×
21.03.2020
220.018.0e67

Результат интеллектуальной деятельности: Способ получения сферического гидроксилапатита с регулируемым гранулометрическим составом

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в аддитивных технологиях для формирования импланта костной ткани. Способ получения сферических гранул гидроксилапатита с регулируемым гранулометрическим составом включает приготовление смеси, содержащей 11-15 мас.% нитрата кальция, 5-9 мас.% гидрофосфата аммония и воду – остальное. Путем добавления водного раствора гидроксида аммония доводят значение рН смеси до 10-12. Смесь выдерживают в автоклаве при давлении 150-200 атм и температуре 200-250°С в течение 1-1,5 ч. Промывают осадок до нейтрального рН. Осадок сушат в разреженной атмосфере при давлении не более 10 мм рт.ст. и температуре не более -55°С. Готовят суспензию, состоящую из 25-27 мас.% этилового спирта, 68-70 мас.% воды и сухого осадка – остальное. Суспензию обрабатывают ультразвуком в течение не менее 5 минут при мощности не менее 200 Вт. Проводят грануляцию с использованием распылительной сушки при температуре в рабочей камере 200-220°С и скорости подачи суспензии 13-15 мл/мин с последующим сбором сферических гранул с комплекса циклонных фильтров. Изобретение позволяет получить сферические гранулы гидроксилапатита с размером от 5 до 25 мкм. 6 ил., 2 табл., 3 пр.

Изобретение относится к способу получения сферического гидроксилапатита с регулируемым гранулометрическим составом с использованием методов химического осаждения и гидротермального синтеза, используемого в аддитивных технологиях, в том числе для формирования импланта костной ткани.

Интерес к выбранной тематике исследования обусловлен тем, что свойства гидроксилапатита наиболее близки к характеристикам костной ткани, что вкупе с высокой биосовместимостью делает этот материал востребованным в области протезирования с использованием аддитивных технологий и методами прессования. На качество конечного продукта сильно влияет исходный для печати материал.

Известен способ получения гидроксиапатита (заявка РФ №93012609, МПК С01В 25/22, опубл. 20.03.1996). Способ относится к технологии получения неорганических материалов, в частности гидроксиапатита, используемого в медицине, а также в качестве наполнителя или сорбента в газожидкостной хроматографии. Предлагаемый способ включает смешение суспензии гидроксида кальция с водным раствором фосфорной кислоты при последовательном прохождении реакционной смеси через две зоны, при этом в первой зоне поддерживается рН, равный 10,0-11,0, и скорость движения потока 0,8-1,5 м/с, а во второй зоне суспензию разбавляют в 400-500 раз и возвращают в первую зону, обеспечивая 4-5-кратную циркуляцию реакционной смеси в замкнутом цикле за 10-20 мин. Продукт отделяют фильтрованием и высушивают.Способ обеспечивает повышение выхода гидроксиапатита при улучшении его качества и повышении чистоты фазового состава.

Недостатками указанного способа являются то, что синтез осуществляется путем последовательного, а затем повторного (4-5-кратного) прохождения реакционной смеси через две зоны циркуляционной установки, технологическая сложность способа, обусловленная наличием многих контролируемых параметров процесса, что значительно увеличивает время проведения синтеза и способ не содержит стадию прокаливания продукта.

Известен способ получения гидроксиапатита (заявка РФ №92007479, МПК С01В 25/32, опубл. 20.01.1996). Способ используется в химической промышленности при производстве гидроксилапатита кальция как исходного материала для изготовления биоактивной керамики, применяемой в стоматологии, протезировании, ортопедии. Для достижения чистого фазового состава готовят суспензию кальция с фосфорной кислотой, приливаемой по каплям до рН 9-11, после фильтрации и сушки продукт в присутствии гидроксилсодержащего компонента в количестве 10-12 мас. % от массы продукта подвергается двойной переработке при 600-700°С в течение 20-30 мин и при 1000-1400°С в течение 1-4 ч. В качестве гидроксилсодержащего компонента используются гидроксиды кальция, стронция, циркония, алюминия и др.

