×
04.05.2020
220.018.1b91

Замещенный 3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-c]пиридо[2,1-f] [1,2,4]триазин-6,8-дион, фармацевтическая композиция, способы их получения и применения

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к новому соединению, представляющему собой замещенный 3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион общей формулы 1 и его стереоизомеру. Соединения обладают высокой противовирусной активностью и могут быть использованы как эффективное средство для профилактики и лечения вирусных заболеваний, в том числе гриппа. В общей формуле 1 Rпредставляет собой 6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил, (3,4-дифторфенил)(фенил)метил, (3,4-дифторфенил)(2-метилсульфанилфенил)метил, дифенилметил, бис(4-фторфенил)метил, R представляет собой водород, бензил или {[(C-Cалкил)оксикарбонил]-окси}метил. Соединение формулы 1 получают взаимодействием (12aR)-7-(бензилокси)-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]-пиридо[2,1-f][1,2,4]триазин-6,8-диона (2) с 6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-олом (3), или с (3,4-дифторфенил)(фенил)метанолом (5), или с (3,4-дифторфенил)(2-метилсульфанилфенил)метанолом (6), или с дифенилметанолом (7), или с бис(4-фторфенил)метанолом (8): с получением соответствующих бензилоксисоединений, дальнейшее при необходимости их дебензилирование в диметилсульфоксиде в присуствии LiCl или в ацетонитриле в присутствии MgBr ⋅ EtO с получением соединений, где R означают Н, с последующим при необходимости ацилированием полученных соединений хлорметил метилкарбонатом в диметилацетамиде в присутствии йодистого калия и карбоната калия с получением соответствующих метил-метилкарбонатов. Соединения формулы 1 проявляют более высокую активность, чем известное противовирусное соединение, имеющее торговое название Xofluza, используемое для лечения инфекции гриппа А и В. 4 н. и 13 з.п. ф-лы, 5 табл., 25 пр., 3 ил.
Реферат Свернуть Развернуть

Грипп - острое инфекционное заболевание дыхательных путей, вызываемое вирусом гриппа. Входит в группу острых респираторных вирусных инфекций (ОРВИ). Периодически распространяется в виде эпидемий и пандемий. В настоящее время выявлено более 2000 вариантов вируса гриппа, различающихся между собой антигенным спектром. По оценкам ВОЗ, от всех вариантов вируса во время сезонных эпидемий в мире ежегодно умирают от 250 до 500 тыс. человек (большинство из них старше 65 лет), в некоторые годы число смертей может достигать миллиона.

Впервые вирус был выделен в 1930-е годы. Вирусы гриппа относятся к семейству Ортомиксовирусов (лат. Orthomyxoviridae) - семейство РНК-содержащих вирусов. Это семейство включает семь типов вирусов, в том числе, вирус гриппа А, вирус гриппа В, вирус гриппа С, вирус гриппа D. Три типа вируса гриппа, которые идентифицированы антигенными различиями в их нуклеопротеине и матричном белке, заражают позвоночных следующим образом: Вирус гриппа А заражает людей, других млекопитающих и птиц и вызывает все пандемии гриппа. Вирус гриппа В заражает людей и тюленей. Вирус гриппа С заражает людей, свиней и собак. Вирус гриппа D заражает (выделен в 2012 году) сельскохозяйственных животных. Насколько известно, грипп D человеческие клетки не заражает.

Эпидемическое значение для людей имеют вирусы, содержащие три подтипа поверхностных белков гемагглютинина (НА) (Н1, Н2, Н3) и два подтипа нейраминидазы (NA) (N1, N2). Вирусы гриппа А и В содержат NA и НА в качестве основных структурных и антигенных компонентов вирусной частицы, обладающих гемагглютинирующей и нейраминидазной активностями. У вируса гриппа С нет нейраминидазы, он обладает вместо этого гемагглютинин-эстеразным (проникающим) белком (HEF).

Значительным достижением современной биологии и медицины является разработка и внедрение в практику методов терапии вирусных инфекций, лечение, направленных на устранение причины возникновения заболевания, основанных на применении специфических ингибиторов, блокирующих функциональную активность вируса на разных этапах его цикла репликации.

Большинство противогриппозных препаратов, которые в настоящее время представлены на рынке, являются ингибиторами нейраминидазы (занамивир, озелтамивир, перимивир) или белка М2, формирующего протонные ионные каналы (амантадин, римантадин) [Hayden, F.G. Antivirals for influenza: historical perspectives and lessons learned. Antiviral Res 71, 372-8 (2006).]. Однако эти мишени, особенно последние, подвержены быстрым мутациям, которые могут придать противовирусную резистентность из-за неспособности вирусной РНК-зависимой РНК-полимеразы (RdRp) корректировать РНК во время репликации. Фактически, Всемирная программа по гриппу Всемирной организации здравоохранения сообщила, что >99% штаммов сезонного гриппа А теперь устойчивы к амантадину и римантадину [Barr, I.G. et al. WHO recommendations for the viruses used in the 2013-2014 Northern Hemisphere influenza vaccine: Epidemiology, antigenic and genetic characteristics of influenza A(H1N1) pdm09, A(H3N2) and В influenza viruses collected from October 2012 to January 2013. Vaccine 32, 4713-25 (2014).]. Это привело к поиску новых противовирусных соединений, нацеленных на другие важные вирусные процессы [Yen, Н.L. Current and novel antiviral strategies for influenza infection. Curr Opin Virol 18, 126-134 (2016).]. В этой связи РНК-зависимая РНК-полимеразы (RdRp) или РНК репликаза вируса гриппа сама по себе является привлекательной лекарственной мишенью, поскольку она относительно медленно развивает лекарственную устойчивость, сохраняется в генотипах и имеет важное значение для репликации вируса.

В последнее десятилетие понимание RdRp вируса гриппа резко расширилось за счет выяснения архитектуры эндонуклеазы вируса гриппа с высоким разрешением [Dias, A. et al. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 2009, 458, 914-918. Pflug, A. et al. Structure of influenza A polymerase bound to the viral RNA promoter. Nature 2014, 516, 355-360.] и открытия полной гетеротримерной структуры RdRp [Hengrung, N. et al. Crystal structure of the RNA-dependent RNA polymerase from influenza С virus. Nature 2015, 527, 114-117.].

Находясь в ядрах инфицированных клеток, RdRp вируса гриппа представлена гетеротримером, состоящим из трех субъединиц: PA, РВ1 и РВ2. RdRp отвечает за репликацию и транскрипцию восьми разных сегментов РНК вирусного генома. Эта вирусная полимераза синтезирует вирусные мРНК, используя короткие Кэп-праймеры клетки хозяина. Эти Кэп-праймеры получаются из клеточных транскриптов (РНК) с помощью уникального "Кэп-зависимого" механизма (The cap-dependent mechanism). В зараженной клетке, вирусная субъединица РВ2 связывает Кэп pre-мРНК на их 5' концах. После этого, эти связанные с субъединицей РВ2 CAP-РНК расщепляются вирусной эндонуклеазой после 10-13 нуклеотидов. Биохимические и структурные исследования, показывали, что эндонуклеазный активный центр располагается на амино-терминальном участке из 209 аминокислотных остатков субъединицы РА. Этот домен имеет эндогенную РНК и ДНК эндонуклеазную активность, которая сильно активируется ионами марганца. Это соответствует наблюдениям, в которых сообщалось о зависимости от марганца эндонуклеазной активности интактной трех-субъединичной полимеразы [Dias, A. et al., 2009]. Возможность ингибирования этой эндонуклеазной активности впервые была установлена почти четверть века назад на примере 4-замещенных 2,4-диоксобутановых кислот (например, соединения А1 А2) [J. Tomassini et al. Inhibition of cap (m7GpppXm)-dependent endonuclease of influenza virus by 4-substituted 2,4-dioxobutanoic acid compounds. Antimicrob. Agents Chemoter. 1994, 2827-2837].

Несколько позже были выделены из культуры Delitschia confertaspora природные ингибиторы Cap-зависимой транскриптазы вирусов гриппа А и В, представляющие собой замещенные 2,6-дикетопиперазины, в том числе Флутимид (Flutimide) (A3) и его аналоги [J. Tomassini et al. A Novel Antiviral Agent Which Inhibits the Endonuclease of Influenza Viruses. Antimicrob. Agents Chemoter. 1996, 1189-1193], а также синтетические препараты Фавипиравир (А4) [Furuta Y. et al. T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections. Antiviral Research. 2009, 82 (3), 95-102.], и Пимодивир (A5) [Clark, M.P. et al. Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2. J. Med. Chem. 2014, 57, 6668-6678. Byrn, R.A. et al. Preclinical activity of VX-787, a first-in-class, orally bioavailable inhibitor of the influenza virus polymerase PB2 subunit. Antimicrob. Agents Chemother. 2015, 59, 1569-1582. https://ichgcp.net/clinical-trials-registry/NCT02342249].

Фавипиравир (А4) препарат широкого спектра действия, который нацелен на многочисленные вирусные RdRps, включая вирус гриппа, был одобрен в Японии в 2014 г. и США в 2015 г. для экстренного использования в случае пандемии гриппа, несмотря на некоторые существенные опасения по поводу токсичности этого препарата [Nagata, Т. et al. Favipiravir: a new medication for the Ebola virus disease pandemic. Disaster Med Public Health Prep 9, 79-81 (2015).].

Пимодивир (A5) первый в своем классе ингибитор репликации вируса гриппа, который блокирует РВ2 активность комплекса вирусной полимеразы вируса гриппа [Clark, М.P. et al. Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2. J. Med. Chem. 2014, 57, 6668-6678. Byrn, R.A. et al. Preclinical activity of VX-787, a first-in-class, orally bioavailable inhibitor of the influenza virus polymerase PB2 subunit. Antimicrob. Agents Chemother. 2015, 59, 1569-1582. https://ichgcp.net/clinical-trials-registry/NCT02342249]. Препарат находится в фазе 3 клинических исследований, посвященной оценке эффективности и безопасности пимодивира в сочетании со стандартным лечением у подростков, взрослых и пожилых пациентов с инфекцией гриппа А [https://clinicaltrials.gov/ct2/show/NСТ03376321].

Сравнительно недавно были запатентованы полигетероциклические ингибиторы Сар-зависимой эндонуклеазы, включающие фрагмент замещенной 2,4-диоксобутановой кислоты, в том числе ингибиторы А6, А7 [ЕР 2620436 В1 (приоритет 2010), https://patents.google.com/patent/EP2620436B1], А8, А9 [US 9827244 B2 (приоритет 2016)] и А10, А11 [WO 2016175224 A1; WO 2018030463 (приоритет 2016)].

В этом ряду ингибиторов, по-видимому, наиболее эффективным является, Балоксавир А10 (Baloxavir, Baloxavir acid, ВХА, (12аR)-7-гидрокси-12-[(11S)-5,11-дигидро[1]бензотиепино[3,4-b]пиридин-5-ил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион), пролекарство которого Балоксавир марбоксил А11 (Baloxavir marboxil, ВХМ, S-033188) - торговое название Ксофлюза (Xofluza®) был утвержден в 2018 году для лечения инфекции гриппа А и В в Японии и в США.

Ксофлюза - первый почти за 20 лет пероральный противовирусный препарат с новым механизмом действия для лечения гриппа [S. Omoto at al. Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil. Scientific Reports 2018, 8, Article number: 9633].

Учитывая, что грипп, представляет собой серьезную угрозу для общественного здравоохранения (в глобальном масштабе ежегодные эпидемии приводят к 3-5 миллионам случаев тяжелой болезни, миллионам госпитализаций и до 650000 смертей во всем мире) представляется целесообразным поиск новых противогриппозных препаратов, обладающих улучшенными характеристиками.

Авторы неожиданно обнаружили, что неизвестный ранее замещенный 7-гидрокси-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион общей формулы 1, его стереоизомер, их пролекарство, фармацевтически приемлемая соль, сольват гидрат, и их кристаллическая или поликристаллическая форма, включающая это новое соединение фармацевтическая композиция, являются эффективными противогриппозными средствами.

где R1 - 6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил, 7,8-дифтор-4,9-дигидротиено[2,23-с][2]бензотиепин-4-ил, (3,4-дифторфенил)(фенил)метил, (3,4-дифторфенил)(2-метилсульфанилфенил)метил, дифенилметил, (3,4-дифторфенил)(2-метилсульфанилфенил)метил, дифенилметил, бис(4-фторфенил)метил; R2 - водород, или защитная группа.

Ниже приведены определения различных терминов, используемых для описания данного изобретения. Эти определения применимы к терминам, как они использованы в данном описании и формуле изобретения, если иным не ограничены в конкретных случаях либо по отдельности, либо как часть большей группы.

Термин «арил», используемый здесь, если не оговорено иначе, относится к замещенному или незамещенному фенилу (Ph), бифенилу или нафтилу; предпочтительно термин «арил» относится к замещенному или незамещенному фенилу. Арильная группа может быть замещена одним или несколькими фрагментами, выбранными из гидроксила, F, Cl, Br, I, амино, алкиламино, ариламино, алкокси, арилокси, нитро, циано, сульфокислоты, сульфата, фосфоновой кислоты, фосфата и фосфоната, при необходимости защищенными или нет, известные специалистам в данной области, например, такие, как описанные в книге Грин Т.В. и Ватса П.Г.М. «Защитные группы в органических синтезах» (Т.W. Greene and P.G.M. Wuts, "Protective Groups in Organic Synthesis," 3rd ed., John Wiley & Sons, 1999).

Термин «гетероарил», используемый здесь, относится к моно- или полициклическому ароматическому радикалу, у которого один или несколько атомов кольца выбираются из S, О и N, а остальные атомы кольца - углеродные. Гетероарил включает среди прочего пиридинил, пиразинил, пиримидинил, хинолинил, изохинолинил, бензимидазолил, бензооксазолил или хиноксалинил.

Термин «алкил», используемый здесь, относится к насыщенным, линейным или разветвленным углеводородным радикалам, содержащим от одного до шести атомов углерода. Примеры C16 алкильных радикалов включают среди прочего метил, этил, пропил, изопропил, н-бутил и трет-бутил.

Термин «защитная группа» используемый здесь, относится к заместителям, присоединенным к кислороду спиртовой группы, обычно используемым для блокировки или защиты функциональности спирта, или другого гидроксисоединения, что не мешает взаимодействию с соединением других функциональных rpyпп._[In_boolc_Greene's Protective Groups in Organic Synthesis. Editor: Peter G.M. Chapter 2, Protection for the Hydroxyl Group, Including 1,2- and 1,3-Diols. P. 17-471, 2014. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118905074]. Предпочтительно выбраны из ряда, включающего (C13 алкил)оксикарбонилокси, {[(C13 алкил)оксикарбонил]-окси}метокси, {[2-(С13 алкил)оксиэтокси]карбонил}окси, ({[(1R)-2-[(C1-C3 алкил)окси]-1-метилэтокси]}карбонил)окси, {[(3S)-тетрагидрофуран-3-илокси]-карбонил}окси, [(тетрагидро-2H-пиран-4-илокси)карбонил]окси, {[(1-ацетилазетидин)-3-илокси]карбонил} окси, {[(С13 алкил)оксикарбонил]окси}метокси, ({[2-(С13 алкил)оксиэтокси]карбонил}окси)метокси.

Термин «пролекарство» относится к соединениям по изобретению, которые расщепляются химически или метаболически и становятся, путем сольволиза или в физиологических условиях, соединением по настоящему изобретению, которое фармацевтически активно в естественных условиях. Пролекарства часто имеют более высокую растворимость, тканевую совместимость, доставку или замедленное высвобождение у млекопитающих (Bungard, Н., Desing of products, pp. 7-9, 21-24, Elsevier, Amsterdam 1985). Пролекарства включают кислотные производные, хорошо известные специалистам в данной области техники, такие как, например, сложные эфиры, полученные реакцией исходного кислотного соединения с подходящим спиртом, или амиды, полученные реакцией соединения исходной кислоты с подходящим амином. Примеры пролекарств включают, но не ограничиваются ими, ацетат, формиат, бензоат или другие ацилированные производные спиртов или аминов функциональных групп в соединениях по настоящему изобретению.

