×
09.02.2020
220.018.011f

Результат интеллектуальной деятельности: СПОСОБ БЕСПОЛОСТНОГО ЗАПОЛНЕНИЯ РЕАКТОРНЫХ ПРОСТРАНСТВ ПРИ ВЫВОДЕ ИЗ ЭКСПЛУАТАЦИИ УРАН-ГРАФИТОВЫХ ЯДЕРНЫХ РЕАКТОРОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии вывода из эксплуатации уран-графитовых ядерных реакторов, а именно к технологии создания барьеров безопасности в пунктах захоронения радиоактивных отходов. Cпособ бесполостного заполнения реакторных пространств при выводе из эксплуатации уран-графитовых ядерных реакторов, по которому барьерный материал предварительно просеивают на установке. Просеянный барьерный материал высушивают потоком сжатого воздуха при температуре (50-200)°C и направляют через систему сит с различным шагом в перфорированную с нижнего торца трубу, установленную в заполняемые реакторные пространства, внутри которой расположены металлические шарики. На металлические шарики воздействуют переменным магнитным полем, создаваемым катушкой индуктивности, находящейся на внешней поверхности трубы. Слипшийся барьерный материал измельчают за счет ударного воздействия металлических шариков и нагнетают под давлением в заполняемые реакторные пространства. С помощью вибрации, создаваемой перфорированной трубой, раздвигают образующиеся холмы и уплотняют барьерный материал. Изобретение позволяет формировать равномерные искусственные барьеры безопасности внутри реакторных пространств одинаковой плотности. 2 ил.

Изобретение относится к технологии вывода из эксплуатации уран-графитовых ядерных реакторов, а именно к технологии создания барьеров безопасности в пунктах захоронения радиоактивных отходов и может быть использовано для бесполостного заполнения реакторных пространств.

Известен способ бесполостного заполнения реакторных пространств при выводе из эксплуатации уран-графитового ядерного реактора [RU 2580817, МПК G21C 11/02, G21F 03/00, опубл. 10.04.2015], выбранный в качестве аналога. По указанному способу тракты технологических каналов предварительно подготавливают для свободного перемещения шнека. В выбранный тракт вставляют шнековую трубу и соосно внутрь трубы помещают шнек. В ближайший тракт технологического канала устанавливают виброштангу. В верхнюю часть шнековой трубы подают сыпучий барьерный материал. С помощью шнека, вращающегося с периодом обращения 1.2-0.4 сек, продвигают барьерный материал под давлением в пустые реакторные пространства. Равномерно распределяют и уплотняют материал в заполняемых полостях путем воздействия колебаний от работы виброштанги с частотой 15-25 Гц.

Недостатки этого способа:

- при использовании шнека для продвижения барьерного материала в пустые реакторные пространства происходит его разрушение за счет непрерывного трения о пылевые частицы барьерного материала;

- сложность удержания шнека строго в вертикальном положении при вращении с периодом 1.2-0.4 сек: малейшее искривление штанги, на которой крепится шнек, приводит к интенсивному биению и, как следствие, заклиниванию шнека внутри шнековой трубы.

Известен способ формирования барьеров безопасности при создании пункта захоронения особых радиоактивных отходов [RU 2625329, МПК G21C 11/02, G21F 3/00, опубл. 15.06.2016], выбранный в качестве аналога. По указанному способу мешки, наполненные глинистым барьерным материалом, размещают над подающей воронкой приемной камеры, снабженной металлическими лезвиями, и после вспарывания подают под собственным весом по направляющему каналу на сито, где просеивают. Барьерный материал с помощью напорного шнека с шагом 5 см измельчают и перемещают в горизонтальном направлении в смесительную камеру, где аэрируют сжатым воздухом при рабочем давлении около 1,5 кгс/см2. Затем барьерный материал перемещают по транспортному трубопроводу в горизонтальном направлении в гофрированную трубу, помещенную под определенным углом в заполняемую полость. Нагнетают аэрированный барьерный материал в заполняемую полость.

Недостатки этого способа:

- при использовании шнека для измельчения барьерного материала происходит его разрушение за счет непрерывного трения о пылевые частицы барьерного материала;

- для предотвращения образования холмов внутри реакторного пространства необходимо поочередно устанавливать гофрированную трубу в каждую ячейку графитовой кладки, что существенно увеличивает время создания внутренних барьеров безопасности.

