×
19.07.2019
219.017.b638

Результат интеллектуальной деятельности: СПОСОБ КОНТРОЛЯ ЦЕЛОСТНОСТИ БАРЬЕРОВ БЕЗОПАСНОСТИ ПРИ ВЫВОДЕ ИЗ ЭКСПЛУАТАЦИИ УРАН-ГРАФИТОВОГО ЯДЕРНОГО РЕАКТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии разведки или обнаружения с использованием нейтронного излучения. Способ контроля целостности барьеров безопасности включает установку инспекционных каналов в виде обсадных труб в количестве не менее трех в местах для проведения каротажа, регистрацию фонового спектра, проведение импульсного нейтрон-нейтронного каротажа. До создания барьеров безопасности наращивают трубы боковых ионизационных камер до отметки, соответствующей верхней части пункта захоронения отходов, устанавливают инспекционные каналы высотой, соответствующей высоте металлоконструкций. Выбирают детектор нейтронов, который поочередно помещают в боковые ионизационные камеры и инспекционные каналы и измеряют фоновое нейтронное излучение по всей длине каналов. В боковую ионизационную камеру вводят заколлимированный источник нейтронов и параллельно в инспекционный канал размещают детектор нейтронов. Одновременно опуская источник и детектор нейтронов, сканируют выбранную область барьерного материла и по величине ослабления потока нейтронного излучения определяют места образования полостей и трещин в барьерном материале. Изобретение позволяет определить местонахождение и размер полостей в глиносодержащих барьерах безопасности. 1 з.п. ф-лы, 2 ил.

Изобретение относится к технологии разведки или обнаружения с использованием нейтронного излучения и может быть использовано для определения местонахождения и размера трещин и полостей в барьерах безопасности, создаваемых при выводе из эксплуатации уран-графитовых реакторов, без нарушения их целостности.

Известны прямые модели для анализа подземных формаций с помощью измерения гамма-излучения [RU 2464593, МПК G01V 5/12, опубл. 20.10.2012], выбранные в качестве аналога. По указанному способу для определения свойств формации генерируют гамма-излучение с использованием источника гамма-излучения, установленного на измерительном инструменте, расположенном в скважине. Обнаруживают гамма-излучение с использованием одного или более детекторов гамма-излучения, установленных на измерительном инструменте. Рассчитывают отклик измерительного инструмента в соответствии с одним или более свойствами формации во множестве пространственных местоположений относительно измерительного инструмента с использованием прямой модели, которая допускает нелинейные отношения между одним или более свойствами во множестве пространственных местоположений и соответствующим откликом измерительного инструмента. При этом одно или более свойств, по меньшей мере, для некоторых из множества пространственных местоположений формации оценивают в соответствии с обнаруженным гамма-излучением.

Недостатки этого способа:

- необходимость проведения калибровки детекторов гамма-излучения при каждом измерении, что существенно снижает производительность;

- сложность в интерпретации получаемых данных, вследствие большого количества возможных ядерных реакций с участием гамма-излучения, что приводит к увеличению погрешности измерений.

Известны способы и композиции для определения геометрии трещины в подземных пластах [RU 2412225, МПК C09K 8/80, Е21В 43/267, опубл. 20.02.2011], выбранные в качестве аналога. По указанному способу в трещину в пласте помещают расклинивающий агент или рабочую жидкость, которые содержат чувствительный к радиации материал. При этом чувствительный к радиации материал является нерадиоактивным до тех пор, пока не будет подвергнут бомбардировке нейтронами во время проведения единственного каротажного прохода. Облучают чувствительный к радиации материал нейтронами после его размещения в трещине в пласте. Измеряют гамма-излучение, испускаемое чувствительным к радиации материалом, с получением пиковой радиации, излучаемой чувствительным к радиации материалом. Измеряют фоновую радиацию во время проведения единственного каротажного прохода, затем вычитают фоновую радиацию из указанной радиации пиковой энергии. Определяют высоту трещины в пласте по разности между фоновой радиацией и радиацией пиковой энергии.