Термин «активный компонент» (лекарственное вещество) относится к физиологически активному веществу синтетического или иного (биотехнологического, растительного, животного, бактерицидного и так далее) происхождения, обладающему фармакологической активностью, которое является активным ингредиентом фармацевтической композиции.

Термин «лекарственный препарат» означает вещество (или смесь веществ в виде фармацевтической композиции) в виде таблеток, капсул, инъекций, мазей и др. готовых форм, предназначенное для восстановления, исправления или изменения физиологических функций у человека и животных, а также для лечения и профилактики болезней, диагностики, анестезии, контрацепции, косметологии и прочего.

Термин «терапевтический коктейль» представляет одновременно администрируемую комбинацию двух и более лекарственных препаратов, обладающих различным механизмом фармакологического действия и направленных на различные биомишени, участвующие в патогенезе заболевания.

Термин «фармацевтическая композиция» обозначает композицию, включающую в себя соединение формулы 1 и, по крайней мере, один из компонентов, выбранных из группы, состоящей из фармацевтически приемлемых и фармакологически совместимых наполнителей, растворителей, разбавителей, носителей, вспомогательных, распределяющих и воспринимающих средств, средств доставки, таких как консерванты, стабилизаторы, наполнители, измельчители, увлажнители, эмульгаторы, суспендирующие агенты, загустители, подсластители, отдушки, ароматизаторы, антибактериальные агенты, фунгициды, лубриканты, регуляторы пролонгированной доставки, выбор и соотношение которых зависит от природы и способа назначения и дозировки. Примерами суспендирующих агентов являются этоксилированный изостеариловый спирт, полиоксиэтилен, сорбитол и сорбитовый эфир, микрокристаллическая целлюлоза, метагидроксид алюминия, бентонит, агар-агар и трагакант, а также смеси этих веществ. Защита от действия микроорганизмов может быть обеспечена с помощью разнообразных антибактериальных и противогрибковых агентов, например, таких как парабены, хлорбутанол, сорбиновая кислота и подобные им соединения. Композиция может включать также изотонические агенты, например, сахара, хлористый натрий и им подобные. Пролонгированное действие композиции может быть обеспечено с помощью агентов, замедляющих абсорбцию активного компонента, например, моностеарат алюминия и желатин. Примерами подходящих носителей, растворителей, разбавителей и средств доставки являются вода, этанол, полиспирты, а также их смеси, растительные масла (такие, как оливковое масло) и инъекционные органические сложные эфиры (такие, как этилолеат). Примерами наполнителей являются лактоза, молочный сахар, цитрат натрия, карбонат кальция, фосфат кальция и им подобные. Примерами измельчителей и распределяющих средств являются крахмал, альгиновая кислота и ее соли, силикаты. Примерами лубрикантов являются стеарат магния, лаурилсульфат натрия, тальк, а также полиэтиленгликоль с высоким молекулярным весом. Фармацевтическая композиция для перорального, сублингвального, трансдермального, внутримышечного, внутривенного, подкожного, местного или ректального введения активного компонента, одного или в комбинации с другим активным компонентом, может быть введена животным и людям в стандартной форме введения, в виде смеси с традиционными фармацевтическими носителями. Пригодные стандартные формы введения включают пероральные формы, такие как таблетки, желатиновые капсулы, пилюли, порошки, гранулы, жевательные резинки и пероральные растворы или суспензии, сублингвальные и трансбуккальные формы введения, аэрозоли, имплантаты, местные, трансдермальные, подкожные, внутримышечные, внутривенные, интраназальные или внутриглазные формы введения и ректальные формы введения.

Термин «инертный наполнитель», используемый в данном описании, относится к соединению, которое используют для получения фармацевтической композиции, и, как правило, безопасному, нетоксичному и ни биологически, ни иным образом нежелательному, и включает в себя вспомогательные вещества, которые являются приемлемыми для применения в ветеринарии, а также фармакологически приемлемыми для человеческого использования. Соединения по данному изобретению могут быть введены отдельно, но обычно их будут вводить в смеси с одним или более фармацевтически приемлемыми эксципиентами, разбавителями или носителями, выбранными с учетом предполагаемого пути введения и стандартной фармацевтической практики.

Термин «фармацевтически приемлемая соль» означает относительно нетоксичные органические и неорганические соли кислот и оснований, заявленных в настоящем изобретении. Эти соли могут быть получены in situ в процессе синтеза, выделения или очистки соединений или приготовлены специально. В частности, соли оснований могут быть получены специально, исходя из очищенного свободного основания заявленного соединения и подходящей органической или неорганической кислоты. Примерами полученных таким образом солей являются гидрохлориды, гидробромиды, сульфаты, бисульфаты, фосфаты, нитраты, ацетаты, оксалаты, валериаты, олеаты, пальмитаты, стеараты, лаураты, бораты, бензоаты, лактаты, тозилаты, цитраты, малеаты, фумараты, сукцинаты, тартраты, мезилаты, малонаты, салицилаты, пропионаты, этансульфонаты, бензолсульфонаты, сульфаматы и им подобные (Подробное описание свойств таких солей дано в Berge S.M., et al., "Pharmaceutical Salts" J. Pharm. Sci. 1977, 66: 1-19). Соли заявленных кислот также могут быть специально получены реакцией очищенной кислоты с подходящим основанием, при этом могут быть синтезированы соли металлов и аминов. К металлическим относятся соли натрия, калия, кальция, бария, цинка, магния, лития и алюминия, наиболее желательными из которых являются соли натрия и калия. Подходящими неорганическими основаниями, из которых могут быть получены соли металлов, являются гидроксид, карбонат, бикарбонат и гидрид натрия, гидроксид и бикарбонат калия, поташ, гидроксид лития, гидроксид кальция, гидроксид магния, гидроксид цинка. В качестве органических оснований, из которых могут быть получены соли заявленных кислот, выбраны амины и аминокислоты, обладающие достаточной основностью, чтобы образовать устойчивую соль, и пригодные для использования в медицинских целях (в частности, они должны обладать низкой токсичностью). К таким аминам относятся аммиак, метиламин, диметиламин, триметиламин, этиламин, диэтиламин, триэтиламин, бензиламин, дибензиламин, дициклогексиламин, пиперазин, этилпиперидин, трис(гидроксиметил)аминометан и подобные им. Кроме того, для солеобразования могут быть использованы гидроокиси тетраалкиламмония, например, такие как холин, тетраметиламмоний, тетраэтиламмоний и им подобные. В качестве аминокислот могут быть использованы основные аминокислоты - лизин, орнитин и аргинин.

Термин «кристаллическая форма» означает структуру вещества, характеризующуюся упаковкой образующих ее молекул в один из видов кристаллической решетки.

Термин «поликристаллическая форма» означает структуру вещества, имеющую поликристаллическое строение, т.е. состоящую из множества мелких монокристаллов, т.е. кристаллитов определенной кристаллической формы.

Термин «терапевтически эффективное количество», используемый здесь, означает количество субстанции, пролекарства или лекарства, необходимое для уменьшения симптомов заболевания у субъекта. Доза субстанции, пролекарства или лекарства будет соответствовать индивидуальным требованиям в каждом конкретном случае. Эта доза может варьироваться в широких пределах в зависимости от многочисленных факторов, таких как тяжесть заболевания, подлежащего лечению, возраста и общего состояния здоровья пациента, других лекарственных средств, с помощью которых пациент проходит лечение, способа и формы введения и опыта лечащего врача. Для перорального введения суточная доза составляет приблизительно от 0,01 до 10 г, включая все значения между ними, в день в монотерапии и/или в комбинированной терапии. Предпочтительная суточная доза составляет примерно от 0,1 до 7 г в день. Как правило, лечение начинают с большой начальной «нагрузочной дозы», чтобы быстро уменьшить или устранить вирус, сопровождающей убывающую дозу до уровня, достаточного для предотвращения всплеска инфекции.

Термин «сольват» означает комплекс или агрегат, образуемый одной или более молекулами растворенного вещества, т.е. соединением согласно изобретению или его фармацевтически приемлемой солью и одной или более молекулами растворителя. Такие сольваты являются типичными твердыми кристаллами, имеющими, по существу, фиксированное молярное отношение растворенного вещества и растворителя. Репрезентативные растворители включают в себя, не ограничиваясь перечисленными, воду, этанол, изопропанол, уксусную кислоту и пр. Когда растворителем является вода, образуемый сольват представляет собой гидрат.

Термин «субъект» означает млекопитающее, которое включает, но не ограничивается ими, крупный рогатый скот, свиней, овец, куриц, индеек, буйволов, лам, страусов, собак, кошек и человека, предпочтительно субъектом является человек. Предполагается, что в способе лечения субъекта может быть любое из пролекарств общей формулы 1, его стереоизомер, изотопно-обогащенный аналог, его фармацевтически приемлемая соль, гидрат, сольват, кристаллическая и полиморфная форма, либо в сочетании их с другим соединением, в том числе с ингибитором NS5A HCV.

Авторы неожиданно обнаружили, что неизвестный ранее замещенный 7-гидрокси-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион общей формулы 1, его стереоизомер, их пролекарство, фармацевтически приемлемая соль, сольват гидрат, и их кристаллическая или поликристаллическая форма, включающая это новое соединение фармацевтическая композиция, являются эффективными противогриппозными средствами.

где R1 - 6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил, 7,8-дифтор-4,9-дигидротиено[2,23-с][2]бензотиепин-4-ил, (3,4-дифторфенил)(фенил)метил, (3,4-дифторфенил)(2-метилсульфанилфенил)метил, дифенилметил, бис(4-фторфенил)метил; R2 - водород или защитная группа, выбранная из ряда, включающего бензил, (С1-С3 алкил)оксикарбонилокси, {[(C1-С3 алкил)оксикарбонил]-окси}метокси, {[2-(С1-С3 алкил)оксиэтокси] карбонил} окси, ({(1R)-2-[(C1-С3алкил)окси]-1-метилэтокси]}карбонил)окси, {[(3S)-тетрагидрофуран-3-илокси]-карбонил}окси, [(тетрагидро-2H-пиран-4-илокси)карбонил]окси, {[(1-ацетилазетидин)-3-илокси] карбонил}окси, {[(C1-С3 алкил)оксикарбонил]окси}метокси, ({[2-(С1-С3 алкил)оксиэтокси]карбонил}окси)метокси.

Предпочтительным является:

(12aR)-12-(6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил)-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион общей формулы 1.1,

(12aR)-12-[(10S)-6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион общей формулы 1.2,

(12аR)-12-[(10R)-6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион общей формулы 1.3,

его стереоизомер, их пролекарство, фармацевтически приемлемая соль, сольват, гидрат, и их кристаллическая или поликристаллическая форма

где R2 - имеет вышеуказанное значение.

Более предпочтительным является:

(12аR)-7-бензилокси-12-(6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил)-3,4,12,12а-тетрагидро-1H-[1,4] оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.1.1),

(12аR)-7-бензилокси-12-[(10S)-6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.2.1),

(12аR)-7-бензилокси-12-[(10R)-6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.3.1),

(12аR)-7-гидрокси-12-(6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил)-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.1.2),

(12аR)-7-гидрокси-12-[(10S)-6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.2.2),

(12аR)-7-гидрокси-12-[(10R)-6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.3.2),

(12аR)-12-(6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил)-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил метил карбонат (1.1.3),

(12aR)-12-[(10S)-6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил]-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил метил карбонат (1.2.3),

(12aR)-12-[(10R)-6,7-дифтор-5,10-дигидротиено[3,2-c][2]бензотиепин-10-ил]-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил метил карбонат (1.3.3),

{[(12аR)-12-(6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил)-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил]окси}метил метил карбонат (1.1.4),

({(12аR)-12-[(10S)-6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил]-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил}окси)метил метил карбонат (1.2.4),

({(12аR)-12-[(10R)-6,7-дифтор-5,10-дигидротиено[3,2-c][2]бензотиепин-10-ил]-6,8-диоксо-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил}окси)метил метил карбонат (1.3.4),

их стереоизомер, их пролекарство, фармацевтически приемлемая соль, сольват, гидрат, и их кристаллическая или поликристаллическая форма

Предпочтительным является:

(12aR)-12-(7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил)-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4] триазин-6,8-дион общей формулы 1.4,

(12aR)-12-[(10S)-7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4] триазин-6,8-дион общей формулы 1.5,

(12aR)-12-[(10R)-7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4] триазин-6,8-дион общей формулы 1.6, его стереоизомер, их пролекарство, фармацевтически приемлемая соль, сольват, гидрат, и их кристаллическая или поликристаллическая форма

где R2 - имеет вышеуказанное значение.

Более предпочтительным является:

(12аR)-7-бензилокси-12-(7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил)-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с] пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион 1.4.1,

(12аR)-7-бензилокси-12-[(10S)-7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион 1.5.1,

(12аR)-7-бензилокси-12-[(10R)-7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион 1.6.1,

(12аR)-7-гидрокси-12-(7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил)-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион 1.4.2,

(12аR)-7-гидрокси-12-[(10S)-7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с] пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион 1.5.2,

(12аR)-7-гидрокси-12-[(10R)-7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион 1.6.2,

(12аR)-12-(7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил)-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил метил карбонат 1.4.3,

(12aR)-12-[(10S)-7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил]-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил метил карбонат 1.5.3,

(12aR)-12-[(10R)-7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил]-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил метил карбонат 1.6.3,

{[(12aR)-12-(7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил)-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил]окси}метил метил карбонат 1.4.4,

{[(12aR)-12-[(10S)-7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил]-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил]окси}метил метил карбонат 1.5.4,

{[(12aR)-12-[(10R)-7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил]-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил]окси}метил метил карбонат 1.6.4,

его стереоизомер, их пролекарство, фармацевтически приемлемая соль, сольват, гидрат, и их кристаллическая или поликристаллическая форма

Предпочтительным является:

(12aR)-12-[(3,4-дифторфенил)(фенил)метил]-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион общей формулы 1.7,

(12aR)-12-[(R)-(3,4-дифторфенил)(фенил)метил]-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион общей формулы 1.8,

(12aR)-12-[(S)-(3,4-дифторфенил)(фенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион общей формулы 1.9,

его стереоизомер, их пролекарство, фармацевтически приемлемая соль, сольват, гидрат, и их кристаллическая или поликристаллическая форма

где R2 - имеет вышеуказанное значение.

Более предпочтительным является:

(12аR)-7-бензилокси-12-[(3,4-дифторфенил)(фенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.7.1),

(12аR)-7-бензилокси-12-[(R)-(3,4-дифторфенил)(фенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.8.1),

(12аR)-7-бензилокси-12-[(S)-(3,4-дифторфенил)(фенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.9.1),

(12аR)-7-гидрокси-12-[(3,4-дифторфенил)(фенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.7.2),

(12аR)-7-гидрокси-12-[(R)-(3,4-дифторфенил)(фенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.8.2),

(12аR)-7-гидрокси-12-[(S)-(3,4-дифторфенил)(фенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.9.2),

(12aR)-12-[(3,4-дифторфенил)(фенил)метил]-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил метил карбонат (1.7.3),

(12аR)-12-[(R)-(3,4-дифторфенил)(фенил)метил]-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил метил карбонат (1.8.3),

(12аR)-12-[(S)-(3,4-дифторфенил)(фенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил метил карбонат (1.9.3),

({(12аR)-12-[(3,4-дифторфенил)(фенил)метил]-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил}окси)метил метил карбонат (1.7.4),

({(12аR)-12-[(S)-(3,4-дифторфенил)(фенил)метил]-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил}окси)метил метил карбонат (1.8.4),

({(12аR)-12-[(S)-(3,4-дифторфенил)(фенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил}окси)метил метил карбонат (1.9.4),

его стереоизомер, их пролекарство, фармацевтически приемлемая соль, сольват, гидрат, и их кристаллическая или поликристаллическая форма

Предпочтительным является:

(12aR)-12-[(3,4-дифторфенил)(2-метилсульфанилфенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион общей формулы 1.10,

(12aR)-12-[(R)-(3,4-дифторфенил)(2-метилсульфанилфенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион общей формулы 1.11,

(12aR)-12-[(S)-(3,4-дифторфенил)(2-метилсульфанилфенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион общей формулы 1.12, его стереоизомер, их пролекарство, фармацевтически приемлемая соль, сольват, гидрат, и их кристаллическая или поликристаллическая форма

где R2 - имеет вышеуказанное значение.