Недостатком указанного способа является то, что гидроксилсодержащий компонент (гидроксиды кальция, стронция, циркония, алюминия и др.) в количестве 10-12 мас. % от массы продукта добавляется на стадии сушки продукта, фазовый состав которого не указывается, и то, что для обработки целевого продукта необходима высокая температура и длительность процесса, обуславливающие нежелательные энергетические затраты.

В качестве прототипа выбран способ, описанный авторами Коротченко Н.М., Покровская Л.А., Гигилев А.С. (патент РФ №2678812, МПК С01В 25/32, опубл. 28.02.2018). Этот способ получения биорезорбируемого материала с использованием СВЧ-излучения включает в себя следующие стадии: приготовление и перемешивание смеси гидроксида кальция и концентрированного 60-80%-ного раствора фосфорной кислоты, с последующим воздействием СВЧ-излучения в течение 20 мин при периодическом перемешивании реакционной смеси и прокаливанием при 800°С в течение 4 ч при следующем соотношении компонентов, мас. %:

гидроксид кальция 22,18
ортофосфорная кислота 17,62
вода остальное

Недостатком известного способа является то, что конечным продуктом являются разнонаправленные частицы пластинчатой и игольчатой формы, что затрудняет применение данного материала при использовании аддитивных технологий.

Техническим результатом настоящего изобретения является получение сферических гранул гидроксилапатита с размером от 5 до 25 мкм.

Требуемый технический результат достигается тем, что готовят смесь, содержащую 11-15 мас. % нитрата кальция, 5-9 мас. % гидрофосфата аммония и воды - остальное, доводят значения рН смеси до 10-12 с использованием водного раствора гидроксида аммония, выдерживают смесь в автоклаве при давлении 150-200 атм и температуре 200-250°С в течение 1-1,5 часов, промывают осадок до нейтрального рН, сушат осадок в разряженной атмосфере при давлении не более 10-5 мм рт.ст. и температуре не более -55°С, готовят суспензию из расчета 25-27 мас. % этилового спирта, 68-70 мас. % воды и сухого осадка - остальное, с дальнейшей обработкой суспензии ультразвуком в течение не менее 5 минут и мощности не менее 200 Вт, грануляцией с использованием распылительной сушки при температуре в рабочей камере 200-220°С и скорости подачи суспензии 13-15 мл/мин, с последующим сбором сферических гранул с комплекса циклонных фильтров.

Достигаемый технический результат обосновывается фигурами 1-6.

При использовании нитрата кальция менее 11 мас. % будет малый выход продукта реакции, что делает технологию неэффективной. При использовании нитрата кальция более 15 мас. % степень кристалличности конечного продукта значительно снизится. При использовании гидрофосфата аммония менее 5 мас. % будет малый выход продукта реакции, что делает технологию неэффективной. При использовании гидрофосфата аммония более 9 мас. % степень кристалличности конечного продукта значительно снизится. При давлении менее 150 атм не достигается заданная степень кристалличности. Использование давления более 200 атм экономически нецелесообразно. Использование температуры менее 200°С не позволяет достичь заданного давления. Использование температуры более 250°С экономически нецелесообразно. Выдержка в автоклаве менее 1 часа не позволяет достичь высокой степени кристалличности продукта. Выдержка более 1,5 часов не дает существенного изменения в качестве материала. Выдержка в автоклаве в течение 1-1,5 часов обусловлена необходимостью достижения высокой степени кристалличности. При использовании этилового спирта менее 25% не достигается необходимая вязкость суспензии, что не позволяет достичь требуемого гранулированного состава. При использовании этилового спирта более 27% не происходит формирования гранул сферической формы. При использовании воды менее 68 мас. % не происходит формирования гранул сферической формы. При использовании воды более 70 мас. % не достигается необходимая вязкость суспензии, что не позволяет достичь требуемого гранулированного состава. Использование 68-70 мас. % воды в суспензии обусловлено понижением параметра вязкости суспензии для формирования более мелких капель при формировании гранул. При использовании температуры рабочей камеры менее 200°С не обеспечивается полное высушивание капель аэрозоля. При использовании температуры рабочей камеры более 220°С приводит к ускоренному осушению суспензии и закупоривания сопла распыляющей форсунки. Скорость подачи суспензии менее 13 мл/мин приводит более раннему осушению капли, что приводит к закупориванию сопла распыляющей форсунки. При скорости подачи суспензии более 15 мл/мин не обеспечивается полное высушивание капель аэрозоля. Гранулы размером менее 5 мкм сильно летучи, что приводит к загрязнению и выводу из строя печатных механизмов. Использование гранул более 25 мкм приводит к закупориванию печатающих фильер.