Известный способ имеет следующие недостатки:

- для проведения процесса определения геометрии трещины требуется использование дополнительного расклинивающего агента или рабочей жидкости, которые содержат чувствительный к радиации материал. Это приводит к увеличению себестоимости и снижает эффективность способа;

- при размещении источника нейтронов в самой трещине нарушается ее начальная форма, что приводит к сложности определения ее геометрии.

Известен способ контроля стабильности внутренних барьеров безопасности в пункте консервации уран-графитового реактора [RU 2579822, МПК G01V 5/12, опубл. 10.04.2016], выбранный в качестве прототипа. По указанному способу предварительно при создании внутренних барьеров безопасности устанавливают инспекционные каналы в виде обсадных труб в количестве не менее трех в местах для проведения гамма-каротажа в реперных точках, выбранных с учетом индивидуальных конструктивных особенностей уран-графитового реактора. Регистрируют фоновый гамма-спектр. Определяют места просадки радиоактивных внутриреакторных конструкций с течением времени с помощью специального малогабаритного зондирующего устройства, состоящего из генератора нейтронов, системы детекторов для регистрации гамма-излучения и тепловых нейтронов, защитного корпуса. Затем проводят импульсный нейтрон-нейтронный каротаж в соответствующих реперных точках для обнаружения полостей в местах усадки глиносодержащей засыпки. Одновременно проводят импульсный нейтронный гамма-каротаж для определения влагосодержания в используемых барьерных материалах

Указанный способ имеет недостатки:

- невозможно определить местонахождение образовавшиеся в барьерном материале полости вследствие использования одномодульной системы, состоящей одновременно из генератора излучения и детектора, которая позволяет судить лишь о ее наличии;

- низкая эффективность нейтрон-нейтронного каротажа с использованием одномодульной системы, поскольку необходимо, чтобы нейтроны отражались от ядер атомов воздуха, находящегося в полости, под углом 180°С для их детектирования;

- использование каротажного зонда, состоящего одновременно из генератора нейтронов, коллиматора и детектора, приводит к существенному увеличению его размеров, что затрудняет его перемещение в инспекционных каналах.

Техническим результатом изобретения является определение местонахождения и размера полостей в глиносодержащих барьерах безопасности, создаваемых при выводе из эксплуатации уран-графитовых реакторов, без нарушения их целостности.

Предложенный способ включает предварительную установку инспекционных каналов в виде обсадных труб в количестве не менее трех в местах для проведения каротажа в реперных точках, выбранных с учетом индивидуальных конструкционных особенностей уран-графитового реактора, регистрацию фонового спектра, проведение импульсного нейтрон-нейтронного каротажа в соответствующих реперных точках для обнаружения полостей в местах усадки глиносодержащей засыпки. Согласно изобретению предварительно до создания барьеров безопасности наращивают трубы боковых ионизационных камер до отметки, соответствующей верхней части создаваемого пункта захоронения отходов. В случае отсутствия устанавливают инспекционные каналы в баки боковой биологической защиты высотой, соответствующей высоте металлоконструкций. После создания барьеров безопасности и выводе реактора из эксплуатации выбирают детектор нейтронов, который поочередно помещают в боковые ионизационные камеры и инспекционные каналы в баках боковой биологической защиты. Измеряют фоновое нейтронное излучение по всей длине каналов. В боковую ионизационную камеру вводят заколлимированный источник нейтронов, параллельно в инспекционный канал, расположенный в баке боковой биологической защиты, размещают детектор нейтронов. Одновременно опуская источник и детектор нейтронов, сканируют выбранную область барьерного материла в пункте захоронения уран-графитового реактора. Повторяют сканирование в каждом инспекционном канале. По величине ослабления потока нейтронного излучения определяют места образования полостей и трещин в барьерном материале, а также их границы.