Известен способ заполнения реакторных пространств сыпучим барьерным материалом при выводе реакторов из эксплуатации по варианту захоронения на месте [RU 2534228, МПК G21C 11/00, опубл. 27.11.2014], выбранный в качестве прототипа. По указанному способу барьерный материал подают через трубу под собственным весом в заполняемое пространство и перемещают в горизонтальном направлении струей сжатого воздуха через воздуховод. Воздуховод проложен внутри подающей трубы. Струи сжатого воздуха разворачивают в горизонтальном направление с помощью форсунок, которые расположены ниже торца подающей трубы.

Указанный способ имеет недостатки:

- при перемещении барьерного материала в горизонтальном направлении через воздуховод струей сжатого воздуха возможно его слипание и образование крупнодисперсной фракции, что снижает плотность создаваемых барьеров безопасности;

- использование форсунок для разворачивания струи сжатого воздуха приводит к образованию холмов в заполняемом пространстве, что препятствует равномерному распределению барьерного материала и обтеканию препятствий и стенок.

Техническим результатом изобретения является возможность формирования равномерных искусственных барьеров безопасности внутри реакторных пространств одинаковой плотности, достаточной для сорбции радионуклидов, и повышение производительности известных способов.

Предложенный способ включает подачу барьерного материала в заполняемое пространство через трубу, его перемещение в горизонтальном направлении струей сжатого воздуха через воздуховод, который проложен внутри подающей трубы, разворачивание барьерного материала в горизонтальном направлении струей сжатого воздуха в нижней части торца подающей трубы. Согласно изобретению барьерный материал предварительно просеивают на установке, расположенной в верхней части уран-графитового ядерного реактора. Просеянный барьерный материал высушивают потоком сжатого воздуха при температуре (50-200)°C, направляют в перфорированную с нижнего торца трубу, установленную в заполняемые реакторные пространства, и пропускают через систему сит с различным шагом. На металлические шарики диаметром большим, чем диаметры отверстий, расположенные в перфорированной области между ситом и запаянной частью трубы, воздействуют переменным магнитным полем, создаваемым катушкой индуктивности, находящейся на внешней поверхности трубы. Слипшийся барьерный материал измельчают и нагнетают под давлением в заполняемые реакторные пространства. С помощью вибрации, создаваемой перфорированной трубой, раздвигают образующиеся холмы и уплотняют барьерный материал.

Технический результат достигают за счет того, что для формирования искусственных барьеров безопасности внутри реакторных пространств используют глиносодержащий барьерный материал. Предварительно барьерный материал подают на сито, где просеивают. Просеивание приводит к образованию гомогенной глинистой фракции, которую затем высушивают потоком сжатого воздуха при температуре (50-200)°C. Сжатый воздух подают навстречу потоку барьерного материала, что приводит к его дегидрированию. Сухой барьерный материал направляют в перфорированную с нижнего конца трубу, установленную в заполняемые реакторные пространства. При этом нижняя часть трубы запаяна для создания избыточного давления в области перфорации. Пропускают барьерный материал через последовательно расположенные сита с различным шагом сетки, что предотвращает случайное попадание крупной фракции в нижнюю часть трубы. На катушку индуктивности, расположенную в перфорированной области трубы и не перекрывающую выходные отверстия, подают переменный электрический ток. Воздействуют внешним магнитным полем, создаваемым катушкой индуктивности, на металлические шарики, размещенные между запаянным концом перфорированной трубы и ситом. За счет действия магнитного поля происходит перемещение металлических шариков в верхнюю часть перфорированной области трубы до сита. Встречный поток барьерного материала, двигающийся под избыточным давлением, возвращает металлические шарики в нижнюю часть трубы. При этом происходит дополнительное измельчение слипшихся кусков глинистого барьерного материала. За счет подачи переменного электрического поля происходит изменение траектории движения металлических шариков, что приводит к их биению по корпусу трубы. С помощью возникающей вибрации раздвигают образующиеся холмы и уплотняют барьерный материал. Частоту колебаний трубы регулируют путем изменения давления сжатого воздуха и частоты электрического тока, подаваемого на катушку.

На фиг. 1 представлена схема заполнения подреакторного пространства глиносодержащим барьерным материалов.

На фиг. 2 показан внешний вид устройства для бесполостного заполнения реакторных пространств.