Более предпочтительным является:

(12аR)-7-бензилокси-12-[(3,4-дифторфенил)(2-метилсульфанилфенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.10.1),

(12аR)-7-бензилокси-12-[(R)-(3,4-дифторфенил)(2-метилсульфанилфенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.11.1),

(12аR)-7-бензилокси-12-[(S)-(3,4-дифторфенил)(2-метилсульфанилфенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ)[1,2,4]триазин-6,8-дион (1.12.1),

(12аR)-7-гидрокси-12-[(3,4-дифторфенил)(2-метилсульфанилфенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.10.2),

(12аR)-7-гидрокси-12-[(R)-(3,4-дифторфенил)(2-метилсульфанилфенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.11.2),

(12аR)-7-гидрокси-12-[(S)-(3,4-дифторфенил)(2-метилсульфанилфенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.12.2),

(12аR)-12-[(3,4-дифторфенил)(2-метилсульфанилфенил)метил]-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил метил карбонат (1.10.3),

(12аR)-12-[(R)-(3,4-дифторфенил)(2-метилсульфанилфенил)метил]-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил метил карбонат (1.11.3),

(12аR)-12-[(S)-(3,4-дифторфенил)(2-метилсульфанилфенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил метил карбонат (1.12.3),

({(12аR)-12-[(3,4-дифторфенил)(2-метилсульфанилфенил)метил]-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил}окси)метил метил карбонат (1.10.4),

({(12aR)-12-[(R)-(3,4-дифторфенил)(2-метилсульфанилфенил)метил]-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил}окси)метил метил карбонат (1.11.4),

({(12aR)-12-[(S)-(3,4-дифторфенил)(2-метилсульфанилфенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил}окси)метил метил карбонат (1.12.4),

их стереоизомер, их пролекарство, фармацевтически приемлемая соль, сольват, гидрат, и их кристаллическая или поликристаллическая форма

Предпочтительным является:

(12aR)-12-дифенилметил-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион общей формулы 1.13,

его стереоизомер, их пролекарство, фармацевтически приемлемая соль, сольват, гидрат, и их кристаллическая или поликристаллическая форма

где R2 - имеет вышеуказанное значение.

Более предпочтительным является:

(12аR)-7-бензилокси-12-дифенилметил-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.13.1),

(12аR)-7-гидрокси-12-дифенилметил-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.13.2),

(12аR)-12-дифенилметил-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил метил карбонат (1.13.3),

({(12аR)-12-дифенилметил-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил}окси)метил метил карбонат (1.13.4),

его стереоизомер, их пролекарство, фармацевтически приемлемая соль, сольват, гидрат, и их кристаллическая или поликристаллическая форма

Предпочтительным является:

(12aR)-12-[бис(4-фторфенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион общей формулы 1.14,

его стереоизомер, их пролекарство, фармацевтически приемлемая соль, сольват, гидрат, и их кристаллическая или поликристаллическая форма

где R2 - имеет вышеуказанное значение.

Более предпочтительным является:

(12aR)-7-бензилокси-12-[бис(4-фторфенил)метил]-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.14.1),

(12аR)-7-гидрокси-12-[бис(4-фторфенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.14.2),

(12аR)-12-[бис(4-фторфенил)метил]-6,8-диоксо-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил метил карбонат (1.14.3),

({(12aR)-12-[бис(4-фторфенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил}окси)метил метил карбонат (1.14.4),

его стереоизомер, их пролекарство, фармацевтически приемлемая соль, сольват, гидрат, и их кристаллическая или поликристаллическая форма

Предметом данного изобретения является также способ получения соединений общей формулы 1, который включает получение 7-бензилоксипроизводных 1.1.1-1.14.1 взаимодействием (12аR)-7-(бензилокси)-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]-пиридо[2,1-f][1,2,4]триазин-6,8-диона (2) соответственно с 6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-олом (3) или с 7,8-дифтор-7,8-дигидротиено[2,3-с][2]бензотиепин-4-олом (4), или с (3,4-дифторфенил)(фенил)метанолом (5), (3,4-дифторфенил)(2-метилсульфанилфенил)метанолом (6), дифенилметанолом (7) или с бис(4-фторфенил)метанолом (8)

Образующиеся в результате этой реакции 7-бензилоксипроизводные 1.1.1, 1.4.1, 1.7.1 и 1.10.1 разделяют на соответствующие диастериоизомеры 1.2.1, 1.3.1, 1.5.1, 1.6.1, 1.8.1, 1.9.1, 1.11.1 1.12.1 строение которых подтверждено данными рентгеноструктурного анализа (РСА). Так, например, диастереомер (12аR)-7-(бензилокси)-12-[(10S)-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.2.1) был перекристаллизован из этанола и изопропанола, в результате чего были получены ромбические кристаллы, которые по данным РСА представляют собой соответствующие сольваты с этанолом 1.2.1⋅C2H5OH и изопропанолом 1.2.1⋅i-С3Н7ОН в соотношениях 4:3 и 8:3 представлены на Фиг. 1 и 2.

Диастереомер (12аR)-7-бензилокси-12-[(S)-(3,4-дифторфенил)(фенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.9.1) был перекристаллизован из смеси дихлорметан - гексан, в результате чего были получены кристаллы, которые по данным рентгеноструктурного анализа отнесены к триклинной кристаллической системе (Фиг. 3).

7-Бензилоксипроизводные 1.1.1-1.14.1 дебензилируют при нагревании в диметилсульфоксиде в присутствии хлористого лития в соответствующие 7-гидроксипроизводные 1.1.2-1.14.2, а последние превращают в пролекарства 1.1.3-1.14.3 и 1.1.4-1.14.4. Исходный 6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ол (3) является новым соединением, поэтому это соединение и способ его получения являются также предметом настоящего изобретения. Согласно изобретению способ получения 6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ола (3) включает циклизацию 3,4-дифтор-2-[(3-тиенилтио)метил]-бензойной кислоты (3.6) в присутствии PCl5 и восстановление образующегося 6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10(5Н)-она (3.7) боргидридом натрия (Схема 1).

Исходный 7,8-дифтор-7,8-дигидротиено[2,3-с][2]бензотиепин-10-ол (4) является новым соединением, поэтому это соединение и способ его получения являются также предметом настоящего изобретения.

Согласно изобретению способ получения 7,8-дифтор-7,8-дигидротиено[2,3-с][2]бензотиепин-10-ола (4) включает циклизацию 3,4-дифтор-2-[(3-тиенилтио)метил]-бензойной кислоты (4.3) в присутствии PCl5 и восстановление образующегося 6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10(5Н)-она (4.4) боргидридом натрия (Схема 2).

Исходный (3,4-дифторфенил)(фенил)метанол (5) является новыми соединением, поэтому это соединение и способ его получения являются также предметом настоящего изобретения.

Согласно изобретению способ получения (3,4-дифторфенил)(фенил)метанола (5) заключается в восстановлении 3,4-дифторбензофенона (5.1) боргидридом натрия (Схема 3).

Исходный (3,4-дифторфенил)(2-метилсульфанилфенил)метанол (6) является новым соединением, поэтому это соединение и способ его получения являются также предметом настоящего изобретения. Согласно изобретению способ получения (3,4-дифторфенил)(2-метилсульфанилфенил)метанола (6) заключается в восстановлении (3,4-дифторфенил)[2-метилсульфанил)фенил]метанона (6.6) боргидридом натрия (Схема 4).

Новые 7-гидрокси-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дионы, содержащие в положении 12 диарилметильные заместители, в отличие от Балоксавира (ВХА) являются перорально доступными ингибиторами вируса гриппа с достаточно высокой биодоступностью. При этом Смакc и АUCпосл ингибиторов на 1-2 порядка лучше этих параметров ВХА.

Kel - константа элиминации.

T1/2 - период полувыведения.

AUСпосл - площадь под кривой «концетрация-время» от момента введения препарата до определения последней поддающийся количественному измерению концентрации.

AUCINF - площадь под фармакокинетической кривой (зависимость концентрации от времени) от 0 до бесконечности.

MRTпосл - среднее время удержания в неизменном виде в организме от момента введения препарата до определения последней поддающийся количественному измерению концентрации.

Фармакокинетические параметры, в частности, Смакc и AUСпосл в плазме при РО введении мышам (Табл. 2) новых проингибиторов в 10-40 раз превышают таковые Балоксавира марбоксила (ВХМ).

7-Гидроксипроизводные 1.1.2-1.14.2 являются наномолярными ингибиторами изолятов вируса гриппа. Так, например, активность ингибиторов 1.8.2, 1.9.2, 1.13.2 и 1.14.2 в отношении изолятов гриппа A/California/2009 (H1N1) в культуре клеток MDCK имеет значение ЕС50=2÷4 нМ, практически совпадающее с этой активностью Балоксавира (по нашим данным EC50=2.4 нМ). Ингибитор 1.3.2 в отношении изолятов гриппа A/California/2009 (H1N1), A/Aichi/2/69 (H3N2) и A/Perth/265/2009 (H1N1pdm09) (H275Y) в культуре клеток MDCK даже превышает в идентичных условиях активность Балоксавира (ВХА) (Табл. 3).

Предметом настоящего изобретения является применение 7,8-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ола (3), 7,8-дифтор-7,8-дигидротиено[2,3-с][2]бензотиепин-10-ола (4), (3,4-дифторфенил)(фенил)метанола (5), (3,4-дифторфенил)(2-метилсульфанилфенил)метанола (6), дифенилметанола (7) и бис(4-фторфенил)метанола (8) в качестве полупродукта синтеза соединений общей формулы 1.

Предметом настоящего изобретения является применение 7-бензилоксипроизводных 1.1.1-1.14.1 в качестве полупродукта синтеза соответствующих 7-гидроксипроизводных 1.1.2-1.14.2.

Предметом настоящего изобретения является применение 7-гидроксипроизводных 1.1.2-1.14.2 в качестве полупродукта синтеза пролекарств 1.1.3-1.14.3 и 1.1.4-1.14.4.

Предметом настоящего изобретения является применение 7-гидроксипроизводных 1.1.2- 1.14.2, или их стереоизомеров, фармацевтически приемлемой соли, сольвата, гидрата, и их кристаллической или поликристаллической формы, в качестве ингибитора вируса гриппа.

Предметом настоящего изобретения является применение соединений 1.1.3-1.14.3 и 1.1.4-1.14.4 или их стереоизомеров, фармацевтически приемлемых солей, сольватов, гидратов, и их кристаллических или поликристаллических форм в качестве проингибиторов (пролекарств) вируса гриппа.

Предметом настоящего изобретения является применение ингибиторов 1.1.2-1.14.2 или пролекарств 1.1.3-1.14.3 и 1.1.4-1.14.4 или их стереоизомеров, фармацевтически приемлемых солей, сольватов, гидратов, и их кристаллических или поликристаллических форм для лечения или профилактики вирусных заболевания.

Предметом данного изобретения является противовирусная фармацевтическая композиция, содержащая соединение, выбранное из ряда 1.1.2-1.14.2 или ряда пролекарств 1.1.3-1.14.3 и 1.1.4-1.14.4 или ряда их стереоизомеров, фармацевтически приемлемых солей, сольватов, гидратов, и их кристаллических или поликристаллических форм в терапевтически эффективном количестве для лечения или профилактики вирусных заболеваний.

Более предпочтительной является противовирусная фармацевтическая композиция, содержащая соединение, выбранное из ряда 1.1.2-1.14.2 или ряда пролекарств 1.1.3-1.14.3 и 1.1.4-1.14.4 или ряда их стереоизомеров, фармацевтически приемлемых солей, сольватов, гидратов, и их кристаллических или поликристаллических форм в терапевтически эффективном количестве для лечения или профилактики гриппа.

Предметом данного изобретения является способ лечения и/или профилактики вирусного заболевания, характеризующийся введением пациенту соединения, выбранное из ряда 1.1.2-1.14.2 или ряда пролекарств 1.1.3-1.14.3 и 1.1.4-1.14.4 или ряда их стереоизомеров, фармацевтически приемлемых солей, сольватов, гидратов, и их кристаллических или поликристаллических форм или фармацевтической композиции по данному изобретению.

С целью лечения вышеупомянутых заболеваний, в том числе гриппа, у людей соединения по настоящему изобретению можно вводить перорально в виде порошка, гранулы, таблеток, капсул, пилюль, жидкости и т.п. или парентерально в виде инъекций, суппозиториев, чрескожное лекарственное средство, ингалятор и тому подобное. Эффективные дозы настоящих соединений могут быть смешаны с эксципиентами, подходящими для дозированной формы, такими как наполнители, связующие, увлажнители, дезинтеграторы и смазывающие вещества, если это необходимо, для получения фармацевтических препаратов. Для подготовки инъекции стерилизацию проводят с подходящим носителем.

Фармацевтические композиции в соответствии с настоящим изобретением могут вводиться перорально или парентерально. Для перорального введения обычно используемые лекарственные формы, такие как таблетки, гранулы, порошок и капсулы, могут быть получены в соответствии с обычными способами. Для парентерального введения можно использовать подходящую обычную лекарственную форму, такую как инъекция.

Эффективные дозы соединений по настоящему изобретению могут быть смешаны с различными фармацевтическими эксципиентами, подходящими для лекарственной формы, такими как наполнители, связующие вещества, дезинтеграторы и смазывающие вещества, если это необходимо, для получения фармацевтических композиций.

Доза соединений по настоящему изобретению зависит от состояния заболевания, пути введения, возраста или веса пациента. Обычная пероральная доза для взрослых составляет от 0,1 до 100 мг/кг в день, предпочтительно от 1 до 20 мг/кг в день. Доза фармацевтической композиции по настоящему изобретению предпочтительно определяется исходя из возраста и веса пациента, типа и тяжести заболевания, пути введения и тому подобного. Обычная пероральная доза для взрослых находится в диапазоне от 0,05 до 100 мг/кг в день, предпочтительно от 0,1 до 10 мг/кг в день. Парентеральная доза для взрослых значительно варьируется в зависимости от пути введения, но обычно находится в диапазоне от 0,005 до 10 мг/кг в день, предпочтительно от 0,01 до 1 мг/кг в день. Дозу можно вводить один раз в день или можно разделить на несколько суточных доз. Соединение по настоящему изобретению можно использовать в комбинации с другими лекарственными средствами (далее называемые комбинированными лекарственными средствами) для увеличения активности соединения, уменьшения дозы соединения или тому подобного.

В случае лечения гриппа соединение по настоящему изобретению можно использовать в сочетании с ингибитором нейраминидазы (например, Озелтамивир, Занамивир, Перамивир, AV-5080, Инабиру и тому подобное); РНК-зависимый ингибитор РНК-полимеразы (например, Favipiravir); М2-ингибитор белка (например, Амантадин); РВ2-ингибитор связывания белка (cap-binding protein РВ2, например, VX-787); анти-НА-антитело (например, МНАА4549А); интерфероны (например, Гриппферон), индукторы интерферона (например, Кагоцел). Также возможны иммунные агонисты (например, нитазоксанид). В этом случае время введения для соединения по настоящему изобретению и комбинированного лекарственного средства не ограничено. Их можно назначать пациентам, которых нужно лечить, в то время или в разное время. Кроме того, соединение настоящее изобретение и комбинированное лекарственное средство можно вводить в виде двух или более композиций, независимо от каждого активного ингредиента или одной композиции, содержащей каждый активный ингредиент.

