin diameter // Materials Letters. 2013. V. 93. P. 60-63], состоящий в осаждении CuO при добавлении к 2 г полиэтиленоксида с молекулярной массой 400000 и 100 мл деионизированной воды при интенсивном перемешивании 2 г NaOH и 1,71 г CuCl2⋅2H2O. Смесь непрерывно перемешивают в течение 48 ч при 50°С, затем продукт собирают, промывают и сушат. Полученный оксид меди представляет собой наночастицы с размером 80-100 нм.

К недостаткам данного метода можно отнести относительно высокую длительность синтеза, что отражается на экономических показателях, и необходимость высокой степени гомогенизации системы.

Наиболее близким по своей технической сути является способ получения оксидов металлов и оксидных систем сложного состава в виде объемных образцов (порошков, керамики), пленок и покрытий [Холькин А.И., Патрушева Т.Н. Экстракционно-пиролитический метод: Получение функциональных оксидных материалов. - М.: КомКнига, 2006. - 288 с.], заключающийся в том, что синтез проводят в гетерогенной системе «жидкость - жидкость». Данный способ предполагает экстракцию катионов металлов из водных растворов их неорганических солей в органические растворы, смешение их в требуемом соотношении и последующий пиролиз паст или смеси экстрактов - солей органических кислот, нанесенных на подложку.

В качестве органических растворов используют растворы высших монокарбоновых кислот (каприловой, капроновой, энантовой, пеларгоновой и др.) в растворителе (алифатические, ароматические углеводороды и др.). Пленки наносят методом центрифугирования после накатывания слоя экстракта на подложку из стекла, которую предварительно очищают. После подсушивания подложку со смачивающей пленкой помещают в печь для пиролиза, что приводит к формированию многочисленных центров кристаллизации и наноструктурных оксидных покрытий, которые в результате отжига образуют заданные фазы сложного оксида.

Основным недостатком данного прототипа является необходимость работы с органическими растворителями, которые, как правило, токсичны, горючи и взрывоопасны.

Существенным недостатком является необходимость применения стадии пиролиза полученных экстрактов.

Другим недостатком является то, что используемые экстракционные системы характеризуются сложным составом органических растворов, что приводит к загрязнению синтезируемых оксидов металлов примесными продуктами пиролиза.

Также недостатком является необходимость использования подложки.

Изобретение направлено на изыскание простого, доступного и экономичного способа получения наноразмерных кристаллов оксидов металлов при относительно низких температурах, без применения специального оборудования, с использованием гетерогенной системы на основе водорастворимого полимера и неорганической соли без использования токсичных, горючих и взрывоопасных органических растворителей.

Техническим результатом является направленный синтез в межфазном слое кристаллов оксидов металлов заданного размера и формы.

Технический результат достигается тем, что предложен экстракционный способ получения наноразмерных кристаллов оксидов металлов, заключающийся в том, что в дистиллированной воде готовят гетерогенную систему из водорастворимого полимера и фазообразующей соли металла или соли аммония с образованием водно-полимерной и водно-солевой фаз, в одну из фаз добавляют водный раствор сульфата металла, выбранного из пары: медь, цинк, а в другую добавляют водный раствор гидроксида натрия или аммиака, после чего приготовленную гетерогенную систему с введенными добавками выдерживают при температуре 25÷80°С и атмосферном давлении в течение 1÷24 ч, полученный в межфазном слое осадок выделяют, промывают дистиллированной водой и сушат на воздухе до прекращения изменения массы, получают наноразмерные кристаллы оксидов металлов.

Целесообразно, что в качестве водорастворимого полимера используют полиэтиленоксид (полиэтиленгликоль) с молекулярной массой 1500÷20000.

Также целесообразно, что в качестве фазообразующей соли металла используют сульфат металла, выбранного из ряда Na, Li, Cu, Zn, Mg, Cd, Co, в качестве соли аммония используют также сульфат.

Выбор диапазона молекулярных масс полимера обусловлен тем, что полимер способствует образованию центров кристаллизации оксида металла и влияет на дальнейший рост кристаллов, поскольку растворы полимера формируют цепочечные структуры, создавая тем самым среду для ориентированного роста кристаллов.

