25.08.2017
217.015.ba0d

Способ определения удельной электропроводности ионпроводящих материалов

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к физико-химическим исследованиям и может быть использовано в химической и других родственных с ней отраслях промышленности для определения удельной электропроводности ионпроводящих материалов, в том числе полимерных пленок и тканей. Предложен способ определения удельной электропроводности ионпроводящих материалов в условиях различных сред либо в условиях различной относительной влажности с учетом вклада контактного сопротивления на границе образец/электрод. Для реализации способа образец помещают в ячейку с электродами в количестве 6÷8 единиц, измеряют четырехконтактным методом не менее трех значений сопротивления образца между электродами, расположенными на разном расстоянии друг от друга. Затем строят график зависимости ионного сопротивления (R) образца от расстояния между электродами (L) и находят тангенс угла наклона (tgα) графика зависимости и определяют удельную электропроводность (σ) по формуле: где S - площадь сечения образца. Изобретение позволяет повысить достоверность определения электропроводности за счет учета вклада контактного сопротивления на границе образец/электрод и использования четырехконтактного метода определения электропроводности. 2 ил., 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к физико-химическим исследованиям и может быть использовано в химической и других родственных с ней отраслях промышленности для определения удельной электропроводности ионпроводящих материалов, в том числе полимерных пленок и тканей.

К ионпроводящим пленкам относятся твердополимерные ионообменные мембраны. Ионообменные мембраны используются в различных устройствах, в том числе в топливных элементах. Эффективность топливных элементов зависит от электропроводности ионообменных мембран, которая сильно понижается с уменьшением относительной влажности окружающей среды. В топливных элементах ионообменная мембрана находится в контакте с газообразной средой. Поэтому определение ее удельной электропроводности в таких условиях при различной относительной влажности является важной задачей.

Известен способ определения электропроводности ионообменных мембран (Т. Soboleva et al. / Journal of Electroanalytical Chemistry. 2008. 622, 145-152), заключающийся в определении сопротивления (R) между двумя электродами, расположенными на фиксированном расстоянии друг от друга (L), и расчете удельной электропроводности по формуле:

,

где σ - удельная электропроводность, S - площадь образца, L -расстояние между потенциальными электродами.

Недостатком такого способа является то, что при расчете удельной электропроводности не учитывается вклад контактного сопротивления на границе образец/электрод.

Известен способ определения удельной электропроводности ионообменных мембран (Ind. Eng. Chem. Res. 2005, 44, 7617-7626), заключающийся в определении электросопротивления образцов с помощью четырех электродов. Преимуществом данного способа является повышение достоверности определения электропроводности за счет уменьшения влияния индуктивности и емкости ячейки для определения электропроводности.

Недостатком такого способа является то, что вклад контактного сопротивления на границе образец/электрод не учитывается.

Известен способ определения удельной электропроводности ионообменных мембран, называемый методом с подвижным электродом (Электрохимия. 2000, 36, 365-368), совпадающий с настоящим техническим решением по наибольшему числу существенных признаков и принятый за прототип. Данный способ заключается в учете вклада контактного сопротивления на границе образец/электрод. Контактное сопротивление (Rконт.) определяют путем экстраполяции зависимости сопротивления (R) от расстояния между электродами (L) в точку L=0. Удельную электропроводность (σ) рассчитывают по формуле:

.

где σ - удельная электропроводность, Sсеч - площадь сечения образца, L - расстояние между электродами, R - сопротивление, Rконт. - контактное сопротивление.

Недостатками этого прототипа является его использование для определения электропроводности ионообменных мембран только в контакте с жидкой средой и определение электропроводности двухконтактным способом, что не дает возможности определения из годографов импеданса значения сопротивления образца в контакте с газообразной средой.

Настоящее изобретение направлено на увеличение достоверности определения удельной электропроводности ионпроводящих пленок и тканей.