Технический результат достигают за счет того, что в качестве инспекционных каналов используют имеющиеся трубы, выполняющие роль боковых ионизационных камер при эксплуатации ядерного реактора, и технологические трубы в боковых металлоконструкциях (баках боковой биологической защиты). Трубы в баках боковой биологической защиты устанавливают выводе из эксплуатации уран-графитового реактора. После создания барьеров безопасности и выводе реактора из эксплуатации, например, по варианту «захоронение на месте» выбирают детектор нейтронов, размеры которого позволяют свободно перемещаться в трубах, расположенных в баках боковой биологической защиты. Проводят сканирование каждой трубы с целью измерения фонового нейтронного излучение, источником которого могут быть просыпи ядерного топлива, находящегося в графитовой кладке или на прилегающих металлоконструкциях. В случае необходимости фон измеряют в боковых ионизационных камерах. Затем в выбранную трубу боковой ионизационной камеры вводят заколлимированный источник нейтронов и параллельно ему в трубу, расположенную в баках боковой биологической защиты, помещают детектор нейтронов. Коллиматор в источнике нейтронов используют для уменьшения телесного угла разлета нейтронов и фокусирования в реперных точках на детектор нейтронов. Путем одновременного опускания источника нейтронов и детектора сканируют выбранную область реакторного пространства, в которой необходимо оценить целостность барьеров безопасности. По изменению величины нейтронного потока после вычитания фонового излучения выявляют места образования полостей и трещин в барьерном материале, границы которых определяют путем перемещения источника нейтронов в горизонтальном направлении и по высоте боковой ионизационной камеры. Изменение величины нейтронного потока обусловлено ослаблением нейтронного потока вследствие рассеяния нейтронов на ядрах кислорода, азота и водорода, находящегося в полостях и трещинах.

На фиг. 1 представлено расположение каналов для осуществления контроля целостности барьеров безопасности.

На фиг. 2 показана схема контроля целостности барьеров безопасности при выводе из эксплуатации уран-графитового реактора.

Графитовая кладка 1 вместе с отражателем нейтронов выводимого из эксплуатации уран-графитового ядерного реактора стянута сборных металлическим кожухом 2 (фиг. 1). Баки боковой биологической защиты (боковые металлоконструкции) 3, являющиеся несущей конструкций реактора и выполненные из блоков коробчатого сечения, смонтированы на бетонном основании шахты реактора. При выводе из эксплуатации уран-графитового ядерного реактора баки боковой биологической защиты 3, а также пространство между ними и кожухом 2, засыпаются глиносодержащим барьерным материалов 4, например, с применением способов по патентам RU 2580817 C1 или RU 2534228 С1. Через верхние металлоконструкции под пол центрального зала из каждого отсека баков боковой биологической защиты 3 выведены инспекционные каналы 5, представляющие собой трубы из нержавеющей стали, запаянные снизу. Между баками боковой биологической защиты 3 и кожухом 2 по всему периметру расположены трубы боковых ионизационных камер 6, нижний торец которых заглушен и фиксируется в конусной стойке.

В боковую ионизационную камеру 6 помещен заколлимированный источник нейтронов 7 (фиг. 2). Параллельно заколлимированному источнику нейтронов 7 в инспекционном канале 5, расположенном в баке боковой биологической защиты 3, размещен детектор нейтронов 8. Оборудование для управления источником нейтронов и регистрации нейтронного потока 6 расположено в верхней части уран-графитового ядерного реактора.

Способ осуществляется следующим образом.

При выводе из эксплуатации уран-графитового реактора по варианту, который предполагает создание искусственных барьеров безопасности в баках боковой биологической защиты 3 и пространстве между ними и кожухом 2 с графитовой кладкой 1, наращивают инспекционные каналы 5 и трубы боковых ионизационных камер 6 (в случае необходимости). При отсутствии таких труб создают проходки в соответствующих местах и устанавливают их.