Доза для комбинированных препаратов может быть выбрана соответствующим образом в отношении клинической дозы. Соотношение компаундирования соединений по настоящему изобретению и совместно вводимых лекарственных средств может быть соответствующим образом выбрано в зависимости от подлежащего лечению, пути введения, заболевания, подлежащего лечению, симптомов, комбинации лекарств и тому подобного. Для введения у людей, например, 1 часть по массе соединений по настоящему изобретению может использоваться в комбинации с 0,01-100 весовых частей совместно вводимых лекарств.

Изобретение иллюстрируется следующими чертежами:

Фиг. 1. Фрагменты упаковки сольватов 1.2.1⋅С2Н5ОН (А) и 1.2.1⋅i-С3Н7ОН (Б), полученные в результате рентгеноструктурного анализа кристаллов с использованием программы Platon.

Фиг. 2. Общий вид одной из двух симметрически-независимых молекул соливатов 1.2.1⋅С2Н5ОН (А) и 1.2.1⋅i-С3Н7ОН (Б), в представлении атомов эллипсоидами тепловых колебаний р=50%. Сольватные молекулы этанола и изопропанола для ясности не показаны.

Фиг. 3. Общий вид молекулы 1.9.1 в представлении атомов эллипсоидами тепловых колебаний р=50% (А) и версия полученная с использованием программы Platon (Б).

Настоящее изобретение более подробно иллюстрируется, но не ограничивается посредством примеров синтеза соединений общей формулы 1 и их испытаний.

Общие процедуры по химии. Все химические вещества и растворители использовались в том виде, в котором они были получены от поставщиков, без дальнейшей очистки. Неочищенные реакционные смеси концентрировали при пониженном давлении путем удаления органических растворителей на роторном испарителе.

Спектры ядерного магнитного резонанса (NMR) регистрировали с использованием спектрометра Bruker DPX-400 при комнатной температуре (к.т.) с тетраметилсиланом в качестве внутреннего стандарта. Химические сдвиги (δ) представлены в частях на миллион (ppm), а сигналы представлены в виде s (синглет), d (дублет), t (триплет), q (квартет), m (мультиплет) или br s. (широкий синглет).

Масс-спектры высокого разрешения (HRMS) получали на масс-спектрометре Orbitrap Elite (Thermo, Бремен, Германия), оборудованном источником ионов HESI.

Высокоэффективная жидкостная хроматография (ВЭЖХ). Чистота конечных соединений была определена с помощью ВЭЖХ и составляла более 98%. Условия ВЭЖХ для оценки чистоты были следующими: ВЭЖХ Shimadzu, XBridge С18, 4,6 мм × 250 мм (3,5 мкм); градиент 0,1% TFA в 5% ацетонитриле / воде (А) и 0,1% TFA ацетонитриле (В); скорость потока 0,5 мл / мин; время сбора 20 мин; длина волны, УФ 214 и 254 нм. Система препаративной ВЭЖХ включала два набора насосов Shimadzu LC-8A, контроллер Shimadzu SCL 10Avp и детектор Shimadzu SPD 10Avp. Использовали колонку Reprosil-Pur C18-AQ 10 мкм, 250 мм × 20 мм. Подвижная фаза имела градиент 0,1% TFA в воде (А) и 0,1% TFA в ацетонитриле (В). ЖХ / МС (LC/MS) проводили на системе РЕ Sciex API 165 с использованием электрораспыления в режиме положительных ионов [М+Н]+ и системы ВЭЖХ Shimadzu, оснащенной колонкой Waters XBridge С18 3,5 мкм (4,6 мм × 150 мм). Диастериоизомеры делили на хиральной ВЭЖХ Phenomenex Lux 5u Cellulose-4, AXIA F, 250×30.00 mm. Скорость потока: 25 мл/мин. Детектор: УФ, 215 нм.

Рентгеноструктурное исследование образцов проводили на дифрактометре Bruker АРЕХ2 DUO с использованием CuKa-излучения (графитовый монохроматор, ω-сканирование). Структуры расшифрованы прямым методом и уточнены МНК в анизотропном полноматричном приближении по F2hk1. Атомы водорода ОН групп сольватных молекул этанола и изопропанола локализованы в разностных Фурье-синтезах, а положения остальных атомов рассчитаны геометрически. Все атомы водорода уточнены в изотропном приближении по модели наездника. Расчеты проведены с использованием программ SHELXTL PLUS [Sheldrick, G.M. Acta Cryst. 2008, A64: 112-122] и Plex2 [Dolomanov, O.V. et al. J. Appl. Cryst. 2009, 42, 339-341].

Пример 1. 6,7-Дифтортиено[3,2-с][2]бензотиепин-10(5H)-он (4.1) и 6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ол (3) получают по схеме 1.

К раствору 30 г (174.3 ммоль, 1 экв.) 3,4-дифтор-2-метилбензойной кислоты (3.1) в 300 мл метанола прибавили по каплям 207 г (1.74 моль, 10 экв.) хлористого тионила. Смесь нагрели до кипения с обратным холодильником и выдержали 17 часов. Реакционную массу упарили на роторном испарителе, остаток залили водой, продукт отфильтровали и сушили на воздухе. Получали 26.4 г метилового эфира 3,4-дифтор-2-метилбензойной кислоты (3.2) в виде белого кристаллического порошка: 1Н NMR (400 MHz, CDCl3) δ 7.77-7.67 (m, 1Н), 7.04 (dd, J=16.9, 8.9 Hz, 1H), 3.91 (s, 3H), 2.56 (d, J=2.7 Hz, 3H).

К раствору 28.0 г (150.4 ммоль, 1 экв.) полученного эфира 3.2 в 650 мл тетрахлорметана при перемешивании и комнатной температуре прибавили 67.0 г (376.0 ммоль, 2.5 экв.) N-бромсукцинимида. Реакционную массу нагрели до кипения и одной порцией прибавили 360 мг (1.5 ммоль, 0.01 экв.) перекиси бензоила. Реакционную массу перемешивали при кипячении с обратным холодильником 17 часов. Реакционную массу охладили до комнатной температуры, осадок отфильтровали и промыли тетрахлорметаном. Фильтрат упарили на роторном испарителе, а остаток очищали методом колоночной хроматографии (силикагель, этилацетаттексан 1:9). Получали 39.9 г метилового эфира 2-(бромметил)-3,4-дифтор-бензойной кислоты (3.3) в виде желтого масла, которое кристаллизовалось при стоянии, давая белые кристаллы: 1H NMR (400 MHz, CDCl3) δ 7.87-7.77 (m, 1H), 7.19 (dd, J=16.8, 8.8 Hz, 1H), 5.02 (d, J=2.1 Hz, 2H), 3.96 (s, 3H).

К суспензии 12.5 г (90.3 ммоль, 1.5 экв.) K2CO3 и 3.9 г (12.0 ммоль, 0.2 экв.) Cs2CO3 в 70 мл ДМФ прибавили 7.0 г (60.2 ммоль, 1.1 экв.) тиофен-3-тиола (3.4) и смесь перемешивали при комнатной температуре в течение 30 мин. К реакционной массе прибавили 14.5 г (54.7 ммоль, 1 экв.) метилового эфир 2-(бромметил)-3,4-дифторбензойной кислоты (3.3) и смесь перемешивали при комнатной температуре в течение 17 часов. Смесь упарили на роторном испарителе досуха, к остатку прибавили 150 мл этилацетата и 250 мл воды. Органический слой отделили и воду экстрагировали 150 мл этилацетата. Объединенные органические экстракты промыли водой, рассолом, сушили над Na2SO4 и упарили на роторном испарителе досуха. Продукт очищен методом колоночной хроматографии (силикагель, гексан : этилацетат = 1:0-100:1-50:1-10:1). Получили 12,2 г метилового эфира 3,4-дифтор-2-[(3-тиенилтио)метил]бензойной кислоты (3.5) в виде желтого масла: 1Н NMR (400 MHz, DMSO) δ 7.72-7.66 (m, 1Н), 7.56 (dd, J=5.0, 3.0 Hz, 1H), 7.48-7.39 (m, 1H), 7.36 (dd, J=3.0, 1.2 Hz, 1H), 6.94 (dd, J=5.0, 1.2 Hz, 1H), 4.43 (d, J=1.6 Hz, 2H), 3.78 (s, 3H).

К раствору 7.9 г (26.3 ммоль, 1 экв.) метилового эфира 3,4-дифтор-2-[(3-тиенилтио)метил]бензойной кислоты (3.5) в 80 мл метанола прибавили раствор 5.0 г (118.4 ммоль, 4.5 экв.) гидрата гидроксида лития в 40 мл воде. Смесь перемешивали при комнатной температуре в течение 17 часов и упарили на роторном испарителе досуха. К остатку прибавили 100 мл воду, 2N HCl до рН ~ 1-3 и перемешивали суспензию при комнатной температуре в течение 30 мин. Осадок фильтруют и сушат на воздухе. Получили 7 г 3,4-дифтор-2-[(3-тиенилтио)метил]бензойной кислоты (3.6) в виде белого порошока: 1Н NMR (400 MHz, DMSO) δ 13.36 (br.s, 1Н), 7.78-7.71 (m, 1H), 7.56 (dd, J=5.0, 3.0 Hz, 1H), 7.47-7.34 (m, 2H), 6.98-6.92 (m, 1H), 4.48 (s, 2H).

К раствору 1.0 г (3.5 ммоль, 1 экв.) 3,4-дифтор-2-[(3-тиенилтио)метил]бензойной кислоты (3.6) в 120 мл бензола прибавили 0.87 г (4.2 ммоль, 1.2 экв.) PCl5 и смесь перемешивали и кипятили с обратным холодильником в течение 10 мин, затем охладили до комнатной температуры. Через реакционную массу пропускали аргон (слабый ток) 10 мин. для удаления хлористого водорода. Реакционную массу охладили до 0°С и прибавили по каплям 0.91 г (3.5 ммоль, 1 экв.) тетрахлорида олова. Реакционную массу перемешивали и кипятили с обратным холодильником в течение 10 мин, затем охладили. К реакционной массе прибавили 70 мл эфира и смесь промыли дважды по 50 мл 2N HCl, 50 мл воды, рассолом, сушили над Na2SO4 и упарили досуха на роторном испарителе. Продукт выделен методом колоночной хроматографии (силикагель, гексан : этилацетат = 30:1-20:1). Получили 3,9 г 6,7-дифтортиено[3,2-с][2]бензотиепин-10(5Н)-она (3.7) в виде желтого порошка: 1Н NMR (400 MHz, DMSO) δ 8.07 (d, J=5.3 Hz, 1H), 7.64-7.47 (m, 2H), 7.23 (d, J=5.2 Hz, 1H), 4.39 (s, 2H).

К суспензии 3.9 г (14.5 ммоль, 1 экв.) 6,7-дифтортиено[3,2-с][2]бензотиэпина-10(5Н)-она (3.7) в 100 мл метанола прибавили 0.28 г (7.3 ммоль, 0.5 экв.) боргидрид натрия и реакционную массу перемешивали при комнатной температуре в течение 30 мин. Реакционную массу упарили на роторном испарителе, к остатку прибавили 100 мл насыщ. раствор NaHCO3 в воде. Продукт отфильтровали, промыли водой и сушили на воздухе. Получили 3,9 г 6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ола (3) в виде желтоватого порошка: 1Н NMR (400 MHz, DMSO) δ 7.47-7.26 (m, 3Н), 6.84-6.63 (m, 2Н), 6.27 (s, 1H), 4.59 (d, J=14.2 Hz, 1H), 4.42 (d, J=14.3 Hz, 1H).

Пример 2. 7,8-Дифтор-4,9-дигидротиено [2,3-с][2]бензотиепин-4-ол (4) получают по схеме 2.

К суспензии 8.9 г (64.5 ммоль) K2CO3 и 2.8 г (8.6 ммоль) Cs2CO3 в 50 мл ДМФ прибавили 5.0 г (43.0 ммоль) тиофен-2-тиола (4.1) и смесь перемешивали при комнатной температуре в течение 30 мин. К реакционной массе прибавили 11.4 г (43.0 ммоль) метилового эфира 2-(бромметил)-3,4-дифторбензойной кислоты (3.3) и смесь перемешивали при комнатной температуре в течение 17 часов. Полученную смесь упарили на роторном испарителе досуха, к остатку прибавили 150 мл этилацетата и 250 мл воды. Органический слой отделили, а водный слой экстрагировали 150 мл этилацетата. Объединенные органические экстракты промыли водой, рассолом, сушили над Na2SO4 и упарили на роторном испарителе досуха. Продукт очищен методом колоночной хроматографии (силикагель, дихлорметан-гексан 1:4). Получили 9.2 г метилового эфира 3,4-дифтор-2-[(2-тиенилтио)метил]бензойной кислоты (4.2) в виде желтого масла. 1Н NMR (400 MHz, DMSO) δ 7.76-7.70 (m, 1Н), 7.64 (dd, J=5.3, 1.2 Hz, 1H), 7.47 (dd, J=18.1,8.6 Hz, 1H), 7.00 (dd, J=5.3, 3.6 Hz, 1H), 6.97-6.93 (m, 1H), 4.41 (s, 2H), 3.77 (s, 3H).

К раствору 9.2 г (30.6 ммоль) метилового эфира 3,4-дифтор-2-[(2-тиенилтио)метил]-бензойной кислоты (4.2) в 50 мл метанола прибавили раствор 2.6 г (45.9 ммоль) KOH в 50 мл воды. Смесь перемешивали при комнатной температуре в течение 17 часов, затем отогнали метанол при пониженном давлении. Водный остаток экстрагировали дважды по 50 мл эфира после чего подкислили 2N HCl до рН ~ 1-3. Выпавший осадок перемешивали при комнатной температуре в течение 30 мин. Осадок отфильтровывали и сушили на воздухе. Получали 8.4 г 3,4-дифтор-2-[(2-тиенилтио)метил]бензойной кислоты (4.3) в виде белого порошка. 1Н NMR (400 MHz, DMSO) δ 13.36 (s, 1Н), 7.81-7.74 (m, 1H), 7.63 (dd, J=5.2, 1.2 Hz, 1H), 7.43 (dd, J=17.8, 8.7 Hz, 1H), 7.03-6.94 (m, 2H), 4.44 (s, 2H).

К раствору 4.2 г (4.7 ммоль) 3,4-дифтор-2-[(2-тиенилтио)метил]бензойной кислоты (4.3) в 70 мл бензола прибавили 3.7 г (17.6 ммоль) PCl5 и смесь перемешивали и кипятили с обратным холодильником в течение 10 мин, затем охлаждали до комнатной температуры. Через реакционную массу для удаления хлористого водорода пропускали 10 мин аргон (слабый ток). Реакционную массу охлаждали в бане лед-вода до 0°С и прибавляли по каплям 3.8 г (14.7 ммоль, 1экв.) тетрахлорида олова. Реакционную массу перемешивали и кипятили с обратным холодильником в течение 10 мин, затем охлаждали до комнатной температуры. К реакционной массе прибавляли 70 мл эфира и промывали дважды по 50 мл 2N HCl, 50 мл воды, рассолом, сушили над Na2SO4 и упаривали досуха на роторном испарителе. Продукт выделен методом колоночной хроматографии (силикагель, гексан: этилацетат 20:1). Получали 1.8 г 7,8-дифтортиено[2,3-с][2]бензотиепин-4(9Н)-она (4.4) в виде желтого порошка. 1Н NMR (400 MHz, DMSO) δ 7.62-7.45 (m, 4Н), 4.49 (s, 2Н).

К суспензии 1.8 г (6.7 ммоль) 7,8-дифтортиено[2,3-с][2]бензотиепин-4(9Н)-она (4.4) в 50 мл метанола прибавляли 0.25 г (6.7 ммоль) бор гидрид натрия и реакционную массу перемешивали при комнатной температуре в течение 30 мин. Реакционную массу упарили на роторном испарителе, остаток суспендировали в 50 мл хлористого метилена, промывали 50 мл насыщенного раствора NaHCO3. Метиленовый раствор сушили над Na2SO4 и упаривали досуха. Остаток в колбе закристаллизовался. Продукт промывали водой и сушили на воздухе. Получали 1.7 г 7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ола (4) в виде желтоватого порошка. 1Н NMR (400 MHz, DMSO) δ 7.35-7.25 (m, 2Н), 7.25-7.18 (m, 1Н), 7.07 (d, J=4.7 Hz, 1H), 6.27 (d, J=4.0 Hz, 1H), 5.96 (d, J=3.9 Hz, 1H).