Для создания противомиграционных глиносодержащих барьеров безопасности между, например, нижними металлоконструкциями 1 и 2 уран-графитового ядерного реактора используют трубу 3, которая размещена в одном из технологических трактов 4 (фиг. 1). Нижняя часть трубы имеет отверстия 5 для нагнетания барьерного материала 6 в заполняемые пространства. На область перфорации трубы 3 намотана катушка индуктивности 7, которая соединена через кабель 8 с источником питания, расположенным в верхней части ядерного реактора. Для уменьшения колебаний верхней части трубы 3 предусмотрена гофрированная вставка 9.

Нижняя часть трубы 3, предназначенная для нагнетания барьерного материала 6 в реакторные пространства, выполнена в виде цилиндра с запаянным дном с отверстиями одинакового диаметра 5 (фиг. 2). Внутри трубы 3 в области перфорации размещены металлические шарики 10, диаметр которых больше диаметра отверстий 5. Металлические шарики 10 двигаются в области между нижним торцом трубы и ситом 11 за счет воздействия магнитного поля, создаваемого катушкой индуктивности 7, соединенной кабелем 8 с источником питания. Катушка индуктивности 7 расположена таким образом, чтобы не препятствовать нагнетанию барьерного материала 7 через отверстия 5.

Способ осуществляется следующим образом.

Создание искусственных барьеров безопасности между нижними металлоконструкциями 1 и 2 выбранного уран-графитового ядерного реактора осуществляют с помощью алюминиевой трубы 3. Предварительно из технологического тракта 4 извлекают технологические каналы, выполненные, например, из алюминия или циркония, и сменные графитовые элементы (например, втулки). С помощью средств визуально-смотровой диагностики (например, эндоскопа или радиационно-стойкой видеокамеры) проводят осмотр технологического тракта 4 графитовой кладки на предмет определения дефектных графитовых блоков. В случае обнаружения более чем трех последовательно расположенных графитовых блоков, имеющих продольные трещины, выбирают другой технологический тракт 4 расположенный поблизости.

В выбранный технологический тракт 4 размещают алюминиевую трубу 3, нижней торец которой запаян. Для подачи барьерного материала 6 верхнюю часть алюминиевой трубы 3 соединяют со станцией растаривания, которая располагается в верхней части крышки реактора. Растаривание и подачу глиносодержащего барьерного материала 6 осуществляют по способу RU 2625329. При этом в качестве барьерного материала 6 выбирают сухие смеси на основе глинистых пород после предварительного измельчения (помола). Содержание илистой фракции в барьерах составляет от 18 до 28% масс., тонкопылеватой фракции - от 34 до 50% масс. Значительная часть породы состоит из тонкодисперсного материала катионобменной емкостью больше 30 мг-экв./100 г породы.

Барьерный материал 6 с помощью потока сжатого воздуха при температуре (50-200)°C дегидрируют и подают в алюминиевую трубу 3, установленную в заполняемые реакторные пространства между нижними металлоконструкциями 1 и 2. За счет нагнетания барьерного материала 6, смешанного со сжатым воздухом, создают избыточное давление в нижней части алюминиевой трубы 3. Пропускают барьерный материал 6 через три последовательно расположенные сита 11 с шагом сетки 2 мм, 1 мм и 0,5 мм, что предотвращает случайное попадание крупной фракции в нижнюю часть трубы. Расстояние между ситами составляло 30 мм.

На катушку индуктивности 7, расположенную в перфорированной области алюминиевой трубы 3 и не перекрывающую выходные отверстия 4, по кабелю 8 подают переменный электрический ток частотой (50-300) Гц от источника переменного электрического тока, расположенного в верхней части крышки реактора. Диаметр выходных отверстий 4 составлял 7 мм. Длина катушки индуктивности 400 мм, шаг - 40 мм.

Внешним переменным магнитным полем, создаваемым с помощью катушки индуктивности 7, воздействуют на металлические шарики 10, находящиеся между нижним торцом алюминиевой трубы 3 и ситом 11. Шарики выполнены из магнитного материала (например, железа) и имеют диаметр 4,5 мм. Под действием магнитного поля шарики 10 движутся по сложной траектории в верхнюю часть перфорированной области алюминиевой трубы 3 до нижней части сита 11, оказывая при этом ударные воздействия на корпус трубы. Измельчают слипшиеся куски набегающей сверху вниз глины с помощью металлических шариков 10. Избыточным давлением в перфорированной области алюминиевой трубы 3, создаваемого барьерным материалом и сжатым воздухом, возвращают металлические шарики 10 в нижнюю часть. Это обеспечивает их периодическое движение в вертикальном направлении. При этом давление в нижней части алюминиевой трубы 3 изменяют в диапазоне (1-4,5) кгс/см2.