Выбор фазообразующей соли металла или соли аммония определяется, главным образом, её способностью образовывать с полимером гетерогенную систему, а также размером области гетерогенности и соотношением фаз.

Применение для синтеза оксидов металлов водного раствора гидроксида натрия или аммиака влияет на скорость нуклеации и роста кристаллов за счет разной устойчивости образующихся в растворе комплексных ионов экстрагируемого металла.

Сульфаты экстрагируемого металла выбирают из пары: медь; цинк, что обусловлено их наилучшими показателями растворимости в данной гетерогенной системе.

Выбранный диапазон температуры 25÷80°С установлен экспериментально и является оптимальным для получения кристаллов заданного размера и формы. При температуре ниже 25°С происходит ухудшение растворимости компонентов гетерогенной системы. Повышение температуры выше 80°С приводит к существенному изменению свойств гетерогенной системы.

Заявленный временной интервал 1÷24 ч установлен экспериментально и определяется динамикой процесса формирования кристаллов, что связано с установлением в гетерогенной системе экстракционного равновесия.

Сущность изобретения заключается в том, что варьирование состава гетерогенной системы, направления движущей силы межфазного распределения экстрагируемого катиона металла, продолжительности и температуры синтеза дает возможность для управления микроструктурой на стадии образования и роста кристаллов и позволяет получать в межфазном слое кристаллы оксидов металлов заданного размера и формы.

Изобретение проиллюстрировано Фиг. 1 - Фиг. 6, на которых приведены микрофотографии, выполненные на сканирующем электронном микроскопе JEOL JSM-6700F (Япония). СЭМ-изображение показывает форму и размер синтезированных образцов. Электронно-зондовый микроанализ доказывает элементный состав полученных частиц. Рентгенофазовый анализ образцов проведен на дифрактометре D2 Phaser (Bruker) с использованием CuKα-излучения (λ=0,1548 нм). Дифрактограмма подтверждает образование кристаллической структуры синтезированных образцов.

Фиг. 1. СЭМ-изображение частиц ZnO, полученных в системе полиэтиленгликоль-6000 - Na2SO4 - H2O при добавлении раствора NaOH (t=25°С, время синтеза 24 ч, CZn2+=0.05 моль/л, CNaOH=0.05 моль/л).

Фиг. 2. СЭМ-изображение частиц ZnO, полученных в системе полиэтиленоксид-1500 - (NH4)2SO4 - H2O при добавлении раствора NH3H2O (t=80°С, время синтеза 2 ч, CZn2+=0.005 моль/л, =0,02 моль/л).

Фиг. 3. СЭМ-изображение частиц ZnO, полученных в системе полиэтиленоксид-1500 - Na2SO4 - H2O при добавлении раствора NaOH (t = 80°С, время синтеза 3 ч, CZn2+=0.005 моль/л, CNaOH=0.02 моль/л).

Фиг. 4. СЭМ-изображение частиц ZnO, полученных в системе полиэтиленоксид-1500 - Na2S4 - H2O при добавлении раствора NaOH (t=60°C, время синтеза 1 ч, CZn2+=0.1 моль/л, CNaOH=1 моль/л).

Фиг. 5. СЭМ-изображение частиц CuO, полученных в системе полиэтиленоксид-1500 - (NH4)2SO4 - H2O при добавлении раствора NH3⋅H2O (t=60°С, время синтеза 1 ч, CCu2+=0.02 моль/л, =0.8 моль/л).

Фиг. 6. СЭМ-изображение частиц CuO, полученных в системе полиэтиленгликоль-20000 - Na2SO4 - H2O при добавлении раствора NaOH (t=60°С, время синтеза 1 ч, CCu2+=0.01 моль/л, CNaOH=0.1 моль/л).

Ниже приведены примеры осуществления данного изобретения. Примеры иллюстрируют, но не ограничивают предложенный способ.