Пример 3. (3,4-Дифторфенил)(фенил)метанол (5) получают аналогично синтезу спиртов 3 и 4 из соответствующих кетонов 3.7 и 4.4. (3,4-Дифторфенил)(фенил)метанол (5): LC-MS (ESI, 20 min), 221 (М+Н)+; 1Н NMR (DMSO-d6, 400 MHz) δ 7.29-7.42 (m, 6Н), 7.17-7.24 (m, 2Н), 6.06 (d, J=4.0 Hz, 1H), 5.71 (d, J-4.0 Hz, 1H).

Пример 4. (3,4-Дифторфенил)(2-метилсульфанилфенил)метанол (6).

К суспензии 11.0 г (79.4 ммоль, 1.5 экв.) K2CO3 и 3.5 г (10.6 ммоль, 0.2 экв.) Cs2CO3 в 50 мл ДМФ прибавили 10.0 г (52.9 ммоль, 1 экв.) 1-бром-2-тиофенол (6.1) и реакционную массу перемешивали при комнатной температуре в течение 30 мин. К реакционной смеси прибавили 11.3 г (79.4 ммоль, 1.5 экв.) подметана и смесь перемешивали при комнатной температуре в течение 1 часа. Смесь выливают в 200 мл воды, экстрагируют диэтиловым эфиром, объединенные органические фазы промывают водой, рассолом и сушат над Na2SO4. Растворитель упарили на роторном испарителе досуха и продукт использовали на следующей стадии без дополнительной очистки. Получили в виде желтого масла 10.4 г (97%) 1-бром-2-метилсульфанилбензола (6.2): 1Н NMR (400 MHz, CDCl3) δ 7.54 (dd, J=7.9, 1.2 Hz, 1H), 7.36-7.28 (m, 1H), 7.15 (d, J=7.9 Hz, 1H), 7.02 (td, J=7.8, 1.4 Hz, 1H), 2.49 (s, 3H).

К раствору 18.7 г (118.3 ммоль, 1 экв.) 3,4-дифторбензойной кислоты (6.4) в 374 мл хлористого метилена медленно прибавили 20.1 г (124.2 ммоль, 1.05 экв.) CDI и перемешивали при комнатной температуре в течение 15 минут до прекращения выделения СO2. К реакционной смеси прибавили 12.7 г (130.1 ммоль, 1.1 экв.) гидрохлорида N, О-диметилгидроксиламина и перемешивали при комнатной температуре 17 ч. Смесь разбавили 400 мл воды, слои разделили и водный слой экстрагировали хлористым метиленом (дважды по 100 мл). Объединенные органические слои промывают 200 мл воды, 100 мл рассола, сушат над Na2SO4 и упаривают на роторном испарителе. Получают в виде бесцветного масла 12 г (50%) 3,4-дифтор-N-метокси-N-метилбензамида (6.5):

1Н NMR (400 MHz, CDCl3) δ 7.66-7.57 (m, 1H), 7.57-7.49 (m, 1Н), 7.20 (dd, J=18.1, 8.3 Hz, 1H), 3.56 (s, 3H), 3.37 (s, 3H).

К суспензии 1.49 г (61.4 ммоль, 1.2 экв.) Mg в 60 мл ТГФ прибавили 10.4 г (51.2 ммоль, 1 экв.) 1-бром-2-(метилсульфанил)бензола (6.2) и смесь перемешивали при комнатной температуре 2 ч. Получали раствор [2-(метилсульфанил)фенил]магнийбромида (6.3) в ТГФ.

К охлажденному до (-78)°С (ацетон, сухой лед) раствору 10.3 г (51.2 ммоль, 1 экв.) 3,4-дифтор-N-метокси-N-метилбензамида (6.5) в 60 мл ТГФ по каплям прибавили раствор [2-(метилсульфанил)фенил]магнийбромида (6.3) в ТГФ, поддерживая температуру (-78)-(-60)°С. Смесь перемешивали при (-70)°С в течение 15 мин, затем нагрели до комнатной температуры и перемешивали в течение 17 часов. Реакционную массу охладили до 0°С, к реакционной массе прибавили 200 мл 1N HCl и смесь перемешивали в ледяной бане в течение 15 мин. К смеси прибавили 50 мл этилацетата и 100 мл воды, органический слой отделили и водный слой экстрагировали этилацетатом (дважды по 100 мл). Объединенный органический экстракт промыли водой (дважды по 50 мл), рассолом, сушили над Na2SO4 и упарили на роторном испарителе досуха. Продукт очищали методом колоночной хроматографии (силикагель, этилацетат : гексан = 30:1--20:1). Получали в виде бесцветного масла 3.6 г (3,4-дифторфенил)(2-метилсульфанилфенил)метанона (6.6): 1Н NMR (400 MHz, CDCl3) δ 7.71-7.64 (m, 1Н), 7.58-7.47 (m, 2H), 7.46-7.41 (m, 1H), 7.39-7.34 (m, 1H), 7.28-7.22 (m, 2H), 2.44 (s, 3H).

К раствору 3.6 г (13.6 ммоль, 1 экв.) (3,4-дифторфенил)(2-метилсульфанилфенил)метанона (6.6) в 36 мл метанола прибавили 0.26 г (6.8 ммоль, 0.5 экв.) NaBH4 и реакционную массу перемешивали при комнатной температуре в течение 30 мин. Реакционную массу упарили на роторном испарителе, к остатку прибавили 10 мл 2N HCl и смесь перемешивали при комнатной температуре в течение 5 мин. К смеси порциями прибавили насыщенный раствор 100 мл NaHСО3 и органический продукт экстрагировали этилацетатом (трижды по 60 мл). Объединенный экстракт промывали рассолом, сушили над Na2SO4 и упарили на роторном испарителе досуха. Продукт очищали методом колоночной хроматографии (силикагель, гексан : этилацетат = 30:1--15:1--9:1--7:1--5:1). Получали в виде бесцветного масла 2.9 г (77%) (3,4-дифторфенил)(2-метилсульфанилфенил)метанола (6): 1Н NMR (400 MHz, DMSO) δ 7.51 (d, J=7.5 Hz, 1H), 7.38-7.26 (m, 4H), 7.23-7.17 (m, 1H), 7.13-7.07 (m, 1H), 6.10 (d, J=4.3 Hz, 1H), 5.97 (d, J=4.3 Hz, 1H), 2.44 (s, 3H).

Пример 5. (12аR)-7-(Бензилокси)-12-(5,10-дигидро[3,2-c][2]бензотиепин-10-ил)-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-е][1,2,4]триазин-6,8-дионы 1.1.1 и его диастереомеры 1.2.1, 1.3.1.

К смеси 3.3 г (10.1 ммоль, 1экв.) 7-(бензилокси)-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-f][1,2,4]триазин-6,8-диона (2) и 4.1 г (15.2 ммоль, 1.5 экв.) 6,7-дифтор-5,10-дигидротиено[3,2-с][2]бензотиэпин-10-ола (3) прибавили 64.3 г (101 ммоль, 10 экв.) 50% Т3Р в этилацетате. Реакционную массу перемешивали при комнатной температуре в течение 5 дней, вылили в смесь 200 мл насыщ. раствора NaHCO3 и 200 мл этилацетата. Водный раствор отделили и слой этилацетата снова промыли насыщ. раствором NaHCO3, рассолом, сушили над Na2SO4 и упарили на роторном испарителе. Продукт очищали методом колоночной хроматографии (EtOAc). Продукт 1.1.1 получен в виде белого порошка (5.7 г, 97%). Полученная смесь диастереомеров перекристаллизована из 170 мл этилацетата. Осадок отфильтрован и промыт на фильтре этилацетатом. Получен диастереомер 1.3.1 в виде белого порошка 1.46 г (25%). Фильтрат упарен на роторном испарителе досуха, остаток разделяли на хиральной HPLC, получали диастереомер 1.2.1, который выходил из колонки первым, и диастереомера 1.3.1, который выходил из колонки вторым. Дополнительно перекристаллизовали 2.8 г диастереомера 1.2.1 из 100 мл изопропанола. Абсолютная конфигурация диастереомеров 1.2.1 и 1.3.1 установлена на основании данных РСА (Табл. 4) ромбических сольватов (Фиг. 1 и 2) 1.2.1⋅С2Н5 и 1.2.1⋅i-С3Н7 (соотношениях 4:3 и 8:3 соответственно), полученных в результате кристаллизации диастереомера 1.2.1 из этанола и изопропанола.

Диастереомер 1.2.1: LC MS, m/z 580 (M+1); 1Н NMR (400 MHz, DMSO) δ 7.76 (d, J=5.3 Hz, 1H), 7.56 (d, J=7.4 Hz, 2H), 7.40-7.29 (m, 3H), 7.21-7.11 (m, 1H), 7.03 (d, J=7.7 Hz, 1H), 6.91 (d, J=5.4 Hz, 1H), 6.83-6.75 (m, 1H), 5.76-5.65 (m, 2H), 5.34-5.22 (m, 2H), 5.15 (d, J=11.0 Hz, 1H), 4.56-4.48 (m, 2H), 4.13 (d, J=14.4 Hz, 1H), 3.99-3.92 (m, 1H), 3.73-3.66 (m, 1H), 3.39 (t, J=10.3 Hz, 1H), 2.96-2.86 (m, 1H), 1.04 (d, J=6.0 Hz, 1H).

Диастереомер 1.3.1: LC MS, m/z 580 (M+1); 1H NMR (400 MHz, DMSO) 7.57 (d, J=7.0 Hz, 2H), 7.51-7.29 (m, 6H), 7.23 (d, J=7.7 Hz, 1H), 6.77 (d, J=5.4 Hz, 1H), 5.88-5.80 (m, 2Н), 5.49-5.34 (m, 1Н), 5.25 (d, J=10.7 Hz, 1H), 5.14 (d, J=10.8 Hz, 1H), 4.50-4.40 (m, 1H), 4.35 (dd, J=9.9, 2.9 Hz, 1H), 4.07 (d, J=9.8 Hz, 1H), 3.85 (dd, J=10.7, 2.8 Hz, 1H), 3.70-3.59 (m, 1H), 3.36 (t, J=10.3 Hz, 1H), 3.28-3.19 (m, 1H), 2.99-2.81 (m, 1H).

Пример 6. (12аR)-7-гидрокси-12-(5,10-дигидро[3,2-с][2]бензотиепин-10-ил)-3,4,12,12а-тетрагидро-1Н-[1,41оксазино[3,4-с]пиридо[2,1-е][1,2,4]триазин-6,8-дион 1.1.2 и его диастереомеры 1.2.2 и 1.3.2.

К раствору 0.173 моль (1 экв.) (12аR)-7-(бензилокси)-12-(5,10-дигидро[3,2-с][2]бензотиепин-10-ил)-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-е][1,2,4]триазин-6,8-диона (1.1.1) или его диастереомеров 1.2.1 и 1.3.1 в 15 мл диметилацетамида прибавили 36 мг (0.863 ммоль, 5 экв.) LiCl, реакционную массу нагрели до 80°С и перемешивали в течение 2 часов. Реакционную массу упарили на роторном испарителе досуха, к остатку прибавили 50 мл водного 0.5N HCl и продукт экстрагировали этилацететом (трижды по 30 мл). Объединенный экстракт промыли рассолом, сушили над Na2SO4 и упарили на роторном испарителе досуха. Остаток очищена методом HPLC и получили, соответственно ингибитор 1.1.2 (LC MS, m/z 454 (М+1)), или его диастереомеры 1.1.2, 1.3.2 (LC MS, m/z 454 (М+1)). Ингибитор 1.1.2 представляет собой по данным NMR смесь диастереомеров 1.2.2 и 1.3.2 в соотношении 65:35.

Диастереомер 1.2.2: LC MS, m/z 454 (M+1); 1Н NMR (400 MHz, DMSO) δ 7.53-7.37 (m, 3H), 7.14 (d, J=7.8 Hz, 1H), 6.77 (d, J=5.3 Hz, 1H), 5.86 (s, 1H), 5.69 (d, J=7.7 Hz, 1H), 5.41 (d, J=14.1 Hz, 1H), 4.42 (d, J=10.6 Hz, 2H), 4.09 (d, J=14.2 Hz, 1H), 3.90-3.81 (m, 1H), 3.70-3.56 (m, 2H), 3.46-3.39 (m, 2H), 3.00 (s, 1H).

Диастереомер 1.3.2: LC MS, m/z 454 (M+1); 1H NMR (400 MHz, DMSO) δ 7.76 (d, J=5.3 Hz, 1H), 7.20 (dd, J=18.5, 8.3 Hz, 1H), 7.05-6.87 (m, 3H), 5.84 (s, 1H), 5.56 (d, J=7.7 Hz, 1H), 5.28 (d, J=14.9 Hz, 1H), 4.57 (dd, J=9.8, 2.8 Hz, 1H), 4.49 (d, J=11.8 Hz, 1H), 4.13 (d, J=14.5 Hz, 1H), 4.01-3.93 (m, 1H), 3.76-3.68 (m, 1H), 3.62 (t, J=10.3 Hz, 1H), 3.49-3.39 (m, 2H), 3.05-2.94 (m, 1H);

Пример 7. ({(12аR)-12-[(10S)-5,10-Дигидротиено[3.2-с][2]бензотиепин-10-ил]-4,8-диоксо-3,4,6,8,12,12a-гексагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6-ил}окси)метил метил карбонат 1.1.4 и его диастериоизомеры 1.2.4, 1.3.4.

К суспензии 0.5 ммоль соединения 1.1.2 или его диастереомера 1.2.2, 1.3.2 в 1 мл диметилацетамида прибавили 93 мг (0.75 ммоль) хлорметил метил карбоната, 137 мг (1.0 ммоль) карбоната калия и 82 мг (0.5 моль) йодистого калия, затем реакционную массу нагрели до 60°С и перемешивали в течение 48 часов. Реакционную массу упарили на роторном испарителе досуха, к остатку прибавили 10 мл 0.5N HCl и продукт экстрагировали EtOAc (трижды по 30 мл). Объединенный экстракт промыли 30 мл насыщенного водного раствора NaHCO3, сушили над Na2SO4 и упарили на роторном испарителе досуха. Остаток чистили HPLC. Получили соответственно пролекарство 1.1.4 (LC MS, m/z 578 (М+1)) или его диастериоизомеры 1.2.4 (LC MS, m/z 578 (M+1)), 1.3.4 (LC MS, m/z 578 (M+1)).

Пример 8. (12aR)-12-[(10S)-5,10-Дигидротиено[3,2-с][2]бензотиепин-10-ил]-4,8-диоксо-3,4,6,8,12,12а-гексагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1.2.4]триазин-6-ил метил карбонат 1.1.3 и его диастериоизомеры 1.2.3. 1.3.3.

Продукты 1.1.3 (LC MS, m/z 548 (M+1)), 1.2.3 (LC MS, m/z 548 (M+1)) и 1.3.3 (LC MS, m/z 548 (M+1)) получали аналогично примеру 6, используя метиловый эфир хлормуравьиной кислоты для карбометоксилирования соответственно соединений 1.1.2, 1.2.2 и 1.3.2.

Пример 9. (12аR)-7-(Бензилокси)-12-(7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил)-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дионы 1.4.1 и его диастереомеры 1.5.1, 1.6.1.

К раствору 4.6 ммоль 7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ола (4) в 50 мл пиридина при 0°С прикапали 0.52 г (4.6 ммоль) мезилхлорида и полученную смесь перемешивали при комнатной температуре 24 ч. Затем к смеси добавили 7-(бензилокси)-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-f][1,2,4]триазин-6,8-дион (2) и перемешивали при 70°С еще 24 ч. Упарили пиридин при пониженном давлении, остаток растворили в 100 мл хлористого метилена, промыли 50 мл воды, сушили над сульфатом натрия, упарили. Полученный продукт чистили колоночной хроматографией на силикагеле чистым этилацетатом. Получили (12аR)-7-(бензилокси)-12-(7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил)-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион 1.4.1, состоящий из диастереомеров 1.5.1, 1.6.1, которые выделяй на препаративной хиральной колонке Phenomenex Lux 5u Cellulose-4, AXIA F, 250×30.00 mm. Скорость потока: 25 мл/мин. Детектор: УФ, 254 нм. Подвижная фаза постоянного состава ацетонитрил - изопропанол 80:20.

