×
19.12.2019
219.017.eef0

Результат интеллектуальной деятельности: Устройство определения задымления в лабораторной электропечи

Вид РИД

Изобретение

Аннотация: Изобретение относится к технической физике, в частности к определению параметров металлических расплавов. Устройство определения задымления в лабораторной электропечи, входящее в состав водоохлаждаемой вакуумной электропечи, заполненной инертным газом, содержит патрубок электропечи, вакуумные шланг и насос, датчик задымления, который содержит, по меньшей мере, один фотосенсор, выход которого подключен к каналу связи, выход которого соединен с компьютером, прозрачный трубчатый элемент, на котором размещен датчик задымления, расположен между вакуумным шлангом и патрубком электропечи. Техническим результатом является возможность функционирования и сохранения объективности оценки оптических характеристик задымления при изучении образца без повреждения датчика задымления. 4 з.п. ф-лы, 1 ил.

Предлагаемое изобретение относится к технической физике, а именно, к устройствам для фотометрических измерений физических параметров образцов металлических высокотемпературных, до tпл = 2000°С, расплавов, основанных на изучении упругих крутильных колебаний цилиндрического тигля с расплавом, размещенных в подвешенном на упругой закручиваемой нити тигле объемом в единицы см3, и предназначено для бесконтактного определения термозависимостей преимущественно кинематической вязкости ν(t) и удельного электросопротивления ρ(t) образцов этих расплавов в водоохлаждаемой вакуумной электропечи, заполненной инертным газом. Изобретение может быть использовано в лабораторных исследованиях на металлургических предприятиях и/или в вузах.

Измерение физических параметров металлических расплавов и шлаков, преимущественно высокотемпературных, до tпл = 2000°С, например на основе Fe, Co, Ni, позволяет проводить прогностический анализ материалов и давать рекомендации для получения сплавов с заданными характеристиками. При этом используют способы и устройства определения температурных зависимостей преимущественно кинематической вязкости ν(t) и/или удельного электросопротивления ρ(t) образцов расплавов в водоохлаждаемой электропечи вертикального типа, заполненной после ее вакуумирования инертным газом, с использованием нагреваемого образца известной массы m, помещенного в тигле в зоне нагрева этой электропечи. Значения параметров ν(t), ρ(t) в большинстве случаев взаимосвязаны, необходимы и достаточны для характеристики исследуемого металлического сплава. В основном используют бесконтактный фотометрический способ определения этих параметров на основе изучения траектории отраженного от зафиксированного на упругой нити зеркала светового луча - «зайчика», посредством определения затухания крутильных колебаний упругой нити с подвешенным на ней в электропечи тиглем с этим образцом – см. пат. РФ № 2457473 – аналог. Измерение параметров ν(t), ρ(t) проводят для каждой температурной точки tj. с получением значений в виде электрических сигналов, после чего производят аналогичное измерение этих же параметров в следующей температурной точке tj+1 и т. д., после чего полученные термозависимости анализируют.

Известно устройство для определения свободной поверхностной энергии, плотности и вязкости жидких металлов, которое использует электромагнитное устройство со шторками для предохранения смотровых окон от запыления и нагрева – см. В.И. Ниженко, Н.Ф. Данько «Установка для определения свободной поверхностной энергии, плотности и вязкости жидких металлов». В кн. «Методы исследования и свойства границ раздела контактирующих фаз». Киев, Наукова думка, 1977, с. 46, 47 – аналог.

Прототипом предлагаемого устройства является устройство определения задымления в лабораторной электропечи, входящее в состав водоохлаждаемой вакуумной электропечи, заполненной инертным газом, содержащее патрубок электропечи, вакуумные шланг и насос, датчик задымления, который содержит по меньшей мере один фотосенсор, выход которого подключен к каналу связи, выход которого соединен с компьютером – см. пат. РФ № 2663321.