Ниже приведены примеры конкретного осуществления изобретения.

Пример 1:

В расчете на 20 г сферического гидроксилапатита с гранулометрическим составом 5-25 мкм. в реакционный сосуд вносится навеска 32,7 г сухого нитрата кальция, 15,8 г сухого гидрофосфата аммония и 254,3 г дистиллированной воды, после чего по каплям добавляется раствор гидроксида аммония для создания рН 10. Автоклав со смесью нагревается до температуры 200°С, давления 150 атм, смесь выдерживается в течение 60 минут. После чего полученная смесь отмывается дистиллированной водой до рН равного 7, просушивается в лиофильной установке в разряженной атмосфере 10-5 мм рт.ст при температуре -55°С в течение 12 часов. Затем, сухой остаток 20 гр. разбавляется в воде - 194,3 г и этиловом спирте - 71,4 г и подвергается ультразвуковой обработке в течении 5 минут при мощности 200 Вт. Полученная суспензия сушится на распылительной установке при температуре рабочей камеры 200°С и скорости подачи суспензии 13 мл/мин. Полученный материал собирается на циклонных фильтрах.

Качественный фазовый состав синтезированного образца определяли с помощью метода рентгенофазового анализа (РФА).

На фиг. 1 представлены результаты РФА, которые подтверждают, что исследуемый образец имеет высокую степень кристалличности и состоит из фазы гидроксилапатита.

Размеры частиц определяли методом сканирующей электронной микроскопии, на установке Tescan Vega3.

На фиг. 2 показано, что частицы имеют сферический характер и размеры от 5 до 25 мкм.

Пример 2:

В расчете на 20 г сферического гидроксилапатита с гранулометрическим составом 5-25 мкм. в реакционный сосуд вносится навеска 32,7 г сухого нитрата кальция, 15,8 г сухого гидрофосфата аммония и 193,8 г дистиллированной воды, после чего по каплям добавляется раствор гидроксида аммония для создания рН 11. Автоклав со смесью нагревается до температуры 225°С, давления 175 атм, смесь выдерживается в течение 75 минут. После чего полученная смесь отмывается дистиллированной водой до рН равного 7, просушивается в лиофильной установке в разряженной атмосфере 10-5 мм рт.ст при температуре -55°С в течение 12 часов. Затем, сухой остаток 20 гр. разбавляется в воде - 276 г и этиловом спирте - 104 г и подвергается ультразвуковой обработке в течении 5 минут при мощности 200 Вт. Полученная суспензия сушится на распылительной установке при температуре рабочей камеры 210°С и скорости подачи суспензии 14 мл/мин. Полученный материал собирается на циклонных фильтрах.

Качественный фазовый состав синтезированного образца определяли с помощью метода рентгенофазового анализа (РФА).

На фиг. 3 представлены результаты РФА, которые подтверждают, что исследуемый образец имеет высокую степень кристалличности и состоит из фазы гидроксилапатита.

Размеры частиц определяли методом сканирующей электронной микроскопии, на установке Tescan Vega3.

На фиг. 4 показано, что частицы имеют сферический характер и размеры от 5 до 25 мкм.

Пример 3:

В расчете на 20 г сферического гидроксилапатита с гранулометрическим составом 5-25 мкм. в реакционный сосуд вносится навеска 32,7 г сухого нитрата кальция, 15,8 г сухого гидрофосфата аммония и 153,4 г дистиллированной воды, после чего по каплям добавляется раствор гидроксида аммония для создания рН 12. Автоклав со смесью нагревается до температуры 250°С, давления 200 атм, смесь выдерживается в течение 90 минут. После чего полученная смесь отмывается дистиллированной водой до рН равного 7, просушивается в лиофильной установке в разряженной атмосфере 10-5 мм рт.ст при температуре -55°С в течение 12 часов. Затем, сухой остаток 20 гр. разбавляется в воде - 467 г и этиловом спирте - 180 г и подвергается ультразвуковой обработке в течении 5 минут при мощности 200 Вт. Полученная суспензия сушится на распылительной установке при температуре рабочей камеры 220°С и скорости подачи суспензии 15 мл/мин. Полученный материал собирается на циклонных фильтрах.