(12аR)-7-(Бензилокси)-12-(7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил)-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-диона (1.4.1: LC MS m/z 580 (M+1); 1Н NMR (400 MHz, DMSO) δ 7.61-7.51 (m, 2.6H), 7.48-7.29 (m, 3.8H), 7.25 (d, J=1.1 Hz, 0.4H), 7.20-7.09 (m, 1H), 7.02 (dd, J=12.0, 6.5 Hz, 1.2H), 6.76-6.67 (m, 0.6H), 6.26 (d, J=5.2 Hz, 0.4H), 5.83 (s, 0.4H), 5.73-5.66 (m, 1.2H), 5.48 (d, J=14.6 Hz, 0.4H), 5.35-5.26 (m, 1.6H), 5.18-5.10 (m, 1H), 4.54-4.41 (m, 1H), 4.36-4.29 (m, 1H), 4.24 (d, J=14.5 Hz, 0.6H), 4.18 (d, J=14.3 Hz, 0.4H), 3.94 (d, J=7.6 Hz, 0.6H), 3.84 (d, J=7.8 Hz, 0.4H), 3.72-3.61 (m, 1H), 3.42-3.32 (m, 1.4H), 3.29-3.20 (m, 1H), 2.91 (t, J=11.0 Hz, 0.4H), 2.83 (t, J=10.9 Hz, 0.6H).

Диастереомер 1.5.1: IС MS m/z 580 (M+1); 1H NMR (400 MHz, DMSO) δ 7.54 (t, J=5.5 Hz, 3H), 7.38 (t, J=1.2 Hz, 2H), 7.33 (t, J=7.2 Hz, 1H), 7.22-7.11 (m, 1H), 7.02 (dd, J=12.0, 6.5 Hz, 2H), 6.76-6.67 (m, 1H), 5.73-5.66 (m, 2H), 5.35-5.26 (m, 2H), 5.14 (d, J=10.9 Hz, 1H), 4.49 (d, J=11.8 Hz, 1H), 4.32 (d, J=6.9 Hz, 1H), 4.24 (d, J=14.5 Hz, 1H), 3.94 (d, J=7.6 Hz, 1H), 3.68 (d, J=8.8 Hz, 1H), 3.39-3.34 (m, 1H), 3.29-3.21 (m, 1H), 2.83 (t, J=10.9 Hz, 1H).

Диастереомер 1.6.1: IС MS m/z 580 (M+1); 1H NMR (400 MHz, DMSO) δ 7.57 (d, J=6.9 Hz, 2H), 7.48-7.29 (m, 5H), 7.25 (d, J=1.1 Hz, 1H), 7.11 (d, J=5.2 Hz, 1H), 6.26 (d, J=5.2 Hz, 1H), 5.83 (s, 1H), 5.48 (d, J=14.6 Hz, 1H), 5.29 (d, J=11.0 Hz, 1H), 5.12 (d, J=10.9 Hz, 1H), 4.46 (d, J=12.0 Hz, 1H), 4.33 (d, J=7.0 Hz, 1H), 4.18 (d, J=14.3 Hz, 1H), 3.84 (d, J=7.8 Hz, 1H), 3.65 (d,J=11.2 Hz, 1H), 3.42-3.34 (m, 2H), 3.25 (t, J=10.7 Hz, 1H), 2.91 (t, J=11.0 Hz, 1H).

Пример 10. 7-Гидрокси-(12аR)-12-(7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил)-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-f][1,2,4]триазин-6,8-дионы 1.4.2 и его диастереомеры 1.5.2 и 1.6.2.

К раствору 0.14 ммоль 7-бензилокси производного 1.4.2, 1.5.2 или 1.6.2 в 5 мл диметилацетамида прибавляли 9 мг (0.70 ммоль) LiCl, реакционную массу нагревали до 80°С и перемешивали в течение 3 часов. Реакционную массу упаривали на роторном испарителе досуха, а остаток чистили на HPLC. Получали соответствующий продукт 1.4.2, 1.5.2 и 1.6.2.

7-Гидрокси-(12аR)-12-(7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил)-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-f][1,2,4]триазин-6,8-дионы 1.4.2: LC MS, m/z 454 (M+1); 1Н NMR (400 MHz, DMSO) δ 7.53 (d, J=5.2 Hz, 0.5H), 7.44 (dd, J=18.2, 8.4 Hz, 0.5H), 7.38-7.31 (m, 0.5H), 7.27-7.13 (m, 1.5H), 7.03 (d, J=5.3 Hz, 0.5H), 6.97 (d, J=7.7 Hz, 0.5H), 6.92-6.85 (m, 0.5H), 6.42 (d, J=5.3 Hz, 0.5H), 5.87 (s, 0.5H), 5.80 (s, 0.5H), 5.69 (d, J=7.6 Hz, 0.5H), 5.56 (d, J=7.7 Hz, 0.5H), 5.48 (d, J=13.5 Hz, 0.5H), 5.33 (d, J=14.4 Hz, 0.5H), 4.53-4.35 (m, 2H), 4.30-4.14 (m, 1H), 3.96 (dd, J=10.6, 2.7 Hz, 0.5H), 3.90-3.81 (m, 0.5H), 3.69 (t, J=12.4 Hz, 1H), 3.59 (t, J=10.3 Hz, 1H), 3.46-3.41 (m, 1H), 3.08-2.97 (m, 0.5H), 2.91 (t, J=11.0 Hz, 0.5H).

Диастереомер 1.5.2: LC MS, m/z 454 (M+1); : 1H NMR (400 MHz, DMSO) δ 11.80 (br.s, 1H), 7.43 (dd, J=18.2, 8.6 Hz, 1H), 7.38-7.29 (m, 1H), 7.17 (t, J=6.3 Hz, 2H), 6.42 (d, J=5.2 Hz, 1H), 5.87 (s, 1H), 5.69 (d, J=7.6 Hz, 1H), 5.49 (d, J=14.7 Hz, 1H), 4.55-4.33 (m, 2H), 4.19 (d, J=14.4 Hz, 1H), 3.86 (d, J=8.0 Hz, 1H), 3.67 (d, J=9.2 Hz, 1H), 3.59 (t, J=10.4 Hz, 1H), 3.40 (t, J=10.5 Hz, 1H), 3.03 (t, J=11.0 Hz, 1H).

Диастереомер 1.6.2: LC MS, m/z 454 (M+1); 1H NMR (400 MHz, DMSO) δ 11.77 (s, 1H), 7.53 (d, J=5.1 Hz, 1H), 7.21 (dd, J=17.9, 8.6 Hz, 1H), 7.03 (d, J=5.2 Hz, 1H), 6.97 (d, J=7.6 Hz, 1H), 6.93-6.82 (m, 1H), 5.80 (s, 1H), 5.56 (d, J=7.6 Hz, 1H), 5.33 (d, J=14.6 Hz, 1H), 4.48 (d, J=12.6 Hz, 1H), 4.39 (d, J=7.6 Hz, 1H), 4.25 (d, J=14.5 Hz, 1H), 3.96 (d, J=8.6 Hz, 1H), 3.71 (d, J=9.3 Hz, 1H), 3.59 (t, J=10.2 Hz, 1H), 3.42 (t, J=10.8 Hz, 1H), 2.91 (t, J=11.2 Hz, 1H).

Пример 11. ({(12aR)-12-[(4S)-7,8-Дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил1-6,8-диоксо-3,4,6,8,12,12а-гексагидро-1H-[1,41оксазино[3,4-с1пиридо[2,1-ƒ][1,2,4]триазин-7-ил}окси)метил карбонаты 1.5.4 и ({(12аR)-12-[(4R)-7,8-дифтор-4,9-дигидротиено[2,3-с][2]бензотиепин-4-ил]-6,8-диоксо-3,4,6,8,12,12а-гексагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил}окси) метил карбонат 1.6.4.

Получали в условиях описанных в примере 6, исходя из соответствующих диастереомеров 1.5.2 и 1.6.2. Пролекарство 1.5.4: LC MS, m/z 578 (М+1). Пролекарство 1.6.4: LC MS, m/z 578 (M+1).

Пример 12. (12аR)-7-(Бензилокси)-12-[(3,4-дифторфенил)(фенил)метил]-3,4,12,12a-тетрагидро-1H-[1.4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6.8-дион 1.7.1 и его диастереомеры 1.8.1. 1.9.1.

К смеси 900 мг (2.7 ммоль) (12аR)-7-(бензилокси)-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-f][1,2,4]триазин-6,8-диона (2) и 605 мг (2.7 ммоль) (3,4-дифторфенил)(фенил)метанола (5) в 17.5 г (27.0 ммоль) 50% Т3Р в этилацетате прибавили 528 мг (5.4 ммоль) метансульфокислоты и перемешивали при 70°С 16 ч. Реакционную массу охладили до комнатной температуры, добавили 50 мл этилацетата и промыли 50 мл насыщенного раствора NaHСО3, сушили над Na2SO4 и упаривали на роторном испарителе досуха. Полученный продукт чистили колоночной хроматографией на силикагеле чистым этилацетатом. После упаривания соответствующих фракций получили 240 мг продукта (1.7.1): LC MS (20 min): Rt=15.53 (220 нм), m/z 530 (М+1), состоящий из (12aR)-7-(бензилокси)-12-[(R)-(3,4-дифторфенил)(фенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-диона (1.8.1) и (12аR)-7-(бензилокси)-12-[(S)-(3,4-дифторфенил)(фенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-диона (1.9.1), которые разделяли на препаративной хиральной колонке Phenomenex Lux 5u Cellulose-4, AXIA F, 250×30.00 mm. Скорость потока: 25 мл/мин. Детектор: УФ, 254 нм. Подвижная фаза постоянного состава ацетонитрил - изопропанол 80:20.

Диастереомер 1.8.1: 1Н NMR (400 MHz, CDCl3) δ 7.61 (d, J=6.6 Hz, 2H), 7.40-7.33 (m, 4H), 7.25-7.17 (m, 3H), 7.12 (t, J=7.6 Hz, 2H), 6.93 (d, J=7.5 Hz, 2H), 6.73 (d, J=7.7 Hz, 1H), 5.75 (d, J=7.9 Hz, 1H), 5.59 (d, J=10.7 Hz, 1H), 5.45 (d, J=10.8 Hz, 1H), 5.39 (s, 1H), 4.65 (d, J=13.8 Hz, 1H), 4.58-4.50 (m, 1H), 3.97 (d, J=10.4 Hz, 1H), 3.73 (d, J=8.9 Hz, 1H), 3.37-3.22 (m, 2H), 2.96 (t, J=10.9 Hz, 1H).

Диастереомер 1.9.1: 1H NMR (400 MHz, CDCl3) δ 7.62 (d, J=7.2 Hz, 2H), 7.50-7.32 (m, 8H), 7.06-6.95 (m, 1H), 6.91-6.76 (m, 2H), 6.61-6.46 (m, 1H), 5.94 (d, J=7.9 Hz, 1H), 5.64 (d, J=10.7 Hz, 1H), 5.47 (d, J=10.8 Hz, 1H), 5.36 (s, 1H), 4.60 (t, J=12.8 Hz, 2H), 3.95 (d, J=10.7 Hz, 1H), 3.71 (d, J=8.8 Hz, 1H), 3.39-3.20 (m, 2H), 2.99-2.83 (m, 1H).

После кристаллизации из смеси дихлорметан - гексан диастереомера 1.9.1 полученные кристаллы проанализировали методом РСА. Полученные данные (Фиг. 3, Табл. 5) подтвердили его стереохимическое строение.

Пример 13. (12аR)-7-Гидрокси-12-[(3,4-дифторфенил)(фени)метил]-3,4,12,12а-тетрагидро-1H-[1.4]оксазино[3,4-с]пиридо[2,1-ƒ][1.2.4]триазин-6,8-дион (1.7.2) и его диастериомеры 1.8.2 и 1.9.2.

К раствору 64 мг (0.12 ммоль) (12аR)-7-(бензилокси) производного 1.7.1, 1.8.1 или 1.91 в 3 мл диметилацетамида прибавили 40 мг (0.95 ммоль) LiCl, реакционную массу нагрели до 80°С и перемешивали в течение 3 часов. Реакционную массу упарили на роторном испарителе досуха, остаток чистили на HPLC. Получили соответственно (12аR)-7-гидрокси-12-[(3,4-дифторфенил)(фени)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.7.2): LC MS (20 min) m/z 440 (М+1), по данным 1Н NMR смесь диастериоизомероов 1.8.2 и 1.9.2 в соотношении 1.5:1; (12аR)-7-гидрокси-12-[(10R)-(3,4-дифторфенил)(фени)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.8.2): LC MS (20 min), Rt=13.99 (220 нм), m/z 440 (M+1), 1H NMR (400 MHz, DMSO) δ 7.89-7.76 (m, 1H), 7.59-7.44 (m, 2H), 7.33-7.13 (m, 6H), 5.74 (s, 1H), 5.44 (d, J=7.6 Hz, 1H), 4.60 (d, J=7.4 Hz, 1H), 4.37 (d, J=12 J Hz, 1H), 3.96 (d, J=8.3 Hz, 1H), 3.75-3.56 (m, 2H), 3.44-3.37 (m, 2H), 3.22-3.14 (m, 1H) и (12аR)-7-гидрокси-12-[(10S)-(3,4-дифторфенил)(фени)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.9.2): LC MS (20 min), Rt=14.32 (220 нм), m/z 440 (M+1), 1H NMR (400 MHz, DMSO) δ 7.66 (d, J=7,4 Hz, 2H), 7.46 (t, J=7.4 Hz, 3H), 7.43-7.32 (m, 2H), 7.28 (dd, J=18.9, 8.6 Hz, 1H), 7.22-7.14 (m, 1H), 5.78 (s, 1H), 5.58 (d, J=7.6 Hz, 1H), 4.52 (dd, J=10.0, 2.8 Hz, 1H), 4.37 (d, J=12.0 Hz, 1H), 3.92 (dd, J=10.8, 2.8 Hz, 1H), 3.69-3.60 (m, 2H), 3.42-3.35 (m, 1H), 3.03 (t, J=11.1 Hz, 1H).

Пример 14. (12aR)-12-[(R)-(3,4-Дифторфенил)(фени)метил]-7-гидрокси-6,8-диоксо-3,4,6,8,12,12а-гексагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил}окси)метил метил карбонат (1.8.4) и (12аR)-12-[(S)-(3,4-дифторфенил)(фени)метил]-7-гидрокси-6,8-диоксо-3,4,6,8,12,12а-гексагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил}окси)метил метил карбонат (1.9.4).

Получены по аналогии с соединениями 1.1.4. 1.2.4 и 1.3.4, синтез которых описан в примере 7.

Диастериоизомер 1.8.4: LC MS (20 min), m/z 528 (M+1), 1H NMR (DMSO-d6, 300 MHz, 80°C) δ 7.76 (m, 1H), 7.48 (m, 2H), 7.35 (m, 1H), 7.24 (m, 5H), 5.73 (m, 1H), 5.66 (m, 3H), 4.57 (m, 1H), 4.37 (m, 1H), 4.00 (m, 1H), 3.75 (s, 3H), 3.71 (m, 1H), 3.43 (m, 1H), 3.30 (m, 1H), 3.10 (m, 1H).

Диастериоизомер 1.9.4: LC MS (20 min), m/z 528 (M+1), 1H NMR (DMSO-d6, 300 MHz, 80°C) δ 7.65 (m, 2H), 7.43 (m, 5H), 7.21 (m, 2H), 5.79 (d, J=8.0 Hz, 1H), 5.70 (m, 3H), 4.51 (m, 1H), 4.36 (m, 1H), 3.97 (m, 1H), 3.75 (s, 3H), 3.68 (m, 1H), 3.45 (m, 1H), 3.29 (m, 1H), 2.95 (m, 1H).