После создания искусственных глиносодержащих барьеров безопасности 4, обеспечивающих надежную изоляцию радиоактивных отходов в месте размещения уран-графитового реактора, выбирают детектор нейтронов 8. При необходимости может быть выбрано два детектора 8: быстрых и медленных нейтронов. Тип детектора нейтронов 8 определяется количеством просыпей ядерного топлива внутри графитовой кладке 1 уран-графитового реактора. Выбранный детектор нейтронов 8 поочередно помещают в боковые ионизационные камеры 6 и инспекционные каналы 5 в баках боковой биологической защиты 4. Измеряют фоновое нейтронное излучение, которое обусловлено просыпями ядерного топлива в графитовой кладке 1, по всей длине труб.

После регистрации и записи фонового нейтронного излучения в произвольную боковую ионизационную камеру 6 вводят заколлимированый источник нейтронов 7, в качестве которого может быть образец с радиоактивным изотопов или генератор нейтронов. Параллельно в инспекционный канал 5, установленный в одном из баков боковой биологической защиты 3, размещают детектор нейтронов 8. В случае, если в качестве источника нейтронов 7 выбирают генератор, то предварительно переводят его в режим генерации. Одновременно опуская источник 7 и детектор нейтронов 8, сканируют выбранную область барьерного материла 4. Сканирование повторяют в каждом инспекционном канале 5.

Процесс сканирования может быть проведен при различных местоположениях источника нейтронов 7 и детектора 8. Например, детектор 8 и источник 7 нейтронов могут одновременно располагаться в боковых ионизационных камерах 6 или инспекционных каналах 5.

После сканирования всех инспекционных каналов 5 и боковых ионизационных камер 6 определяют места образования полостей и трещин в барьерном материале 4, а также их границы. Способ повторяют периодически в установленной последовательности для отслеживания изменения геометрии и размеров трещин в барьерном материале 4.

Пример осуществления изобретения приведен ниже.

При выводе из эксплуатации промышленных уран-графитовых ядерных реакторов по варианту «захоронение на месте», в баки боковой биологической защиты 4, представляющие из себя полые боковые металлоконструкции, устанавливали инспекционные каналы из нержавеющей стали диаметром 108 мм с запаянным нижним торцов в количестве не менее 12 штук. Боковые ионизационные камеры 6, выполненные из стали, диаметром не более 135 мм в количестве не менее 28 штук наращивали по высоте на величину ~1000 мм относительно верхних металлоконструкций.

В пункте размещения промышленного уран-графитового реактора создавали искусственные барьеры безопасности 4. В качестве барьерного материала использовали сухие смеси на основе глинистых пород после предварительного измельчения (помола). Содержание илистой фракции в барьерах составляло от 18 до 28% масс., тонкопылеватой фракции - от 34 до 50% масс. Значительная часть породы состояла из тонко дисперсного материала катионобменной емкостью больше 30 мг-экв./100 г породы.

После создания искусственных глиносодержащих барьеров безопасности 4, отвечающих противомиграционным и противофильтрационным свойствам, выбирали детекторы 8: СНМ БДБН-002П для регистрации быстрых нейтронов и СНМ БДТН-002П для регистрации тепловых нейтронов. Датчик СНМ БДБН-002П позволял проводить сканирование при плотности потока быстрых нейтронов от 100 до 105 см-2⋅с-1, а СНМ БДТН-002П при плотности потока тепловых нейтронов 10 до 105 см-2⋅с-1. Выбранный детектор нейтронов 8 поочередно помещали в боковые ионизационные камеры 6 и инспекционные каналы 5 в баках боковой биологической защиты 4. Сканирование проводили в реперных точках с шагом 100 мм от верхней части трубы. Измеряли фоновое нейтронное излучение по всей длине инспекционных каналов 5 и боковых ионизационных камер 6.