Качественный фазовый состав синтезированного образца определяли с помощью метода рентгенофазового анализа (РФА).

На фиг. 5 представлены результаты РФА, которые подтверждают, что исследуемый образец имеет высокую степень кристалличности и состоит из фазы гидроксилапатита.

Размеры частиц определяли методом сканирующей электронной микроскопии, на установке Tescan Vega3.

На фиг. 6 показано, что частицы имеют сферический характер и размеры от 5 до 25 мкм.

Для анализа гемосовместимости образцов гидроксиапатита на мононуклеарных лейкоцитах исходную суспензию разливали по 2 мл в лунки 24-луночного планшета, содержащие 40 мг гидроксиапатита и инкубировали в течение 1 суток в CO2-инкубаторе при 5% CO2 и температуре 37°С. В качестве контроля использовали интактную суспензию. Количественную оценку проводили с использованием МТТ-колориметрического теста. Оптическую плотность (ОП) оценивали на планшетном ридере Multiscan MS (Labsystems, Finland) при длине волны 540 нм.

В результате проведенных исследований, после измерения экстинкции растворов гемоглобина в физиологическом растворе опытных проб и нулевого контроля были получены значения ОП. Для характеристики каждого образца, ОП измеряли в 9 лунках (по 3 лунки на 1 навеску), расположенных в одном ряду планшета (табл. 1). Затем был проведен описательный анализ полученных первичных данных, обобщающий величину ОП в лунках с опытными образцами и контролем (табл. 2).

Приведенные результаты показывают, что интенсивность гемолиза индуцированного испытуемыми образцами материалов достоверно не превышала 2±0,3%: ИГ образца 1 соответствовал 2,6±0,8% (р=0,087); ИГ образца 2 соответствовал 1,7±1,4% (р=0,122). Основываясь на этом, можно сделать вывод о том, что испытуемые образцы по данному показателю могут быть отнесены к биосовместимым.

Способ получения сферических гранул гидроксилапатита с регулируемым гранулометрическим составом, включающий приготовление смеси, содержащей 11-15 мас.% нитрата кальция, 5-9 мас.% гидрофосфата аммония и воду - остальное, доведение значения рН смеси до 10-12 с использованием водного раствора гидроксида аммония, выдержку смеси в автоклаве при давлении 150-200 атм и температуре 200-250°С в течение 1-1,5 часов, промывку осадка до нейтрального рН, сушку осадка в разреженной атмосфере при давлении не более 10 мм рт.ст. и температуре не более -55°С, приготовление суспензии из расчета 25-27 мас.% этилового спирта, 68-70 мас.% воды и сухого осадка - остальное, с дальнейшей обработкой суспензии ультразвуком в течение не менее 5 минут и мощности не менее 200 Вт, грануляцией с использованием распылительной сушки при температуре в рабочей камере 200-220°С и скорости подачи суспензии 13-15 мл/мин, с последующим сбором сферических гранул с комплекса циклонных фильтров.
Способ получения сферического гидроксилапатита с регулируемым гранулометрическим составом
Способ получения сферического гидроксилапатита с регулируемым гранулометрическим составом
Способ получения сферического гидроксилапатита с регулируемым гранулометрическим составом
Способ получения сферического гидроксилапатита с регулируемым гранулометрическим составом
Способ получения сферического гидроксилапатита с регулируемым гранулометрическим составом
Способ получения сферического гидроксилапатита с регулируемым гранулометрическим составом
Источник поступления информации: Роспатент

Showing 41-50 of 322 items.
13.01.2017
№217.015.8765

Гибридный пиксельный фотоприемник - детектор излучений, конструкция и способ изготовления

Изобретение может быть использовано в медицине, кристаллографии, ядерной физике и т.д. Гибридный пиксельный фотоприемник согласно изобретению содержит первую - кремниевую подложку, на верхней (нижней) поверхности которой расположена интегральная СБИС - микросхема, включающая матрицу пикселей с...
Тип: Изобретение
Номер охранного документа: 0002603333
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8793