Недостатками вышеуказанных устройств являются уменьшение достоверности и помехозащищенности измерений из-за возможного задымления внутри сначала вакуумированной, а затем заполненной инертным газом электропечи. Такое задымление возникает в ряде экспериментов, особенно в области высоких температур. Задымление различной интенсивности всегда заполняет всю электропечь, в том числе область смотрового окна, и влияет на динамику эксперимента. Оно непредсказуемо и практически неизбежно для ряда сплавов. При этом в электропечи образуются непрозрачные взвеси, аэрозоли, пары внутри нее, вследствие испарения абсорбированных газов, термоугара компонентов расплава и их испарения. Кроме того, молибденовый нагреватель электропечи и защитные экраны также окисляются с образованием окисла МоО, который интенсивно испаряется при температурах выше 900°С. Они не только частично оседают на смотровом стекле – см. вышеуказанный аналог В.И. Ниженко, Н.Ф. Данько, но и обусловливают ухудшение определения параметров образца за счет распространения по всему внутреннему объему электропечи и затенения отраженного от зеркала светового «зайчика». Использование датчика задымления при его размещении внутри электропечи, в области высоких и максимальных температур tj, неизбежных в процессе исследования вышеуказанных высокотемпературных сплавов, может приводить к потере данных, уменьшению достоверности получаемых от датчика задымления результатов и возрастанию вероятности срыва эксперимента. Уменьшается точность управления моментом включения/выключения вакуумного насоса и/или подачей инертного газа в электропечь, которая может длиться всего 1-2 минуты, а в конечном итоге, возможность осуществления штатной процедуры эксперимента. В этом случае объем полезной информации о параметрах ν(t) и/или ρ(t) уменьшается, но появляются недостоверные и необъективные результаты Кроме того, вследствие отсутствия прямого доступа к датчику задымления из-за его размещения внутри электропечи, становится невозможным его повторное тестирование и тем более его замена, которые не могут быть реализованы в возможно возникший непредсказуемый момент эксперимента. Такие действия могут быть осуществлены только после вынужденного завершения эксперимента. Это повлечет за собой приведение изучаемого образца в негодность и осуществление экспериментов заново, с новой калибровкой и многочасовыми подготовительными работами.

Изобретение направлено на решение технической проблемы, а именно, обеспечение и сохранение возможности оценки влияния характеристик задымления при высокой температуре в электропечи, заполненной инертным газом, на процесс управления работой вакуумного насоса и поступления инертного газа в электропечь при изучении расплава, и таким образом, устранение повреждающего влияния высокой температуры в электропечи на датчик задымления, а в конечном итоге, обеспечение осуществления штатной процедуры эксперимента.

Технический результат, достигаемый при реализации заявляемого устройства, заключается в устранении влияния температуры в электропечи на функционирование датчика задымления при оценке оптических и физических характеристик задымления, обеспечении увеличения надежности и достоверности управления работой вакуумного насоса и подачей инертного газа в электропечь, а в конечном итоге, объективизации оценки характеристик задымления, обеспечении осуществления штатной процедуры эксперимента.

При осуществлении заявляемого устройства решается проблема отсутствия устройств данного назначения и, соответственно, достигается технический результат, который заключается в реализации назначения устройства.

Указанная проблема решается с помощью предлагаемого изобретения – устройства определения задымления в лабораторной электропечи.

Заявляется устройство определения задымления в лабораторной электропечи, входящее в состав водоохлаждаемой вакуумной электропечи, заполненной инертным газом, содержащее патрубок электропечи, вакуумные шланг и насос, датчик задымления, который содержит по меньшей мере один фотосенсор, выход которого подключен к каналу связи, выход которого соединен с компьютером.

От прототипа устройство отличается тем, что в него введен прозрачный трубчатый элемент, на котором размещен датчик задымления, а этот элемент расположен между вакуумным шлангом и патрубком электропечи.

Кроме того, прозрачный трубчатый элемент выполнен в виде прозрачного вакуумного шланга, преимущественно поливинилхлоридного.