Регистрировали и записывали в память ЭВМ 9, значения фонового нейтронного излучения. Затем в произвольную боковую ионизационную камеру 6 вводили заколлимированый источник нейтронов 7. В качестве коллиматора использовали свинец толщиной 7 мм, источником нейтронов 7 служил импульсный генератор МФНГ-601 с газонаполненной ускорительной нейтронной трубкой АРЕВ-40, способной генерировать импульсный поток нейтронов с частотой (50-20000) имп/с и энергией порядка 14 МэВ. Также проводили исследования с Pu-Ве и 252Cf источниками нейтронов 7.

Параллельно в инспекционный канал 5, установленный напротив выбранного бака боковой биологической защиты 3, размещали детектор нейтронов 8 (СНМ БДБН-002П). Источник нейтронов 7 переводили в режим генерации. Одновременно опуская источник 7 в режиме генерации нейтронов и детектор 8, останавливаясь на каждой реперной отметке и набирая спектр в течение не менее 10 минут. Сканирование осуществляли в каждом инспекционном канале 5 и боковой ионизационной камере 6. Последовательность операций по сканированию инспекционных каналов 5 и боковых ионизационных камер 6 повторяли с использованием детектора СНМ БДТН-002П.

Полученные данные после вычитания фонового нейтронного потока с соответствующих реперных точках принимали за исходное значение. Способ повторяли через 5, 14, 30, 60, 90, 365 дней с целью отслеживания изменений геометрии и размеров трещин в барьерном материале 4.


СПОСОБ КОНТРОЛЯ ЦЕЛОСТНОСТИ БАРЬЕРОВ БЕЗОПАСНОСТИ ПРИ ВЫВОДЕ ИЗ ЭКСПЛУАТАЦИИ УРАН-ГРАФИТОВОГО ЯДЕРНОГО РЕАКТОРА
СПОСОБ КОНТРОЛЯ ЦЕЛОСТНОСТИ БАРЬЕРОВ БЕЗОПАСНОСТИ ПРИ ВЫВОДЕ ИЗ ЭКСПЛУАТАЦИИ УРАН-ГРАФИТОВОГО ЯДЕРНОГО РЕАКТОРА
СПОСОБ КОНТРОЛЯ ЦЕЛОСТНОСТИ БАРЬЕРОВ БЕЗОПАСНОСТИ ПРИ ВЫВОДЕ ИЗ ЭКСПЛУАТАЦИИ УРАН-ГРАФИТОВОГО ЯДЕРНОГО РЕАКТОРА
Источник поступления информации: Роспатент

Showing 1-10 of 11 items.
10.01.2016
№216.013.9ede

Способ фиксации пульпы в открытом бассейне - хранилище радиоактивных отходов

Изобретение относится к способам обращения с радиоактивными отходами, в частности к способам фиксации пульпы путем засыпки грунтом. Способ включает разделение бассейна дамбой, достигающей его дна, на участки с пониженной и повышенной толщинами донных отложений (ТДО) и, соответственно, их...
Тип: Изобретение
Номер охранного документа: 0002572307
Дата охранного документа: 10.01.2016
25.08.2017
№217.015.c97e

Способ окислительной обработки (волоксидации) облученного ядерного топлива

Изобретение относится к области радиохимической технологии и может быть использовано для отделения трития на головных операциях процесса переработки облученного ядерного топлива. Сущность изобретения заключается в одновременном воздействии на топливную композицию окислительно-активных...
Тип: Изобретение
Номер охранного документа: 0002619583
Дата охранного документа: 17.05.2017
26.08.2017
№217.015.e588

Способ растворения облученного ядерного топлива

Изобретение относится к радиохимической технологии и может быть использовано при переработке отработанного ядерного топлива (ОЯТ) атомных электростанций (АЭС) на операциях растворения. Способ ОЯТ включает обработку в системе диоксида азота. Расчетное количество раствора пероксида водорода и...
Тип: Изобретение
Номер охранного документа: 0002626763
Дата охранного документа: 01.08.2017
26.08.2017
№217.015.e6d5