Технический результат достигается тем, что предложен способ определения удельной электропроводности ионпроводящих материалов в условиях различных сред либо в условиях различной относительной влажности с учетом вклада контактного сопротивления на границе образец/электрод, заключающийся в том, образец помещают в ячейку с электродами в количестве 6÷8 единиц, измеряют четырехконтактным методом не менее трех значений сопротивления образца между электродами, расположенными на разном расстоянии друг от друга, строят график зависимости ионного сопротивления (R) образца от расстояния между электродами (L) и находят тангенс угла наклона (tgα) графика зависимости и определяют удельную электропроводность (σ) по формуле:

,

где Sсеч - площадь сечения образца.

Количество электродов в ячейке определяется тем, что для описания графика зависимости ионного сопротивления от расстояния между электродами достаточно 6 электродов, дальнейшее увеличение количества электродов до 8 не приводит к заметному увеличению достоверности определения.

Сущность изобретения заключается в том, что характер зависимости сопротивления образца от расстояния между электродами позволяет учитывать вклад контактного сопротивления на границе образец/электрод, а использование четырехконтактного метода определения удельной электропроводности дает возможность определять значения сопротивления образца в контакте с газообразной средой из годографов импеданса, а значит, увеличить достоверность определения удельной электропроводности ионпроводящих материалов.

Изобретение проиллюстрировано на Фиг. 1, Фиг. 2 и в Таблице.

На Фиг. 1 «Схема ячейки для определения удельной электропроводности с восемью электродами» представлена схема ячейки, где

1-8 - медные электроды;

9 - подложка, на которую наносятся электроды;

10 - прижимная часть ячейки, обеспечивающая контакт между образцом и электродами.

На Фиг. 2 «Зависимость ионного сопротивления мембраны Nafion 117 от расстояния между потенциальными электродами» представлен характер зависимости, учитывающий вклад контактного сопротивления (Rконт.).

В Таблице «Удельная электропроводность мембраны Nafion 117 при различной относительной влажности окружающей среды при температуре t=22°C» приведены экспериментально полученные значения удельной электропроводности.

Заявленный в качестве изобретения способ определения удельной электропроводности материала осуществляют следующим образом. Измеряют толщину (h) и ширину (w) образца с точностью 0.001 мм и 0.1 мм соответственно и рассчитывают его площадь сечения по формуле:

.

Образец помещают в ячейку между электродами в количестве от 6 до 8 единиц и прижимной частью ячейки так, чтобы он контактировал со всеми электродами по всей ширине. Измеряют последовательно от трех до пяти спектров импеданса образца четырехэлектродным методом на переменном токе на различном расстоянии электродов друг от друга. Для этого токовые провода от импедансметра подключают к электродам 1, 8, а потенциальные провода - к электродам 2, 7; или токовые к 1, 7, потенциальные - к 2, 6; или токовые к 1, 6, потенциальные - к 2, 5; или токовые к 1, 5, потенциальные - к 2, 4; или токовые к 1, 4, потенциальные - к 2, 3.

Строят график зависимости значений ионного сопротивления (R), полученного из спектров импеданса, от расстояния между электродами (L), характер зависимости (Фиг. 2) может быть описан формулой:

,

где учитывается Rконт - контактное сопротивление системы, равное свободному члену линейной регрессии. Находят тангенс угла наклона (tgα) графика зависимости и определяют удельную электропроводность (σ) по формуле:

,

где Sсеч - площадь сечения образца.

Ниже приведены примеры конкретного осуществления способа определения удельной электропроводности ионпроводящего материала. Примеры иллюстрируют, но не ограничивают предложенный способ.

Пример 1.

Электропроводность ионообменной мембраны Nafion 117 определяли при относительной влажности RH=20% на воздухе при температуре 22°С. Прямоугольный образец шириной 1 см и длиной 2 см предварительно выдерживали в заданных условиях. Перед экспериментом определяли ширину образца (w) с точностью 0.1 мм, затем его толщину в 5 точках с точностью 0.001 мм, рассчитывали среднее значение толщины (h) и рассчитывали площадь сечения (S=h⋅w).