Печь электрошлакового переплава с полым нерасходуемым электродом

Изобретение относится к области спецэлектрометаллургии, в частности к печам электрошлакового переплава, и может быть использовано при переплаве отходов металлообрабатывающих производств в виде стружки легированных сталей. Печь снабжена установленным в верхней части электрода шнековым...
Тип: Изобретение
Номер охранного документа: 0002603409
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8d8b

Способ определения момента замены воздушной фурмы доменной печи с теплоизоляцией внутреннего стакана

Изобретение относится к области металлургии, в частности к способу определения момента разрушения теплоизоляции воздушной фурмы доменной печи. Способ включает определение разности температур входящего и выходящего потоков воды на фурме с теплоизоляцией и по меньшей мере на одной серийной...
Тип: Изобретение
Номер охранного документа: 0002604549
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.9123

Способ изготовления биметаллической проволоки

Изобретение может быть использовано при изготовлении биметаллической проволоки на стальной основе с оболочками из различных металлов, преимущественно цветных. Предварительно обрабатывают стальной сердечник и медную оболочку в виде ленты в электролите в электрогидродинамическом режиме анодного...
Тип: Изобретение
Номер охранного документа: 0002605736
Дата охранного документа: 27.12.2016
13.01.2017
№217.015.9154

Способ переработки вольфрамовых концентратов

Изобретение относится к металлургии редких металлов. Способ переработки вольфрамитовых концентратов включает приготовление шихты, ее спекание и последующее автоклавно-содовое выщелачивание продукта спекания. Шихту готовят путем смешивания вольфрамитового концентрата, чернового промпродукта в...
Тип: Изобретение
Номер охранного документа: 0002605741
Дата охранного документа: 27.12.2016
13.01.2017
№217.015.917b

Угледобывающий комбайн

Изобретение относится к горной промышленности, в частности к добыче угля с помощью угледобывающих комбайнов. Технический результат - упрощение конструкции комбайнов, снижение трудоемкости их изготовления и затрат при эксплуатации, возможность применения шнеков различных диаметров для...
Тип: Изобретение
Номер охранного документа: 0002605858
Дата охранного документа: 27.12.2016
24.08.2017
№217.015.94e4

Устройство для получения гидроксида алюминия

Изобретение может быть использовано в неорганической химии. Устройство для получения гидроксида алюминия содержит емкость для электролита. В емкости размещены алюминиевые электроды, закрепленные на токоподводящих элементах, которые соединены с источником питания электрического тока. Над...
Тип: Изобретение
Номер охранного документа: 0002608489
Дата охранного документа: 18.01.2017
25.08.2017
№217.015.990a

Концентрат на основе квазикристаллических фаз для получения наполненных термопластичных полимерных композиций и способ его получения

Изобретение относится к способам получения концентратов на основе термопластичных матриц, наполненных квазикристаллическими частицами, предназначенных для получения полимерных композиционных материалов. Описан концентрат для получения термопластичных полимерных композиций, содержащий...
Тип: Изобретение
Номер охранного документа: 0002609469
Дата охранного документа: 02.02.2017
25.08.2017
№217.015.9ac1

Способ щелочного вскрытия шеелитовых концентратов

Изобретение относится к способу вскрытия шеелитовых концентратов растворами NaOH в открытых сосудах без применения автоклавов. Способ включает предварительную механообработку исходного сырья и последующую обработку активированного материала указанным раствором. При этом предварительную...
Тип: Изобретение
Номер охранного документа: 0002610187
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.9b9d

Способ обработки метастабильных аустенитных сталей методом интенсивной пластической деформации

Изобретение относится к области металлургии и может быть использовано, в частности, для изготовления изделий и конструкций для химической промышленности, в энергетике и т.д. Способ обработки аустенитных сталей в метастабильном состоянии включает ступенчатую интенсивную пластическую деформацию с...
Тип: Изобретение
Номер охранного документа: 0002610196
Дата охранного документа: 08.02.2017
Showing 21-29 of 29 items.
09.02.2019
№219.016.b86d