Способ получения смешанных оксидов урана и плутония

Изобретение относится к радиохимической технологии и может быть использовано при переработке отработавшего ядерного топлива и производстве смешанного уран-плутониевого топлива. Способ получения смешанных оксидов урана и плутония включает смешение растворов урана и плутония, находящихся в...
Тип: Изобретение
Номер охранного документа: 0002626854
Дата охранного документа: 02.08.2017
11.06.2018
№218.016.615e

Способ очистки азотнокислых актиноидсодержащих растворов от серебра

Изобретение относится к переработке азотнокислого актиноидсодержащего раствора. Способ включает очистку исходного азотнокислого актиноидсодержащего раствора от серебра путем восстановления в растворе серебра до металла в виде осадка дигидразидом угольной кислоты, отделение полученного осадка от...
Тип: Изобретение
Номер охранного документа: 0002657272
Дата охранного документа: 09.06.2018
25.06.2018
№218.016.66da

Способ расчехловки тепловыделяющих элементов и устройство для его осуществления

Группа изобретений относится к ядерной технике, в частности к переработке отработавшего ядерного топлива (ОЯТ). Способ расчехловки тепловыделяющих элементов (твэлов) отработавшей тепловыделяющей сборки включает резку оболочки дисками (роликами). Твэл устанавливают в зазор между накатывающим и...
Тип: Изобретение
Номер охранного документа: 0002658295
Дата охранного документа: 20.06.2018
29.06.2018
№218.016.68e1

Регулятор выходных электрических параметров бета-вольтаической батареи

Использование: для создания источников питания на основе полупроводниковых преобразователей с использованием бета-вольтаического эффекта. Сущность изобретения заключается в том, что регулятор содержит блоки ключевых и накопительных элементов, блок управления, включающий в себя преобразователь,...
Тип: Изобретение
Номер охранного документа: 0002659182
Дата охранного документа: 28.06.2018
08.07.2018
№218.016.6e43

Способ удаления углерода-14 из реакторного графита

Изобретение относится к способам дезактивационной обработки облученного реакторного графита, может быть использовано при выводе из эксплуатации уран-графитовых реакторных установок и при обращении с углеродсодержащими твердыми радиоактивными отходами (ТРО) для снижения класса их радиационной...
Тип: Изобретение
Номер охранного документа: 0002660169
Дата охранного документа: 05.07.2018
17.08.2018
№218.016.7c28

Способ регенерации азотной кислоты из тритийсодержащего газового потока

Изобретение относится к радиохимической технологии, в частности к способу регенерации азотной кислоты из тритийсодержащего газового потока, и может быть использовано в процессах переработки отработавшего ядерного топлива на операции газоочистки. Способ включает абсорбцию радиоактивных...
Тип: Изобретение
Номер охранного документа: 0002664127
Дата охранного документа: 15.08.2018
30.05.2019
№219.017.6bd3

Способ извлечения америция

Изобретение относится к способу извлечения америция из рафинатов от экстракционной переработки плутонийсодержащих азотнокислых растворов, проводимой с целью переочистки плутония. Способ включает подготовку растворов к экстракции, использование фосфиноксида разнорадикального (ФОР) в качестве...
Тип: Изобретение
Номер охранного документа: 0002689466
Дата охранного документа: 28.05.2019
Showing 1-10 of 24 items.
10.08.2014
№216.012.e60c

Способ упаковки дефектных отработавших твэлов ядерного реактора и устройство для его осуществления

Группа изобретений относится к ядерной технике, в частности к упаковке (загрузке) дефектных отработавших твэлов в ампулу (пенал) для временного хранения в бассейне выдержки и последующей транспортировки на переработку. После загрузки отработавших твэлов в пенал и запрессовки верхней крышки на...
Тип: Изобретение
Номер охранного документа: 0002524685
Дата охранного документа: 10.08.2014
27.11.2014
№216.013.0b04

Способ заполнения реакторных пространств сыпучим барьерным материалом при выводе реакторов из эксплуатации по варианту захоронения на месте