Пример 1. В 7,8 мл дистиллированной воды растворяли 0,9 г полиэтиленгликоля с молекулярной массой 6000 и 1,3 г сульфата натрия, смесь перемешивали в течение 15 минут. В водно-солевую фазу добавили 0,5 мл 1М раствора сульфата цинка, в водно-полимерную фазу добавили 0,5 мл 1М раствора NaOH. Далее выдерживали при 25°С и атмосферном давлении в течение 24 ч. Полученный в межфазном слое осадок выделяли, промывали дистиллированной водой и сушили на воздухе при температуре 25°С. Метод сканирующей электронной микроскопии (Фиг. 1) показал, что при данных условиях роста образуются 2D-кристаллы правильной шестиугольной формы размером ~ 6-6,5 мкм и толщиной менее 100 нм. Электронно-зондовый микроанализ доказывает элементный состав полученных частиц - в спектре рентгеновского излучения полученного образца содержались только пики, относящиеся к кислороду и цинку. Согласно рентгенофазовому анализу нанокристаллы ZnO имеют структуру вюрцита.

Пример 2. В 7,06 мл дистиллированной воды растворяли 1,5 г полиэтиленоксида с молекулярной массой 1500 и 1,44 г сульфата аммония, смесь перемешивали в течение 15 минут. В водно-полимерную фазу добавили 0,5 мл 0,1М раствора сульфата цинка, в водно-солевую фазу добавили 0,2 мл 1М раствора NH3⋅H2O. Далее выдерживали при 80°С и атмосферном давлении в течение 2 ч. Полученный в межфазном слое осадок выделяли, промывали дистиллированной водой и сушили на воздухе при температуре 25°С. Метод сканирующей электронной микроскопии (Фиг. 2) показал, что при данных условиях роста образуются полые шестигранные стержни ZnO диаметром менее 100 нм и длиной до 500 нм. Электронно-зондовый микроанализ доказывает элементный состав полученных частиц - в спектре рентгеновского излучения полученного образца содержались пики, относящиеся к кислороду и цинку. Согласно рентгенофазовому анализу нанокристаллы ZnO имеют структуру вюрцита.

Пример 3. В 7,6 мл дистиллированной воды растворяли 1,5 г полиэтиленоксида с молекулярной массой 1500 и 0,9 г сульфата натрия, смесь перемешивали в течение 15 минут. В водно-полимерную фазу добавили 0,5 мл 1М раствора сульфата цинка, в водно-солевую фазу добавили 0,2 мл 1М раствора NaOH. Далее выдерживали при 80°С и атмосферном давлении в течение 3 ч. Полученный в межфазном слое осадок выделяли, промывали дистиллированной водой и сушили на воздухе при температуре 25°С. Метод сканирующей электронной микроскопии (Фиг. 3) показал, что при данных условиях роста образуются сплошные шестигранные стержни диаметром до 100 нм и длиной до 1 мкм. Электронно-зондовый микроанализ доказывает элементный состав полученных частиц - в спектре рентгеновского излучения полученного образца содержались пики, относящиеся к кислороду и цинку. Согласно рентгенофазовому анализу нанокристаллы ZnO имеют структуру вюрцита.

Пример 4. В 7,6 мл дистиллированной воды растворяли 1,5 г полиэтиленоксида с молекулярной массой 1500 и 0,9 г сульфата натрия, смесь перемешивали в течение 15 минут. В водно-полимерную фазу добавили 1 мл 1M раствора сульфата цинка, в водно-солевую фазу добавили 1 мл 10М раствора NaOH. Далее выдерживали при 80°С и атмосферном давлении в течение 3 ч. Полученный в межфазном слое осадок выделяли, промывали дистиллированной водой и сушили на воздухе при температуре 25°С. Метод сканирующей электронной микроскопии (Фиг. 4) показал, что при данных условиях роста образуются сплошные шестигранные стержни диаметром до 50 нм и длиной до 100 нм. Электронно-зондовый микроанализ доказывает элементный состав полученных частиц - в спектре рентгеновского излучения полученного образца содержались только пики, относящиеся к кислороду и цинку. Согласно рентгенофазовому анализу нанокристаллы ZnO имеют структуру вюрцита.