Образующийся холм из барьерного материала 6 между нижними металлоконструкциями 1 и 2 уран-графитового ядерного реактора раздвигают за счет вибрации от алюминиевой трубы 3, создаваемой с помощью ударного воздействия металлических шариков 10.

Для заполнения всего объема между металлоконструкциями 1 и 2 аналогичную последовательность операций выполняют через другие тракты технологических каналов 4.

Таким образом, производительность способа повышается за счет совмещения узла подачи глиносодержащего барьерного материала и узла уплотнения, а также исключения технологических операций, приводящих к износу конструкционных элементов. Равномерность искусственных барьеров безопасности достигается за счет подачи материала одинаковой плотности и гранулометрического состава.

Способ бесполостного заполнения реакторных пространств при выводе из эксплуатации уран-графитовых ядерных реакторов, включающий подачу барьерного материала в заполняемое пространство через трубу и его перемещение в горизонтальном направлении струей сжатого воздуха через воздуховод, который проложен внутри подающей трубы, разворачивание барьерного материала в горизонтальном направлении струей сжатого воздуха в нижней части торца подающей трубы, отличающийся тем, что барьерный материал предварительно просеивают на установке, расположенной в верхней части уран-графитового ядерного реактора, затем просеянный барьерный материал высушивают потоком сжатого воздуха при температуре (50-200)°C, направляют через систему сит с различным шагом в перфорированную с нижнего торца трубу, установленную в заполняемые реакторные пространства, внутри которой расположены металлические шарики, на которые воздействуют переменным магнитным полем, создаваемым катушкой индуктивности, находящейся на внешней поверхности трубы, за счет ударного воздействия металлических шариков слипшийся барьерный материал измельчают и нагнетают под давлением в заполняемые реакторные пространства, а с помощью вибрации, создаваемой перфорированной трубой, раздвигают образующиеся холмы и уплотняют барьерный материал.
СПОСОБ БЕСПОЛОСТНОГО ЗАПОЛНЕНИЯ РЕАКТОРНЫХ ПРОСТРАНСТВ ПРИ ВЫВОДЕ ИЗ ЭКСПЛУАТАЦИИ УРАН-ГРАФИТОВЫХ ЯДЕРНЫХ РЕАКТОРОВ
СПОСОБ БЕСПОЛОСТНОГО ЗАПОЛНЕНИЯ РЕАКТОРНЫХ ПРОСТРАНСТВ ПРИ ВЫВОДЕ ИЗ ЭКСПЛУАТАЦИИ УРАН-ГРАФИТОВЫХ ЯДЕРНЫХ РЕАКТОРОВ
СПОСОБ БЕСПОЛОСТНОГО ЗАПОЛНЕНИЯ РЕАКТОРНЫХ ПРОСТРАНСТВ ПРИ ВЫВОДЕ ИЗ ЭКСПЛУАТАЦИИ УРАН-ГРАФИТОВЫХ ЯДЕРНЫХ РЕАКТОРОВ
Источник поступления информации: Роспатент

Showing 11-20 of 62 items.
25.08.2017
№217.015.a53c

Способ приготовления имитатора для отработки процессов осветления продуктов кислотного растворения отработавшего ядерного топлива

Изобретение относится к радиохимической технологии и может быть использовано для испытаний оборудования в технологии переработки отработавшего ядерного топлива (ОЯТ). Способ приготовления имитатора для отработки процессов осветления продуктов кислотного растворения отработавшего ядерного...
Тип: Изобретение
Номер охранного документа: 0002607647
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.c6c9

Пленкообразователь выпарного аппарата

Изобретение относится к атомной энергетике, в частности к выпарным аппаратам радиохимических производств, предназначенным для упаривания высокоактивных растворов, а более конкретно к устройствам для создания тонкой пленки в греющих камерах (испарителях), и может найти применение в химической,...
Тип: Изобретение
Номер охранного документа: 0002618875
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c76a

Способ извлечения серебра из азотнокислых актиноид-содержащих растворов (варианты)