Пример 15. (12аR)-7-(Бензилокси)-12-{(3,4-дифторфенил)[2-(метилтио)фенил]метил}-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-е][1,2,4]триазин-6,8-дион (1.10.1) и его диастертомеры 1.11.1 и 1.12.1.

К смеси 400 мг (1.222 ммоль, 1 экв.) 7-(бензилокси)-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-f][1,2,4]триазин-6,8-диона (2) и 358 мг (1.344 ммоль, 1.1 экв.) (3,4-дифторфенил)[2-(метилтио)фенил]метанола (6) прибавили 1166.5 мг (1,833 ммоль, 1.5 экв.) 50% Т3Р в этилацетате и 0.4 мл этилацетата. К суспензии прибавили 235 мг (2.444 ммоль, 2 экв.) метансульфокислоты и смесь грели в микроволновом реакторе (СЕМ) MW, 100°С, 5.5 часа. К реакционной смеси прибавили при охлаждении льдом 4 мл воды и смесь перемешивали в ледяной бане в течение 1 часа. К реакционной смеси прибавили 30 мл воды и органическую фазу экстрагировали этилацетатом (трижды по 30 мл). Объединенный органический слой промыли насыщенным раствором NaHCO3, рассолом, сушили над Na2SO4 и упаривали на роторном испарителе досуха. Продукт 1.10.1, состоящий из его диастертомеров 1.11.1 и 1.12.1, частично дебензилируется, поэтому смесь направлена на следующую стадию без очистки. LC MS (3 min): Rt=1.40 (220 нм), m/z 576 (M+1).

Пример 16. (12аR)-7-Гидрокси-12-{(3,4-дифторфенил)[2-(метилтио)фенил]метил}-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-е][1,2,4]триазин-6,8-дион (1.10.2), состоящий из его диастертомеров 1.11.2 и 1.12.2.

Продукт, полученный в примере 15 растворяли в 10 мл диметилацетамида и к раствору прибавили 259 мг (6.11 ммоль, 5 экв.) LiCl. Смесь нагрели до 80°С и перемешивали в течение 3 часов. Реакционную массу упарили на роторном испарителе досуха, к остатку прибавили 50 мл 0.5М HCl, перемешивали при комнатной температуре в течение 10 мин и полученный осадок отфильтровали. Осадок промыли водой и сушили на воздухе. Продукт очищен методом HPLC. Продукт 1.10.2 (LC MS (20 min): Rt=14.49 (220 нм), m/z 486 (M+1)) по данным 1Н NMR анализа состоял из диастереомеров 1.11.2 и 1.12.2 в соотношении 60:40.

Пример 17. (12aR)-7-(Бензилокси)-12-12-дифенилметил-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.13.1).

К смеси 380 мг (1.2 ммоль) 7-(бензилокси)-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-f][1,2,4]триазин-6,8-диона (2) и 214 мг (1.2 ммоль) дифенилметанола (7) в 7.4 г (12.0 ммоль) 50% Т3Р в этилацетате прибавили 223 мг (2.4 ммоль) метансульфокислоты и перемешивали при 50°С 16 ч. Реакционную массу охладили до комнатной температуры, добавили 50 мл этилацетата, промыли 50 мл насыщенного раствора NaHCO3, сушили над Na2SO4 и упаривали на роторном испарителе досуха. Полученный продукт чистили колоночной хроматографией на силикагеле этилацетатом. После упаривания соответствующих фракций получили 407 мг (71%) продукта 1.13.1: LC MS (20 min), Rt=17.10 (220 нм), m/z 494 (M+1); 1H NMR (400 MHz, DMSO) δ 7.66 (d, J=7.5 Hz, 2H), 7.55 (d, J=7.3 Hz, 2H), 7.45 (t, J=7.5 Hz, 2H), 7.40-7.28 (m, 5H), 7.21 (d, J=7.2 Hz, 2H), 7.19-7.09 (m, 3H), 5.66 (s, 1H), 5.57 (d, J=7.7 Hz, 1H), 5.24 (d, J=10.8 Hz, 1H), 5.05 (d, J=10.9 Hz, 1H), 4.53-4.45 (m, 1H), 4.40 (d, J=12.8 Hz, 1H), 3.92 (d, J=8.2 Hz, 1H), 3.64 (d, J=9.0 Hz, 1H), 3.45-3.37 (m, 1H), 3.23 (t, J=10.9 Hz, 1H), 2.96 (t, J=10.9 Hz, 1H).

Пример 18. (12аR)-7-Гидрокси-12-дифенилметил-3,4,12,12а-тетрагидро-1Н-[1.4]оксазино[3.4-с]пиридо[2,1-ƒ][l,2,4]триазин-6,8-дион (1.13.2).

К раствору 360 мг (0.73 ммоль) (12аR)-7-(бензилокси)-12-дифенилметил-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-диона (1.13.1) в 5 мл диметилацетамида прибавили 155 мг (3.65 ммоль) LiCl, реакционную массу нагрели до 80°С и перемешивали в течение 3 часов. Реакционную массу упарили на роторном испарителе досуха, к остатку прибавили 50 мл 0.5N HCl и продукт экстрагировали EtOAc (трижды по 30 мл). Объединенный экстракт промыли рассолом, сушили над Na2SO4 и упарили на роторном испарителе досуха. Получили 62 мг продукта 1.13.2: LC MS (20 min), Rt=12.85 (220 нм), m/z 404 (M+1); 1H NMR (400 MHz, DMSO) δ 7.66 (d, J=7.3 Hz, 2H), 7.45 (t, J=7.3 Hz, 2H), 7.40-7.33 (m, 1H), 7.28 (s, 2H), 7.25-7.13 (m, 4H), 5.68 (s, 1H), 5.44 (d, J=1.1 Hz, 1H), 4.56 (d, J=8.0 Hz, 1H), 4.38 (d, J=13.0 Hz, 1H), 3.94 (d, J=9.1 Hz, 1H), 3.72-3.59 (m, 2H), 3.45-3.37 (m, 2H), 3.12-3.00 (m, 1H).

Пример 19. ({(12aR)-12-Дифенилметил-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил)окси)метил метил карбонат (1.13.4).

Пролекарство 1.13.4 получали в условиях описанных в примере 7 по аналогии с получением ({(12aR)-12-[(10S)-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил]-4,8-диоксо-3,4,6,8,12,12а-гексагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6-ил}окси)метил метил карбоната (1.1.4).

Продукт 1.13.4: LC MS (20 min), Rt=12.85 (220 нм), m/z 492 (M+1); 1H NMR (DMSO-d6, 400 MHz) δ 7.67 (d, J=7.6 Hz, 2H), 7.46 (t, J=1.6 Hz, 2H), 7.37 (m, 2H), 7.27 (m, 2H), 7.19 (m, 3H), 5.68 (s, 1H), 5.67 (d, J=6.8 Hz, 1H), 5.63 (d, J=7.6 Hz, 1H), 5.61 (d, J=6.8 Hz, 1H), 4.51 (dd, J1=10.0 Hz, J2=2.8 Hz, 1H), 4.34 (d, J=13.2 Hz, 1H), 3.96 (dd, J1=10.8 Hz, J2=2.4 Hz, 1H), 3.72 (s, 3H), 3.68 (dd, J1=11.2 Hz, J2=2.8 Hz, 1H), 3.45 (t, J=10.4 Hz, 1H), 3.26 (m, 1H), 3.01 (dt, J1=12.4 Hz, J2=2.8 Hz, 1H).

Пример 20. (12аR)-7-(Бензилокси)-12-[бис(4-фторофенил)метил]-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1ƒ][1,2,4]триазин-6,8-дион (1.14.1).

К смеси 0.67 г (3.1 ммоль) 7-(бензилокси)-3,4,12,12а-тетрагидро-1Н-[1,4]оксазино[3,4-с]пиридо[2,1-f][1,2,4]триазин-6,8-диона (2) и 1.0 г (3,1 моль) бис(4-фторфенил)метанола (8) в 19.4 г (31.0 ммоль) 50% Т3Р в этилацетате прибавили 0.59 г (6.2 ммоль) метансульфокислоты и перемешивали при 80°С 16 ч. Реакционную массу охладили до комнатной температуры, добавили 150 мл этилацетата и промыли 200 мл насыщенного водного раствора NaHCO3, сушили над Na2SO4 и упаривали на роторном испарителе досуха. Полученный продукт чистили колоночной хроматографией на силикагеле этилацетатом. После упаривания соответствующих фракций получили продукт 1.14.1: LC MS (20 min), Rt=15.66 (220 нм), m/z 530 (M=1); 1Н NMR (400 MHz, DMSO) δ 7.76-7.67 (m, 2H), 7.55 (d, J=7.1 Hz, 2H), 7.42-7.21 (m, 8H), 6.97 (t, J=8.7 Hz, 2H), 5.76 (s, 1H), 5.65 (d, J=7.7 Hz, 1H), 5.24 (d, J=10.9 Hz, 1H), 5.06 (d, J=10.8 Hz, 1H), 4.47 (d, J=7.2 Hz, 1H), 4.40 (d, J=12.6 Hz, 1H), 3.91 (d, J=8.3 Hz, 1H), 3.64 (d, J=9.0 Hz, 1H), 3.42 (t, J=10.5 Hz, 1H), 3.23 (t, J=10.8 Hz, 1H), 3.01 (t, J=11.4 Hz, 1H).

Пример 21. (12aR)-12-[Бис(4-фторофенил)метил]-7-гидрокси-3,4,12,12а-тетрагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6,8-дион (1.14.2).

Продукт 1.14.2: LC MS (20 min), Rt=12.72 (220 нм), m/z 440; 1H NMR (400 MHz, DMSO) δ 11.61 (br.s, 1H), 7.76-7.64 (m, 2H), 7.39-7.18 (m, 5H), 7.03 (t, J=8.7 Hz, 2H), 5.77 (d, J=11.9 Hz, 1H), 5.52 (d, J=7.6 Hz, 1H), 4.63-4.46 (m, 1H), 4.37 (d, J=13.4 Hz, 1H), 3.92 (d, J=8.1 Hz, 1H), 3.72-3.57 (m, 2H), 3.39 (t, J=10.8 Hz, 1H), 3.11 (t, J=11.1 Hz, 1H); получали в условиях описанных в примере 17 для соединения 1.13.2.

Пример 22. ({(12аR)-12-[Бис(4-фторфенил))метил]-3.4,12,12а-тетрагидро-1Н-[1.4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-7-ил}окси)метил метил карбонат (1.14.4).

Продукт 1.14.4 получали в условиях описанных в примере 7 по аналогии с получением ({(12аR)-12-[(10S)-5,10-дигидротиено[3,2-с][2]бензотиепин-10-ил]-4,8-диоксо-3,4,6,8,12,12а-гексагидро-1H-[1,4]оксазино[3,4-с]пиридо[2,1-ƒ][1,2,4]триазин-6-ил}окси)метил метил карбоната (1.1.4).

Продукт 1.14.4: LC MS (20 min), Rt=12.85 (220 нм), m/z 528 (M+1); 1H NMR (DMSO-d6, 400 MHz) δ 7.73 (m, 2H), 7.39 (d, J=7.6 Hz, 1H), 7.27-7.32 (m, 4H), 7.02 (m, 2H), 5.78 (s, 1H), 5.71 (d, J=7.6 Hz, 1H), 5.68 (d, J=6.8 Hz, 1H), 5.61 (d, J=6.8 Hz, 1H), 4.50 (dd, J1=10.0 Hz, J2=3.2 Hz, 1H), 4.33 (d, J=13.2 Hz, 1H), 3.95 (dd, J1=10.8 Hz, J2=2.8 Hz, 1H), 3.72 (s, 3H), 3.68 (dd, J1=11.2 Hz, J2=3.2 Hz, 1H), 3.46 (t, J=10.4 Hz, 1H), 3.26 (dt, J1=11.6 Hz, J2=2.0 Hz, 1H), 3.05 (dt, J1=12.4 Hz, J2=3.2 Hz, 1H).

Пример 23. In vitro активность новых ингибиторов в отношении изолятов вируса гриппа в культуре клеток MDCK методом иммуноферментного анализа (ИФА).

Протокол 1 компании ImQuest Biosciences (Frederick, Maryland, USA) использовался для определения активности соединений изолятов гриппа A/California/2009 (H1N1).

Подготовка клеток. Клетки MDCK (клетки почек собак, CCL-34) получали из АТСС и пассировали в DMEM с добавлением 10% FBS, 2 мМ L-глутамина, 100 Е/мл пенициллина, 100 мкг/мл стрептомицина, 1 мМ пирувата натрия, и 0,1 mMNEAA, колбы Т-75 перед использованием в противовирусном анализе. В день, предшествующий анализу, клетки разделяли 1:2, чтобы гарантировать, что они находились в экспоненциальной фазе роста во время инфекции. Определение количества клеток и жизнеспособности проводили с использованием гемоцитометра и исключения красителя трипановым синим. Жизнеспособность клеток была более 95% для клеток, которые будут использоваться в анализе. Клетки ресуспендировали при 1×104 клеток на лунку в среде для тканевых культур и добавляли в планшеты для микротитрования с плоским дном в объеме 100 мкл. Планшеты инкубировали при 37°С / 5% СО2 в течение ночи, чтобы обеспечить адгезию клеток.

Приготовление вируса. Вирус гриппа А/СА/04/09 (NR-13685-) был получен из BEI Resources (Manassas, VA) и выращен в клетках MDCK для производства пулов исходных вирусов. Предварительно титрованную аликвоту вируса удаляли из морозильника (-80°С) и позволяли медленно оттаивать до комнатной температуры в шкафу биологической безопасности. Вирус ресуспендировали и разбавляли в среде для анализа (DMEM с добавлением 2 мМ L-глутамина, 100 Е/мл пенициллина, 100 мкг/мл стрептомицина, 1 мМ пирувата натрия, 0,1 мМ NEAA и 1 мкг/мл ТПКК - обработанного трипсина) таким образом, чтобы количество вируса, добавляемого в каждую лунку в объеме 100 мкл, было определено для того, чтобы убить от 85 до 95% клеток через 4 дня после заражения (MOI 0,01).

Формат планшета. Каждый планшет содержал лунки для контроля клеток (только клетки), лунки для контроля вирусов (клетки плюс вирус), лунки для колориметрического контроля лекарств (только лекарство), а также экспериментальные лунки (лекарство плюс клетки плюс вирус). Образцы тестировали трижды на эффективность с пятью половинными разведениями на соединение.

Эффективность и токсичность ХТТ - После инкубации при 37°С в 5% СО2-инкубаторе тестовые планшеты окрашивали тетразолиевым красителем ХТТ (2,3-бис(2-метокси-4-нитро-5-сульфофенил)-5-[(фениламино)карбонил]-2Н-тетразолий гидроксид, Sigma-Aldrich). ХТТ-тетразолий метаболизируется митохондриальными ферментами метаболически активных клеток до растворимого продукта формазана, что позволяет проводить быстрый количественный анализ ингибирования вызванного вирусом уничтожения клеток антивирусными тестируемыми веществами. Раствор ХТТ готовили ежедневно в виде запаса 1 мг/мл в RPMI1640. Раствор метазульфата феназина (PMS, Sigma-Aldrich) готовили в концентрации 0,15 мг/мл в PBS и хранили в темноте при -20°С. Исходный материал XTT/PMS готовили непосредственно перед использованием путем добавления 40 мкл PMS на мл раствора ХТТ. Пятьдесят микролитров XTT/PMS добавляли в каждую лунку планшета и планшет реинкубировали в течение 4 часов при 37°С. Планшеты герметично закрывали клеевыми герметизаторами пластин и осторожно встряхивали или переворачивали несколько раз, чтобы смешать растворимый продукт формазан, и планшет считывали спектрофотометрически при 450/650 нм с помощью устройства для считывания планшетов Molecular Devices Vmax.

Анализ данных - необработанные данные были собраны из Softmax Pro и импортированы в электронную таблицу Microsoft Excel XLfit4 для анализа с использованием расчетов соответствия четырех параметров.