Пример 5. В 7,06 мл дистиллированной воды растворяли 1,5 г полиэтиленоксида с молекулярной массой 1500 и 1,44 г сульфата аммония, смесь перемешивали в течение 15 минут. В водно-полимерную фазу добавили 0,4 мл 0,5М раствора сульфата меди, в водно-солевую фазу добавили 0,8 мл 10М раствора NH3⋅H2О. Далее выдерживали при 60°С и атмосферном давлении в течение 1 ч. Полученный в межфазном слое осадок выделяли, промывали дистиллированной водой и сушили на воздухе при температуре 25°С. Метод сканирующей электронной микроскопии (Фиг. 5) показал, что при данных условиях роста образуются стержни диаметром до 50 нм и длиной до 250 нм. Электронно-зондовый микроанализ доказывает элементный состав полученных частиц - в спектре рентгеновского излучения полученного образца содержались только пики, относящиеся к кислороду и меди.

Пример 6. В 7,1 мл дистиллированной воды растворяли 1,5 г полиэтиленгликоля с молекулярной массой 20000 и 1,4 г сульфата натрия, смесь перемешивали в течение 15 минут. В водно-полимерную фазу добавили 0,2 мл 0,5М раствора сульфата меди, в водно-солевую фазу добавили 1 мл 1M раствора NaOH. Далее выдерживали при 60°С и атмосферном давлении в течение 1 ч. Полученный в межфазном слое осадок выделяли, промывали дистиллированной водой и сушили на воздухе при температуре 25°С. Метод сканирующей электронной микроскопии (Фиг. 6) показал, что при данных условиях роста образуются слоистые структуры, состоящие из стержней размером до 100 нм. Электронно-зондовый микроанализ доказывает элементный состав полученных частиц - в спектре рентгеновского излучения полученного образца содержались только пики, относящиеся к кислороду и меди.

Предложенное изобретение позволяет получать простым, доступным и экономичным экстракционным способом наноразмерные кристаллы оксидов металлов заданной морфологии без использования токсичных, горючих и взрывоопасных органических растворителей.

Экстракционный способ получения наноразмерных кристаллов оксидов металлов, заключающийся в том, что в дистиллированной воде готовят гетерогенную систему из водорастворимого полимера и фазообразующей соли металла или соли аммония с образованием водно-полимерной и водно-солевой фаз, в одну из фаз добавляют водный раствор сульфата экстрагируемого металла, выбранного из пары: медь, цинк, а в другую добавляют водный раствор гидроксида натрия или аммиака, после чего приготовленную гетерогенную систему с введенными добавками выдерживают при температуре 25÷80°С и атмосферном давлении в течение 1÷24 ч, полученный в межфазном слое осадок выделяют, промывают дистиллированной водой и сушат на воздухе до прекращения изменения массы, в результате получают наноразмерные кристаллы оксидов металлов, при этом в качестве водорастворимого полимера используют полиэтиленоксид (полиэтиленгликоль) с молекулярной массой 1500÷20000, в качестве фазообразующей соли металла используют сульфат металла, выбранного из ряда Na, Li, Cu, Zn, Mg, Cd, Co, в качестве соли аммония используют также сульфат.
ЭКСТРАКЦИОННЫЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ КРИСТАЛЛОВ ОКСИДОВ МЕТАЛЛОВ
ЭКСТРАКЦИОННЫЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ КРИСТАЛЛОВ ОКСИДОВ МЕТАЛЛОВ
ЭКСТРАКЦИОННЫЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ КРИСТАЛЛОВ ОКСИДОВ МЕТАЛЛОВ
ЭКСТРАКЦИОННЫЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ КРИСТАЛЛОВ ОКСИДОВ МЕТАЛЛОВ
ЭКСТРАКЦИОННЫЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ КРИСТАЛЛОВ ОКСИДОВ МЕТАЛЛОВ
ЭКСТРАКЦИОННЫЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ КРИСТАЛЛОВ ОКСИДОВ МЕТАЛЛОВ
Источник поступления информации: Роспатент