Образец помещали в ячейку между шестью электродами и прижимной частью ячейки так, чтобы он контактировал со всеми электродами по всей ширине. Измеряли последовательно три спектра импеданса четырехэлектродным методом в диапазоне частот 106-1 Гц на различном расстоянии электродов друг от друга. Для этого токовые провода от импедансметра подключали к электродам 1, 6, потенциальные провода - к 2, 5 (спектр 1); затем токовые к 1, 5, потенциальные - к 2, 4 (спектр 2); затем токовые к 1, 4, потенциальные - к 2, 3 (спектр 3).

Строили график зависимости ионного сопротивления от расстояния между электродами, описывали его линейной регрессией с помощью метода наименьших квадратов и определяли свободный член линейной регрессии, равный значению контактного сопротивления образца, и тангенс угла наклона графика зависимости.

Из тангенса угла наклона рассчитывали значение удельной электропроводности, которое составило 1.5⋅10-3 Ом-1 см-1. Контактное сопротивление в данном случае равнялось 2667 Ом, что составляет 40% от измеряемого между ближайшими электродами сопротивления.

Пример 2.

Электропроводность ионообменной мембраны Nafion 117 определяли в контакте с водой при температуре 22°С. Прямоугольный образец шириной 1 см и длиной 2 см предварительно выдерживали в воде при заданной температуре. Перед экспериментом определяли ширину образца (w) с точностью 0.1 мм, затем его толщину в 5 точках с точностью 0.001 мм, рассчитывали среднее значение толщины (h) и рассчитывали площадь сечения (S=h⋅w).

Образец помещали в ячейку между восемью электродами и прижимной частью ячейки так, чтобы он контактировал со всеми электродами по всей ширине. Измеряли последовательно пять спектров импеданса четырехэлектродным методом в диапазоне частот 106-1 Гц на различном расстоянии электродов друг от друга. Для этого токовые провода от импедансметра подключали к электродам 1, 8, потенциальные провода - к 2, 7 (спектр 1); затем токовые к 1, 7, потенциальные - к 2, 6 (спектр 2); затем токовые к 1, 6, потенциальные - к 2, 5 (спектр 3); затем токовые к 1, 5, потенциальные - к 2, 4 (спектр 4); затем токовые к 1, 4, потенциальные - к 2, 3 (спектр 5).

Строили график зависимости ионного сопротивления от расстояния между электродами, описывали его линейной регрессией с помощью метода наименьших квадратов и определяли свободный член линейной регрессии, равный значению контактного сопротивления образца, и тангенс угла наклона графика зависимости.

Из тангенса угла наклона рассчитывали значение электропроводности, которое составило 0.112 Ом-1см-1. Контактное сопротивление в данном случае равнялось 22.7 Ом, что составляет 33% от измеряемого между ближайшими электродами сопротивления.

Удовлетворение изобретения критерию «промышленная применимость» подтверждается следующим примером.

Пример 3.

По Примеру 1 определяли удельную электропроводность мембраны Nafion 117 при различной относительной влажности окружающей среды при температуре t=22°C.

Результаты определения представлены в Таблице.

Как следует из Таблицы, удельная электропроводность мембраны Nafion 117 на 3 порядка возрастает с увеличением влажности, что согласуется с имеющимися литературными данными.

Заявляемый в качестве изобретения способ определения удельной электропроводности ионпроводящих материалов в условиях различных сред либо при различной относительной влажности позволяет повысить достоверность определения электропроводности за счет учета вклада контактного сопротивления на границе образец/электрод и использования четырехконтактного метода определения электропроводности.


Способ определения удельной электропроводности ионпроводящих материалов
Способ определения удельной электропроводности ионпроводящих материалов
Способ определения удельной электропроводности ионпроводящих материалов
Способ определения удельной электропроводности ионпроводящих материалов
Способ определения удельной электропроводности ионпроводящих материалов
Источник поступления информации: Роспатент

Showing 1-10 of 47 items.
27.07.2013
№216.012.59d6

Противогололедная композиция

Изобретение относится к области разработки противогололедных реагентов и может быть использовано для борьбы с гололедом на дорожных и аэродромных покрытиях. Противогололедная композиция состоит из реагента на основе нитрата металла, содержащего либо гранулированный обезвоженный нитрат кальция,...
Тип: Изобретение
Номер охранного документа: 0002488619
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5e1e