Протокол 2 научно-исследовательского института вакцин и сывороток им. И.И. Мечникова (ФГБНУ НИИВС им. И.И. Мечникова, Москва) использовался для определения активности соединений изолятов гриппа A/Aichi/2/69 (H3N2) и A/Perth/265/2009 (H1N1pdm09) (H275Y).

Для определения противогриппозной активности новых ингибиторов (J и прототипа клетки MDCK рассаживали в 96-луночных планшетах фирмы "Costar" со средней плотностью 30000-35000 клеток на лунку и выращивали в минимальной среде Игла в присутствии 5% фетальной сыворотки телят и 10 мМ глутамина до полного монослоя. Перед заражением вирусом клетки 2 раза промывали средой без сыворотки. Исследуемые соединения добавляли к клеткам в 2-кратной концентрации в 100 мкл минимальной среды Игла. К вирусному контролю добавляли по 100 мкл этой же среды, а к клеточному контролю по 200 мкл. Поскольку использовались штаммы вируса гриппа человека, изучаемые образцы и разведения вируса готовились на среде с добавлением 2,5 мкг/мл трипсина ТРСК. После инкубации клеток с исследуемыми препаратами в течение 2 часов при 37°С в лунки, исключая клеточный контроль, добавляли по 100 мкл аллантоисного вируса, разведенного на среде с добавлением 5 мкг/мл трипсина ТРСК (от 0,1 до 5 БОЕ на клетку). Далее планшеты инкубировали в течение 24 часов в атмосфере 5% СО2 при 37°С. После инкубации среду удаляли и клетки фиксировали 80% ацетоном на фосфатно-солевом буфере в течение 20 минут, хорошо высушивали, а затем отмывали 3 раза фосфатно-солевым буфером с 0,05% Твин-20 (ИФА-раствор). Эти и все дальнейшие процедуры отмывки проводили указанным раствором. Далее к клеткам добавляли по 100 мкл раствора фосфатно-солевого буфера с 1% фетальной сывороткой и 0,05% Твин-20 и инкубировали при 37°С в течение 30 минут. После удаления раствора к клеткам добавляли по 100 мкл моноклональных антител (МКА) к внутренним белкам вируса гриппа А (NP+M1), разведенным 1:1000 на ИФА-растворе. После инкубации с антителами в течение 1 часа при 37°С и последующей 3-кратной промывки в лунки вносили по 100 мкл IgG кролика против IgG мыши, меченных пероксидазой хрена в разведении 1:5000. и инкубировали еще 1 час при 37°С. После 4-кратной промывки связанную пероксидазу выявляли добавлением в лунки 100 мкл 0,05% раствора ортофенилендиамина в 0,003% цитратном буфере рН 5,0, содержащем 0,003% Н2О2. Планшеты выдерживали 15-30 минут в темноте до появления окраски, реакцию останавливали добавлением 50 мкл 4N H2SO4, далее оптическую плотность (ОП) измеряли на автоматическом спектрофотометре при длине волны 450 нм. В качестве клеточного контроля использовали лунки, не зараженные вирусом. Процент ингибирования вирусной репродукции изучаемым соединением определяли по формуле: процент ингибирования = 100-(ОП опыта - ОП клеточного контроля / ОП вирусного контроля в отсутствии соединения - ОП клеточного контроля). Для одной точки опыта использовали четыре лунки планшета, а каждое значение представляет среднее арифметическое, вычисленное из этого опыта. Концентрация препарата, уменьшающая значение величины ОП на 50% принималась за ингибирующую концентрацию 50 (IС50). Противовирусная активности новых ингибиторов и Балоксавира в изолятов вирусов гриппа А в культуре клеток MDCK представлены в таблице 3.

Пример 24. Фармацевтическая композиции в виде таблетки.

Крахмал (1700 мг), молотую лактозу (1700 мг), тальк (400 мг), и 1200 мг пролекарства 1.1.4 или 1.11.4 или 1.14.4 смешивали и прессовали в бар. Полученный брусок измельчали в гранулы и просеивали через сито, чтобы собрать гранулы размером 14-16 меш. Полученные таким образом гранулы были сформированы в таблетки подходящей формы весом 80 или 160 мг каждая.

Пример 25. Фармацевтическая композиция в виде капсул.

Пролекарство формулы 1.1.4 или 1.11.4 или 1.14.4 тщательно смешивали с порошком лактозы в соотношении 2:1. Полученную порошкообразную смесь упаковывали в желатиновые капсулы подходящего размера по 36 или 72 мг в каждой капсуле.

Источник поступления информации: Роспатент

Showing 1-10 of 37 items.
20.03.2013
№216.012.2f9f

Замещенные феноксиуксусные кислоты, их эфиры и амиды, включающие 2,6-диоксо-2,3,6,7-тетрагидро-1н-пурин-8-иловый фрагмент, - антагонисты аденозинового a рецептора и их применение

Данное изобретение относится к новым замещенным феноксиуксусным кислотам общей формулы 1, обладающим свойствами селективного антагониста, ингибирующего активность аденозинового A рецептора. Соединения могут быть использованы при профилактике и лечении заболеваний центральной нервной системы,...
Тип: Изобретение
Номер охранного документа: 0002477726
Дата охранного документа: 20.03.2013
20.08.2013
№216.012.5efc

Дымообразующая композиция для электронных устройств, имитирующих табакокурение, способ ее получения и применения

Изобретение относится к дымообразующим композициям для электронных устройств, имитирующих табакокурение, к способу получения дымообразующей композиции, а также к катриджу электронного устройства и самому электронному устройству. Композиция содержит воду и/или этанол, ароматизаторы и/или...
Тип: Изобретение
Номер охранного документа: 0002489948
Дата охранного документа: 20.08.2013
27.10.2013
№216.012.785d

Фармацевтическая композиция и набор для лечения бактериальных инфекций

Изобретение относится к химико-фармацевтической промышленности, а именно к фармацевтическим композициям и фармацевтическим наборам для лечения бактериальных инфекций и нового способа лечения заболеваний, связанных с бактериальными инфекциями, в том числе туберкулеза. Фармацевтическая композиция...
Тип: Изобретение
Номер охранного документа: 0002496475
Дата охранного документа: 27.10.2013
10.12.2013
№216.012.88ae

(3-арилсульфонилхинолин-8-ил)-диалкил-амины - селективные антагонисты серотониновых 5-ht рецепторов, способы их получения и применения

Изобретение относится к новым (3-арилсульфонилхинолин-8-ил)-диалкил-аминам общей формулы 1 и их фармацевтически приемлемым солям, которые являются селективными антагонистами серотониновых 5-НТ рецепторов. Соединения могут быть использованы в качестве лекарственного начала в фармацевтических...
Тип: Изобретение
Номер охранного документа: 0002500672
Дата охранного документа: 10.12.2013
10.06.2014
№216.012.cd76

Алкил [2-(2-{5-[4-(4-{2-[1-(2-метоксикарбониламино-ацетил)-пирролидин-2-ил]-3н-имидазол-4-ил}-фенил)-бута-1,3-диинил]-1н-имидазол-2-ил}-пирролидин-1-ил)-2-оксо-этил]-карбамат, фармацевтическая композиция, лекарственное средство, способ лечения вирусных заболеваний

Настоящее изобретение относится к новым алкил [2-(2-{5-[4-(4-{2-[1-(2-метоксикарбониламино-ацетил)-пирролидин-2-ил]-3Н-имидазол-4-ил}-фенил)-бута-1,3-диинил]-1Н-имидазол-2-ил}-пирролидин-1-ил)-2-оксо-этил]-карбаматам или их нафталин-1,5-дисульфонатам, которые обладают свойствами ингибитора...
Тип: Изобретение
Номер охранного документа: 0002518369
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d0c9

Местное гемостатическое средство

Изобретение относится к местному гемостатическому средству для остановки массивных кровотечений. Средство включает 75-95 мас.% соли хитозана из ряда полидисперсных порошков гидрохлорида, гидробромида, формиата, ацетата, сукцината, цитрата, гликолата либо лактата хитозана и 4-20 мас.%...
Тип: Изобретение
Номер охранного документа: 0002519220
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d45b

Замещенные (r)-3-(4-метилкарбамоил-3-фторфениламино)-тетрагидро-фуран-3-енкарбоновые кислоты и их эфиры, способ их получения и применения

Изобретение относится к новым замещенным 3-(4-метилкарбамоил-3-фторфениламино)тетрагидрофуран-3-енкарбоновой кислоты или их эфирам общей формулы 1 и их стереоизомерам. Соединения формулы 1 являются полупродуктами синтеза ингибиторов андрогеновых рецепторов формулы А1, А2, А3,представляющих...
Тип: Изобретение
Номер охранного документа: 0002520134
Дата охранного документа: 20.06.2014
10.12.2014
№216.013.0d3b

Замещенные [1,2,4]триазоло[4,3-a]пиридины, проявляющие свойства антагонистов аденозиновых а2а рецепторов, и их применение

Изобретение относится к новым замещенным [1,2,4]триазоло[4,3-а]пиридинам общей формулы I и их фармацевтически приемлемые солям, проявляющим антагонистическую активность по отношению к аденозиновым А2А рецепторам. Соединения могут найти применение для лечения нарушений деятельности центральной...
Тип: Изобретение
Номер охранного документа: 0002534804
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.2683

Фармацевтическая композиция, способ ее получения и устройство для ее применения

Изобретение относится к фармацевтической промышленности, а именно к композиции для лечения никотиновой зависимости с помощью электронного устройства, имитирующего табакокурение. Фармацевтическая композиция для лечения никотиновой зависимости с помощью электронного устройства, содержащего...
Тип: Изобретение
Номер охранного документа: 0002541312
Дата охранного документа: 10.02.2015
10.03.2015
№216.013.2ef1

Гетероциклические агонисты рецепторов желчных кислот tgr5, фармацевтическая композиция, способы их получения и применения

Изобретение относится к соединениям общей формулы I, или их рацемической смеси, или индивидуальным оптическим изомерам, или фармацевтически приемлемым солям, обладающим свойствами агониста рецепторов желчных кислот TGR. Соединения могут быть использованы для получения фармацевтической...
Тип: Изобретение
Номер охранного документа: 0002543485
Дата охранного документа: 10.03.2015
Showing 1-10 of 44 items.
20.03.2013
№216.012.2f9f

Замещенные феноксиуксусные кислоты, их эфиры и амиды, включающие 2,6-диоксо-2,3,6,7-тетрагидро-1н-пурин-8-иловый фрагмент, - антагонисты аденозинового a рецептора и их применение

Данное изобретение относится к новым замещенным феноксиуксусным кислотам общей формулы 1, обладающим свойствами селективного антагониста, ингибирующего активность аденозинового A рецептора. Соединения могут быть использованы при профилактике и лечении заболеваний центральной нервной системы,...
Тип: Изобретение
Номер охранного документа: 0002477726
Дата охранного документа: 20.03.2013
20.08.2013
№216.012.5efc

Дымообразующая композиция для электронных устройств, имитирующих табакокурение, способ ее получения и применения

Изобретение относится к дымообразующим композициям для электронных устройств, имитирующих табакокурение, к способу получения дымообразующей композиции, а также к катриджу электронного устройства и самому электронному устройству. Композиция содержит воду и/или этанол, ароматизаторы и/или...
Тип: Изобретение
Номер охранного документа: 0002489948
Дата охранного документа: 20.08.2013
27.10.2013
№216.012.785d

Фармацевтическая композиция и набор для лечения бактериальных инфекций

Изобретение относится к химико-фармацевтической промышленности, а именно к фармацевтическим композициям и фармацевтическим наборам для лечения бактериальных инфекций и нового способа лечения заболеваний, связанных с бактериальными инфекциями, в том числе туберкулеза. Фармацевтическая композиция...
Тип: Изобретение
Номер охранного документа: 0002496475
Дата охранного документа: 27.10.2013
10.12.2013
№216.012.88ae

(3-арилсульфонилхинолин-8-ил)-диалкил-амины - селективные антагонисты серотониновых 5-ht рецепторов, способы их получения и применения

Изобретение относится к новым (3-арилсульфонилхинолин-8-ил)-диалкил-аминам общей формулы 1 и их фармацевтически приемлемым солям, которые являются селективными антагонистами серотониновых 5-НТ рецепторов. Соединения могут быть использованы в качестве лекарственного начала в фармацевтических...
Тип: Изобретение
Номер охранного документа: 0002500672
Дата охранного документа: 10.12.2013
10.06.2014
№216.012.cd76

Алкил [2-(2-{5-[4-(4-{2-[1-(2-метоксикарбониламино-ацетил)-пирролидин-2-ил]-3н-имидазол-4-ил}-фенил)-бута-1,3-диинил]-1н-имидазол-2-ил}-пирролидин-1-ил)-2-оксо-этил]-карбамат, фармацевтическая композиция, лекарственное средство, способ лечения вирусных заболеваний

Настоящее изобретение относится к новым алкил [2-(2-{5-[4-(4-{2-[1-(2-метоксикарбониламино-ацетил)-пирролидин-2-ил]-3Н-имидазол-4-ил}-фенил)-бута-1,3-диинил]-1Н-имидазол-2-ил}-пирролидин-1-ил)-2-оксо-этил]-карбаматам или их нафталин-1,5-дисульфонатам, которые обладают свойствами ингибитора...
Тип: Изобретение
Номер охранного документа: 0002518369
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d0c9

Местное гемостатическое средство

Изобретение относится к местному гемостатическому средству для остановки массивных кровотечений. Средство включает 75-95 мас.% соли хитозана из ряда полидисперсных порошков гидрохлорида, гидробромида, формиата, ацетата, сукцината, цитрата, гликолата либо лактата хитозана и 4-20 мас.%...
Тип: Изобретение
Номер охранного документа: 0002519220
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d45b

Замещенные (r)-3-(4-метилкарбамоил-3-фторфениламино)-тетрагидро-фуран-3-енкарбоновые кислоты и их эфиры, способ их получения и применения

Изобретение относится к новым замещенным 3-(4-метилкарбамоил-3-фторфениламино)тетрагидрофуран-3-енкарбоновой кислоты или их эфирам общей формулы 1 и их стереоизомерам. Соединения формулы 1 являются полупродуктами синтеза ингибиторов андрогеновых рецепторов формулы А1, А2, А3,представляющих...
Тип: Изобретение
Номер охранного документа: 0002520134
Дата охранного документа: 20.06.2014
27.06.2014
№216.012.da07

Моно и дифторзамещенные этил (3r,4r,5s)-5-азидо-4-ацетиламино-3-(1-этилпропокси)-циклогексен-1-карбоксилаты, способ получения и применения

Изобретение относится к новому способу получения алкил (3R,4R,5S)-5-азидо-3-(1-этилпропокси)-4-(моно или дифтор ацетиламино)-циклогекс-1-енкарбоксилатам общей формулы и к способу их использования в качестве полупродуктов в синтезе ингибитора нейраминидазы формулы В указанных формулах...
Тип: Изобретение
Номер охранного документа: 0002521593
Дата охранного документа: 27.06.2014
10.12.2014
№216.013.0d3b

Замещенные [1,2,4]триазоло[4,3-a]пиридины, проявляющие свойства антагонистов аденозиновых а2а рецепторов, и их применение

Изобретение относится к новым замещенным [1,2,4]триазоло[4,3-а]пиридинам общей формулы I и их фармацевтически приемлемые солям, проявляющим антагонистическую активность по отношению к аденозиновым А2А рецепторам. Соединения могут найти применение для лечения нарушений деятельности центральной...
Тип: Изобретение
Номер охранного документа: 0002534804
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.2683

Фармацевтическая композиция, способ ее получения и устройство для ее применения

Изобретение относится к фармацевтической промышленности, а именно к композиции для лечения никотиновой зависимости с помощью электронного устройства, имитирующего табакокурение. Фармацевтическая композиция для лечения никотиновой зависимости с помощью электронного устройства, содержащего...
Тип: Изобретение
Номер охранного документа: 0002541312
Дата охранного документа: 10.02.2015
+ добавить свой РИД