Showing 1-10 of 51 items.
20.07.2013
№216.012.567b

Мембранное устройство

Изобретение относится к мембранной технике, может быть использовано в биотехнологии, геологии и анализе различных растворов. Мембранное устройство содержит многоступенчатый мембранный модуль, ступени которого состоят из верхнего, промежуточных и нижнего дисков и расположенных между ними...
Тип: Изобретение
Номер охранного документа: 0002487747
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.59d6

Противогололедная композиция

Изобретение относится к области разработки противогололедных реагентов и может быть использовано для борьбы с гололедом на дорожных и аэродромных покрытиях. Противогололедная композиция состоит из реагента на основе нитрата металла, содержащего либо гранулированный обезвоженный нитрат кальция,...
Тип: Изобретение
Номер охранного документа: 0002488619
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5e1e

Способ определения монометиланилина в автомобильном бензине индикаторным тестовым средством

Изобретение относится к контролю качества автомобильного бензина. Содержание монометиланилина в автомобильном бензине индикаторным тестовым средством определяют по его цветовому переходу после контактирования с пробой анализируемого бензина. В качестве индикатора используют...
Тип: Изобретение
Номер охранного документа: 0002489715
Дата охранного документа: 10.08.2013
10.09.2013
№216.012.691e

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства катодного материала литий-ионных аккумуляторных батарей для питания портативной электроники, электроинструмента, электротранспорта. Предложен композиционный катодный материал, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002492557
Дата охранного документа: 10.09.2013
10.01.2014
№216.012.9426

Способ получения стабилизированного водного золя нанокристаллического диоксида церия, допированного гадолинием

Изобретение относится к технологии производства наноматериалов для получения оксидных топливных элементов, тонких покрытий, пленок, обладающих высокой ионной проводимостью. Способ включает приготовление водного раствора солей церия и гадолиния, в котором суммарная концентрация редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002503620
Дата охранного документа: 10.01.2014
27.03.2014
№216.012.ae90

Способ получения проницаемого ионообменного материала

Изобретение относится к способу получения проницаемого ионообменного материала, который может быть использован в качестве сырья для изготовления мембран, пленок, гранул и модифицирующих покрытий, обладающих ионообменными свойствами и способностью к быстрому переносу ионов. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002510403
Дата охранного документа: 27.03.2014
27.06.2014
№216.012.d926

Реагентная индикаторная трубка на основе хромогенных дисперсных кремнеземов

Изобретение относится к аналитической химии, конкретно к химическим индикаторам на твердофазных носителях, и может быть использовано для экспрессного определения металлов в водных средах и бензинах с помощью реагентных индикаторных трубок на основе хромогенных дисперсных кремнеземов. В качестве...
Тип: Изобретение
Номер охранного документа: 0002521368
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da39

Способ получения наноструктурированных покрытий оксидов металлов

Изобретение относится к области синтеза оксидов металлов простого и сложного состава, обладающих диэлектрическими или полупроводниковыми свойствами, в виде тонких наноструктурированных покрытий на поверхности изделий различной формы. Способ заключается в том, что готовят спиртовой раствор...
Тип: Изобретение
Номер охранного документа: 0002521643
Дата охранного документа: 10.07.2014
27.08.2014
№216.012.eed0

Способ получения фторидных стекол с широким ик диапазоном пропускания

Изобретение относится к технологии получения фторидных хлор- и бромсодержащих стекол с широким ИК-диапазоном пропускания и повышенной прозрачностью. Способ получения фторидных стекол включает плавление шихты из исходных компонентов в инертной атмосфере в платиновом или углеродном тигле с...
Тип: Изобретение
Номер охранного документа: 0002526955
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.efe9

Композиционная ионообменная мембрана

Изобретение относится к технологии изготовления композиционных ионообменных мембран, обладающих свойством селективности сорбции или переноса нитрат-аниона. Предложена композиционная ионообменная мембрана, характеризующаяся повышенной подвижностью нитрат-анионов и повышенной константой ионного...
Тип: Изобретение
Номер охранного документа: 0002527236
Дата охранного документа: 27.08.2014
Showing 1-10 of 35 items.
20.07.2013
№216.012.567b