Способ определения монометиланилина в автомобильном бензине индикаторным тестовым средством

Изобретение относится к контролю качества автомобильного бензина. Содержание монометиланилина в автомобильном бензине индикаторным тестовым средством определяют по его цветовому переходу после контактирования с пробой анализируемого бензина. В качестве индикатора используют...
Тип: Изобретение
Номер охранного документа: 0002489715
Дата охранного документа: 10.08.2013
10.09.2013
№216.012.691e

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства катодного материала литий-ионных аккумуляторных батарей для питания портативной электроники, электроинструмента, электротранспорта. Предложен композиционный катодный материал, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002492557
Дата охранного документа: 10.09.2013
10.01.2014
№216.012.9426

Способ получения стабилизированного водного золя нанокристаллического диоксида церия, допированного гадолинием

Изобретение относится к технологии производства наноматериалов для получения оксидных топливных элементов, тонких покрытий, пленок, обладающих высокой ионной проводимостью. Способ включает приготовление водного раствора солей церия и гадолиния, в котором суммарная концентрация редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002503620
Дата охранного документа: 10.01.2014
27.03.2014
№216.012.ae90

Способ получения проницаемого ионообменного материала

Изобретение относится к способу получения проницаемого ионообменного материала, который может быть использован в качестве сырья для изготовления мембран, пленок, гранул и модифицирующих покрытий, обладающих ионообменными свойствами и способностью к быстрому переносу ионов. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002510403
Дата охранного документа: 27.03.2014
27.06.2014
№216.012.d926

Реагентная индикаторная трубка на основе хромогенных дисперсных кремнеземов

Изобретение относится к аналитической химии, конкретно к химическим индикаторам на твердофазных носителях, и может быть использовано для экспрессного определения металлов в водных средах и бензинах с помощью реагентных индикаторных трубок на основе хромогенных дисперсных кремнеземов. В качестве...
Тип: Изобретение
Номер охранного документа: 0002521368
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da39

Способ получения наноструктурированных покрытий оксидов металлов

Изобретение относится к области синтеза оксидов металлов простого и сложного состава, обладающих диэлектрическими или полупроводниковыми свойствами, в виде тонких наноструктурированных покрытий на поверхности изделий различной формы. Способ заключается в том, что готовят спиртовой раствор...
Тип: Изобретение
Номер охранного документа: 0002521643
Дата охранного документа: 10.07.2014
27.08.2014
№216.012.eed0

Способ получения фторидных стекол с широким ик диапазоном пропускания

Изобретение относится к технологии получения фторидных хлор- и бромсодержащих стекол с широким ИК-диапазоном пропускания и повышенной прозрачностью. Способ получения фторидных стекол включает плавление шихты из исходных компонентов в инертной атмосфере в платиновом или углеродном тигле с...
Тип: Изобретение
Номер охранного документа: 0002526955
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.efe9

Композиционная ионообменная мембрана

Изобретение относится к технологии изготовления композиционных ионообменных мембран, обладающих свойством селективности сорбции или переноса нитрат-аниона. Предложена композиционная ионообменная мембрана, характеризующаяся повышенной подвижностью нитрат-анионов и повышенной константой ионного...
Тип: Изобретение
Номер охранного документа: 0002527236
Дата охранного документа: 27.08.2014
10.05.2015
№216.013.48d9

Борсодержащий нейтронозащитный материал

Изобретение относится к нейтронозащитным материалам и может быть использовано, в частности, при капсулировании радиоактивных отходов, при создании защитных щитов. Борсодержащий материал с деформационной устойчивостью ΔL/L=3,0÷7,5% при 600°С получают взаимодействием силиката натрия NaO(SiO) в...
Тип: Изобретение
Номер охранного документа: 0002550156
Дата охранного документа: 10.05.2015
Showing 1-10 of 36 items.
27.07.2013
№216.012.59d6