Способ производства низкоуглеродистой стали с повышенной коррозионной стойкостью

Изобретение относится к области черной металлургии и может быть использовано для получения низкоуглеродистых сталей с повышенной коррозионной стойкостью для производства полосового проката. В способе осуществляют выплавку металла в сталеплавильном агрегате, выпуск жидкого металла в...
Тип: Изобретение
Номер охранного документа: 0002679375
Дата охранного документа: 07.02.2019
15.03.2019
№219.016.dfe2

Способ получения высокотемпературного термоэлектрического материала на основе кобальтита кальция

Изобретение относится к получению высокотемпературного термоэлектрического материала на основе кобальтита кальция и может быть использовано при производстве устройств термоэлектрического генерирования электроэнергии. Способ включает получение водного раствора из нитратов кобальта и кальция,...
Тип: Изобретение
Номер охранного документа: 0002681860
Дата охранного документа: 13.03.2019
11.07.2019
№219.017.b262

Способ изготовления фотовольтаических элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа

Изобретение относится технологии изготовления фотовольтаических преобразователей. Согласно изобретению предложен способ изготовления фотовольтаических (ФВЭ) элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа, включающий получение прекурсора...
Тип: Изобретение
Номер охранного документа: 0002694118
Дата охранного документа: 09.07.2019
11.07.2019
№219.017.b2d7

Гибридный фотопреобразователь, модифицированный максенами

Изобретение относится к технологии полупроводниковых тонкопленочных гибридных фотопреобразователей. Гибридные, тонкопленочные фотопреобразователи с гетеропереходами и слоями, модифицированными максенами TiCT, работающие в видимом спектре солнечного света, а также ближних УФ и ИК областей...
Тип: Изобретение
Номер охранного документа: 0002694086
Дата охранного документа: 09.07.2019
12.08.2019
№219.017.be4e

Способ проведения испытаний проката для нефтепромысловых труб на коррозионно-абразивный износ

Изобретение относится к области испытаний и может быть использовано для проведения испытаний эксплуатационных свойств проката, используемого для нефтепромысловых труб. Способ проведения испытаний проката для нефтепромысловых труб на коррозионно-абразивный износ, включающий взвешивание...
Тип: Изобретение
Номер охранного документа: 0002697030
Дата охранного документа: 08.08.2019
16.08.2019
№219.017.c080

Способ производства трубного проката повышенной коррозионной стойкости на реверсивном стане

Изобретение относится к области металлургии. Для повышения коррозионной стойкости трубного проката при сохранении высокой прочности, пластичности и ударной вязкости получают непрерывно-литую заготовку из стали, содержащей, мас.%: С 0,04-0,08, Si 0,15-0,35, Mn 0,7-1,0, Ni 0,2-0,5, Cu 0,4-0,6, Nb...
Тип: Изобретение
Номер охранного документа: 0002697301
Дата охранного документа: 13.08.2019
01.12.2019
№219.017.e90e

Тест-система для визуального полуколичественного иммунохроматографического анализа

Изобретение относится к устройствам для иммунохроматографического анализа и может быть использовано в биотехнологии и медицинской диагностике для полуколичественного визуального определения биологически активных веществ. Раскрыта тест-система для визуального полуколичественного...
Тип: Изобретение
Номер охранного документа: 0002707526
Дата охранного документа: 27.11.2019
21.12.2019
№219.017.efcc

Газовый сенсор, мультисенсорная линейка хеморезистивного типа на основе окисленного двумерного карбида титана (максена) и способ их изготовления

Изобретение относится к области сенсорной техники и нанотехнологий, в частности к разработке газовых сенсоров хеморезистивного типа, используемых для детектирования газов. Способ изготовления газового сенсора включает в себя синтез структур двумерного карбида титана TiСТ (максена), где Т=О, ОН,...
Тип: Изобретение
Номер охранного документа: 0002709599
Дата охранного документа: 18.12.2019
06.02.2020
№220.017.ffdb

Способ получения коллоидного раствора трисульфида титана с противомикробными свойствами

Изобретение может быть использовано при обработке почв, пористых структур и сточных вод с целью подавления активности патогенных микроорганизмов. Для получения коллоидных растворов трисульфида титана в деионизированной воде, обладающих противомикробной активностью, проводят синтез трисульфида...
Тип: Изобретение
Номер охранного документа: 0002713367
Дата охранного документа: 04.02.2020
+ добавить свой РИД