Мембранное устройство

Изобретение относится к мембранной технике, может быть использовано в биотехнологии, геологии и анализе различных растворов. Мембранное устройство содержит многоступенчатый мембранный модуль, ступени которого состоят из верхнего, промежуточных и нижнего дисков и расположенных между ними...
Тип: Изобретение
Номер охранного документа: 0002487747
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.59d6

Противогололедная композиция

Изобретение относится к области разработки противогололедных реагентов и может быть использовано для борьбы с гололедом на дорожных и аэродромных покрытиях. Противогололедная композиция состоит из реагента на основе нитрата металла, содержащего либо гранулированный обезвоженный нитрат кальция,...
Тип: Изобретение
Номер охранного документа: 0002488619
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5e1e

Способ определения монометиланилина в автомобильном бензине индикаторным тестовым средством

Изобретение относится к контролю качества автомобильного бензина. Содержание монометиланилина в автомобильном бензине индикаторным тестовым средством определяют по его цветовому переходу после контактирования с пробой анализируемого бензина. В качестве индикатора используют...
Тип: Изобретение
Номер охранного документа: 0002489715
Дата охранного документа: 10.08.2013
10.09.2013
№216.012.691e

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства катодного материала литий-ионных аккумуляторных батарей для питания портативной электроники, электроинструмента, электротранспорта. Предложен композиционный катодный материал, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002492557
Дата охранного документа: 10.09.2013
10.01.2014
№216.012.9426

Способ получения стабилизированного водного золя нанокристаллического диоксида церия, допированного гадолинием

Изобретение относится к технологии производства наноматериалов для получения оксидных топливных элементов, тонких покрытий, пленок, обладающих высокой ионной проводимостью. Способ включает приготовление водного раствора солей церия и гадолиния, в котором суммарная концентрация редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002503620
Дата охранного документа: 10.01.2014
27.03.2014
№216.012.ae90

Способ получения проницаемого ионообменного материала

Изобретение относится к способу получения проницаемого ионообменного материала, который может быть использован в качестве сырья для изготовления мембран, пленок, гранул и модифицирующих покрытий, обладающих ионообменными свойствами и способностью к быстрому переносу ионов. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002510403
Дата охранного документа: 27.03.2014
27.06.2014
№216.012.d926

Реагентная индикаторная трубка на основе хромогенных дисперсных кремнеземов

Изобретение относится к аналитической химии, конкретно к химическим индикаторам на твердофазных носителях, и может быть использовано для экспрессного определения металлов в водных средах и бензинах с помощью реагентных индикаторных трубок на основе хромогенных дисперсных кремнеземов. В качестве...
Тип: Изобретение
Номер охранного документа: 0002521368
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da39

Способ получения наноструктурированных покрытий оксидов металлов

Изобретение относится к области синтеза оксидов металлов простого и сложного состава, обладающих диэлектрическими или полупроводниковыми свойствами, в виде тонких наноструктурированных покрытий на поверхности изделий различной формы. Способ заключается в том, что готовят спиртовой раствор...
Тип: Изобретение
Номер охранного документа: 0002521643
Дата охранного документа: 10.07.2014
27.08.2014
№216.012.eed0

Способ получения фторидных стекол с широким ик диапазоном пропускания

Изобретение относится к технологии получения фторидных хлор- и бромсодержащих стекол с широким ИК-диапазоном пропускания и повышенной прозрачностью. Способ получения фторидных стекол включает плавление шихты из исходных компонентов в инертной атмосфере в платиновом или углеродном тигле с...
Тип: Изобретение
Номер охранного документа: 0002526955
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.efe9

Композиционная ионообменная мембрана

Изобретение относится к технологии изготовления композиционных ионообменных мембран, обладающих свойством селективности сорбции или переноса нитрат-аниона. Предложена композиционная ионообменная мембрана, характеризующаяся повышенной подвижностью нитрат-анионов и повышенной константой ионного...
Тип: Изобретение
Номер охранного документа: 0002527236
Дата охранного документа: 27.08.2014
+ добавить свой РИД