Изобретение относится к ядерной технике, в частности к выводу из эксплуатации реакторов по варианту захоронения на месте, а более конкретно к технологии заполнения труднодоступных реакторных пространств сухим сыпучим барьерным материалом. Способ включает подачу барьерного материала в...
Тип: Изобретение
Номер охранного документа: 0002534228
Дата охранного документа: 27.11.2014
10.04.2016
№216.015.2bf3

Способ контроля стабильности внутренних барьеров безопасности в пункте консервации уран-графитового реактора

Изобретение относится к технологии контроля стабильности внутренних барьеров безопасности в пунктах консервации уран-графитового реактора. Способ контроля стабильности внутренних барьеров безопасности в пунктах консервации уран-графитового реактора включает в себя одновременное генерирование и...
Тип: Изобретение
Номер охранного документа: 0002579822
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.313c

Способ бесполостного заполнения реакторных пространств при выводе из эксплуатации уран-графитового ядерного реактора

Изобретение относится к технологии вывода из эксплуатации уран-графитовых ядерных реакторов. В способе бесполостного заполнения реакторных пространств при выводе из эксплуатации реактора по варианту захоронения на месте выбирают тракт технологического канала, через который будут заполняться...
Тип: Изобретение
Номер охранного документа: 0002580817
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31cb

Способ вывода из эксплуатации уран-графитового ядерного реактора

Изобретение относится к атомной промышленности, а именно к технологии вывода из эксплуатации уран-графитовых реакторов. После перевода уран-графитового реактора в ядерно-безопасное состояние путем очистки помещений, технологических систем и шахт от просыпей и россыпей ядерного топлива до...
Тип: Изобретение
Номер охранного документа: 0002580819
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.325c

Способ переработки облученного реакторного графита

Изобретение относится к атомной промышленности. Cпособ обращения с реакторным графитом остановленного уран-графитового реактора включает выборку из кладки реактора. Крупные куски графита измельчают механическим способом. Измельченные куски помещают в плазмохимический реактор в качестве...
Тип: Изобретение
Номер охранного документа: 0002580818
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.85d8

Способ очистки облученных графитовых втулок уран-графитового реактора и устройство для его осуществления

Группа изобретений относится к ядерной физике, к технологии обработки твердых радиоактивных отходов. Способ очистки облученных графитовых втулок уран-графитового реактора включает их нагрев, обработку газом, перевод примесей в газовую фазу, охлаждение углеродного материала. Облученную...
Тип: Изобретение
Номер охранного документа: 0002603015
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.c458

Устройство для локального выбуривания участков графитовых колонн кладки реактора

Изобретение относится к устройствам для отвода радиоактивных объектов или материалов из загрузочной зоны реактора. Устройство для локального выбуривания участков графитовых колонн кладки реактора содержит несущую штангу, снабженную приводом вращения, ведомый вал, механизм вращения и...
Тип: Изобретение
Номер охранного документа: 0002618214
Дата охранного документа: 03.05.2017
26.08.2017
№217.015.df9a

Способ захоронения технологической шахты для радиоактивных отходов при выводе из эксплуатации уран-графитового реактора

Изобретение относится к ядерной физике. Cпособ захоронения технологической шахты для радиоактивных отходов при выводе из эксплуатации уран-графитового реактора, по которому уровень осветленной речной воды понижают до уровня верхней кромки насыпи твердых радиоактивных отходов. Доступные твердые...
Тип: Изобретение
Номер охранного документа: 0002625169
Дата охранного документа: 12.07.2017
26.08.2017
№217.015.e0a5

Способ формирования барьеров безопасности при создании пункта захоронения особых радиоактивных отходов

Изобретение относится к технологии вывода из эксплуатации уран-графитовых ядерных реакторов. Способ формирования барьеров безопасности при создании пункта захоронения особых радиоактивных отходов включает подачу барьерного материала через трубу под собственным весом и перемещение в...
Тип: Изобретение
Номер охранного документа: 0002625329
Дата охранного документа: 13.07.2017
+ добавить свой РИД