Противогололедная композиция

Изобретение относится к области разработки противогололедных реагентов и может быть использовано для борьбы с гололедом на дорожных и аэродромных покрытиях. Противогололедная композиция состоит из реагента на основе нитрата металла, содержащего либо гранулированный обезвоженный нитрат кальция,...
Тип: Изобретение
Номер охранного документа: 0002488619
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5e1e

Способ определения монометиланилина в автомобильном бензине индикаторным тестовым средством

Изобретение относится к контролю качества автомобильного бензина. Содержание монометиланилина в автомобильном бензине индикаторным тестовым средством определяют по его цветовому переходу после контактирования с пробой анализируемого бензина. В качестве индикатора используют...
Тип: Изобретение
Номер охранного документа: 0002489715
Дата охранного документа: 10.08.2013
10.09.2013
№216.012.691e

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства катодного материала литий-ионных аккумуляторных батарей для питания портативной электроники, электроинструмента, электротранспорта. Предложен композиционный катодный материал, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002492557
Дата охранного документа: 10.09.2013
10.01.2014
№216.012.9426

Способ получения стабилизированного водного золя нанокристаллического диоксида церия, допированного гадолинием

Изобретение относится к технологии производства наноматериалов для получения оксидных топливных элементов, тонких покрытий, пленок, обладающих высокой ионной проводимостью. Способ включает приготовление водного раствора солей церия и гадолиния, в котором суммарная концентрация редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002503620
Дата охранного документа: 10.01.2014
27.03.2014
№216.012.ae90

Способ получения проницаемого ионообменного материала

Изобретение относится к способу получения проницаемого ионообменного материала, который может быть использован в качестве сырья для изготовления мембран, пленок, гранул и модифицирующих покрытий, обладающих ионообменными свойствами и способностью к быстрому переносу ионов. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002510403
Дата охранного документа: 27.03.2014
27.06.2014
№216.012.d926

Реагентная индикаторная трубка на основе хромогенных дисперсных кремнеземов

Изобретение относится к аналитической химии, конкретно к химическим индикаторам на твердофазных носителях, и может быть использовано для экспрессного определения металлов в водных средах и бензинах с помощью реагентных индикаторных трубок на основе хромогенных дисперсных кремнеземов. В качестве...
Тип: Изобретение
Номер охранного документа: 0002521368
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da39

Способ получения наноструктурированных покрытий оксидов металлов

Изобретение относится к области синтеза оксидов металлов простого и сложного состава, обладающих диэлектрическими или полупроводниковыми свойствами, в виде тонких наноструктурированных покрытий на поверхности изделий различной формы. Способ заключается в том, что готовят спиртовой раствор...
Тип: Изобретение
Номер охранного документа: 0002521643
Дата охранного документа: 10.07.2014
27.08.2014
№216.012.eed0

Способ получения фторидных стекол с широким ик диапазоном пропускания

Изобретение относится к технологии получения фторидных хлор- и бромсодержащих стекол с широким ИК-диапазоном пропускания и повышенной прозрачностью. Способ получения фторидных стекол включает плавление шихты из исходных компонентов в инертной атмосфере в платиновом или углеродном тигле с...
Тип: Изобретение
Номер охранного документа: 0002526955
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.efe9

Композиционная ионообменная мембрана

Изобретение относится к технологии изготовления композиционных ионообменных мембран, обладающих свойством селективности сорбции или переноса нитрат-аниона. Предложена композиционная ионообменная мембрана, характеризующаяся повышенной подвижностью нитрат-анионов и повышенной константой ионного...
Тип: Изобретение
Номер охранного документа: 0002527236
Дата охранного документа: 27.08.2014
10.05.2015
№216.013.48d9

Борсодержащий нейтронозащитный материал

Изобретение относится к нейтронозащитным материалам и может быть использовано, в частности, при капсулировании радиоактивных отходов, при создании защитных щитов. Борсодержащий материал с деформационной устойчивостью ΔL/L=3,0÷7,5% при 600°С получают взаимодействием силиката натрия NaO(SiO) в...
Тип: Изобретение
Номер охранного документа: 0002550156
Дата охранного документа: 10.05.2015

Похожие РИД в системе