Изобретения могут быть использованы в технологии цветных металлов, при переработке промышленных растворов шлихообогатительных фабрик и аффинажных производств, в технологии производства и переработки отработавшего ядерного топлива. Способ включает нейтрализацию раствора, восстановление серебра...
Тип: Изобретение
Номер охранного документа: 0002618874
Дата охранного документа: 11.05.2017
26.08.2017
№217.015.e5a6

Способ упаривания высокоактивного рафината от переработки отработавшего ядерного топлива

Изобретение относится к области переработки отработавшего ядерного топлива (ОЯТ) атомных станций (АЭС), в частности к технологии обращения с высокоактивным рафинатом экстракционного цикла переработки продукта кислотного растворения ОЯТ на стадии его концентрирования перед утилизацией путем...
Тип: Изобретение
Номер охранного документа: 0002626767
Дата охранного документа: 01.08.2017
26.08.2017
№217.015.e5bd

Крышка ампулы для отработавшей тепловыделяющей сборки реактора рбмк-1000

Изобретение относится к ядерной технике, к обращению с отработавшим ядерным топливом. Крышка содержит внутреннюю расточку с верхним и нижним кольцевыми выступами и дном. Дно выполнено составным из двух частей: верхней - чашки и нижней - диска, изготавливаемых из листовой стали. Конический...
Тип: Изобретение
Номер охранного документа: 0002626762
Дата охранного документа: 01.08.2017
26.08.2017
№217.015.e5d3

Способ растворения волоксидированного облученного ядерного топлива

Изобретение относится к радиохимической технологии и может быть использовано при переработке облученного ядерного топлива (ОЯТ). Способ растворения волоксидированного ОЯТ включает обработку ОЯТ в гетерогенной системе с участием диоксида азота. Порошкообразный материал (ОЯТ) приводят в контакт с...
Тип: Изобретение
Номер охранного документа: 0002626764
Дата охранного документа: 01.08.2017
26.08.2017
№217.015.e5e7

Способ консервации остатков радиоактивных отходов в емкостях-хранилищах

Изобретение относится к атомной промышленности в части консервации емкостей-хранилищ радиоактивных отходов. Способ консервации остатков радиоактивных отходов в емкостях-хранилищах включает заполнение емкости-хранилища бетоном с использованием штатных технологических отверстий и пробуренных...
Тип: Изобретение
Номер охранного документа: 0002626766
Дата охранного документа: 01.08.2017
29.12.2017
№217.015.fb9b

Способ извлечения палладия из высокоактивного рафината экстракционного цикла переработки отработавшего ядерного топлива (варианты)

Группа изобретений относится к области прикладной радиохимии в части обращения с образующимися при переработке отработавшего ядерного топлива (ОЯТ) жидкими радиоактивными отходами (ЖРО). Способ заключается во введении в высокоактивный рафинат комплексообразователя (аминоуксусной кислоты),...
Тип: Изобретение
Номер охранного документа: 0002639884
Дата охранного документа: 25.12.2017
29.12.2017
№217.015.fd23

Способ получения смешанного уран-плутониевого оксида

Изобретение относится к радиохимической технологии и может быть использовано в процессах производства смешанного оксидного ядерного топлива и переработки отработавшего ядерного топлива. Сущность изобретения заключается в укрупнении зерна осадка путем интеграции в его состав органического...
Тип: Изобретение
Номер охранного документа: 0002638543
Дата охранного документа: 14.12.2017
19.01.2018
№218.016.0bec

Способ извлечения металлов платиновой группы из осадков после осветления продукта кислотного растворения волоксидированного отработавшего ядерного топлива

Изобретение относится к области радиохимической технологии и может быть использовано в технологии переработки отработавшего ядерного топлива (ОЯТ). Способ извлечения металлов платиновой группы из осадков после осветления продукта кислотного растворения волоксидированного отработавшего ядерного...
Тип: Изобретение
Номер охранного документа: 0002632498
Дата охранного документа: 05.10.2017
Showing 11-20 of 27 items.
26.08.2017
№217.015.df9a

Способ захоронения технологической шахты для радиоактивных отходов при выводе из эксплуатации уран-графитового реактора

Изобретение относится к ядерной физике. Cпособ захоронения технологической шахты для радиоактивных отходов при выводе из эксплуатации уран-графитового реактора, по которому уровень осветленной речной воды понижают до уровня верхней кромки насыпи твердых радиоактивных отходов. Доступные твердые...
Тип: Изобретение
Номер охранного документа: 0002625169
Дата охранного документа: 12.07.2017
26.08.2017
№217.015.e0a5

Способ формирования барьеров безопасности при создании пункта захоронения особых радиоактивных отходов

Изобретение относится к технологии вывода из эксплуатации уран-графитовых ядерных реакторов. Способ формирования барьеров безопасности при создании пункта захоронения особых радиоактивных отходов включает подачу барьерного материала через трубу под собственным весом и перемещение в...
Тип: Изобретение
Номер охранного документа: 0002625329
Дата охранного документа: 13.07.2017
19.01.2018
№218.016.0ccf

Способ глубинного захоронения облученного графита уран-графитовых ядерных реакторов

Изобретение относится к способам обращения с радиоактивными отходами и может быть использовано для утилизации облученного графита. Cпособ глубинного захоронения облученного графита уран-графитовых ядерных реакторов включает предварительную подготовку отходов к глубинному захоронению, выбор...
Тип: Изобретение
Номер охранного документа: 0002632801
Дата охранного документа: 09.10.2017
20.01.2018
№218.016.1096

Устройство для генерации плазмы высокочастотного разряда

Изобретение относится к средствам формирования плазмы высокочастотных разрядов и может быть использовано, например, для травления поверхности, проведении газофазных плазмохимических реакций, спектрального анализа жидких и твердых проб. Устройство для генерации высокочастотного разряда содержит...
Тип: Изобретение
Номер охранного документа: 0002633707
Дата охранного документа: 17.10.2017
10.05.2018
№218.016.445d

Способ обнаружения и определения параметров фрагментов ядерного топлива в кладке остановленного уран-графитового реактора

Изобретение относится к способу обнаружения и определения параметров фрагментов ядерного топлива в кладке остановленного уран-графитового реактора. Поиск скважин выполняют путем измерения потоков тепловых нейтронов в ячейках графитовой кладки остановленного уран-графитового реактора в...
Тип: Изобретение
Номер охранного документа: 0002649656
Дата охранного документа: 05.04.2018
12.07.2018
№218.016.703b

Способ подготовки графитовых радиоактивных отходов к захоронению

Изобретение относится к технологии уничтожения твердых отходов или их переработки. Способ подготовки графитовых радиоактивных отходов к захоронению включает размещение облученного графита в термической камере, проведение термической деструкции путем продувания через термическую камеру...
Тип: Изобретение
Номер охранного документа: 0002660804
Дата охранного документа: 10.07.2018
19.10.2018
№218.016.93bb

Способ определения натамицина методом капиллярного электрофореза

Изобретение относится к пищевой промышленности, в частности к способам определения натамицина в виноматериалах и винах. Для этого пробу разбавляют водой и центрифугируют. Натамицин определяют методом капиллярного электрофореза при длине волны 303 нм, ведущий электролит содержит 10мМ...
Тип: Изобретение
Номер охранного документа: 0002669946
Дата охранного документа: 17.10.2018
29.03.2019
№219.016.f375

Способ изготовления керметного стержня топливного сердечника тепловыделяющего элемента ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к способам изготовления керметных стержней топливных сердечников тепловыделяющих элементов (твэл) ядерных реакторов различного назначения. В трубу из циркониевого сплава засыпают определенное количество порошков ядерного топлива и...
Тип: Изобретение
Номер охранного документа: 0002305334
Дата охранного документа: 27.08.2007
29.03.2019
№219.016.f376

Заготовка стержня топливного сердечника керметного тепловыделяющего элемента ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к конструкции заготовки, используемой при прессовании стержней топливных сердечников керметных тепловыделяющих элементов (твэл) ядерных реакторов различного назначения. Заготовка стержня состоит из трубы, изготовленной из...
Тип: Изобретение
Номер охранного документа: 0002305333
Дата охранного документа: 27.08.2007
19.07.2019
№219.017.b638

Способ контроля целостности барьеров безопасности при выводе из эксплуатации уран-графитового ядерного реактора

Изобретение относится к технологии разведки или обнаружения с использованием нейтронного излучения. Способ контроля целостности барьеров безопасности включает установку инспекционных каналов в виде обсадных труб в количестве не менее трех в местах для проведения каротажа, регистрацию фонового...
Тип: Изобретение
Номер охранного документа: 0002694817
Дата охранного документа: 17.07.2019
+ добавить свой РИД