Кроме того, датчик задымления выполнен в виде тепловизора.

Кроме того, датчик задымления выполнен в виде фотовидеокамеры.

Кроме того, датчик задымления выполнен в виде гаджета, преимущественно смартфона.

Таким образом, при реализации изобретения достигается уменьшение влияния температуры в электропечи на функционирование датчика задымления, при оценке оптических и физических характеристик задымления в процессе изучения образца расплава, обеспечивается объективизация характеристик задымления и степени его влияния на эксперимент, оптимизация процедур устранения задымления и осуществления продолжения эксперимента, уменьшение количества непредсказуемых срывов эксперимента, а в конечном итоге, при появлении задымления достигается обеспечение возможности продолжения фотометрии характеристик ν(t), ρ(t) образца расплава.

Предлагаемое изобретение поясняется фигурой - Фиг. 1, на которой изображена блок-схема устройства определения задымления. Оно содержит электропечь 1, цилиндрический электронагреватель 2, патрубок 3 электропечи 1, вакуумный шланг 4, водяной шланг 5, прозрачный трубчатый элемент 6, датчик задымления 7, канал связи 8, тепловой защитный экран 9, водяное охлаждение электропечи 10.

Электропечь 1 мощностью 20 кВА выполнена в виде цилиндрической, преимущественно вертикальной, конструкции с водяным охлаждением 10. Цилиндрический электронагреватель 2 обеспечивает изотермическую зону нагрева. Внутри него коаксиально размещен подвешенный на упругой проволоке тигель с образцом расплава (на схеме не показаны). Этот электронагреватель 2 выполнен из тугоплавкого немагнитного материала, преимущественно из двух полуколец листового молибдена. Патрубок 3 электропечи 1 стальной. Вакуумный шланг 4 выполнен из толстостенной вакуумной резины или, предпочтительно, прозрачного вакуумного ПВХ- шланга. Водяной шланг 5 выполнен дюритовым или из армированной резины. Прозрачный полый элемент 6 выполнен преимущественно в виде трубки из стекла или оргстекла. Датчик задымления 7 закреплен вблизи прозрачного трубчатого элемента 6, например, зафиксирован на этом элементе 6 и представляет собой фотосенсор, например оптрон на основе светодиода и фототранзистор. Он реагирует на изменение прохождения или отражения светового излучения светодиода сквозь прозрачный трубчатый элемент 6 – см. «Википедия», статья «Пожарный извещатель». Датчик задымления 7 производит сигнал и в то же время реагирует на изменение задымлённости. При уменьшении задымленности он отключает выходной сигнал, при увеличении задымленности вырабатывает выходной сигнал. Кроме того, фотосенсор может быть выполнен как датчик дыма, например серого или черного. Датчик задымления 7 может быть также выполнен в виде портативного тепловизора, например HT826 производства КНР, в виде гаджета, например смартфона, либо цифрового фотоаппарата с видеорежимом, например фирмы Panasonic. Канал связи 8 соединяет датчик задымления 7 с управляющим компьютером (на схеме не показано) и может быть выполнен проводным, например usb, или беспроводным на основе wi-fi канала. Тепловой цилиндрический защитный экран 9 содержит несколько слоев молибдена и высокотемпературной керамики. Водяное охлаждение различных узлов электропечи 10 производят посредством парных подводящих и отводящих водяных шлангов 5 от водной магистрали проточной водой или посредством циркуляционной замкнутой системы охлаждения. Вакуумный насос, совместно с системой контроля «Мерадат» (на схеме не показаны), обеспечивает откачивание газов из электропечи 1 до уровня 10-2 мм Hg посредством коммутируемого вакуумного шланга 4, через который после перекоммутации инертный газ, преимущественно гелий, подают из баллона при манометрическом контроле (на схеме не показано).

Определение задымления в лабораторной электропечи осуществляют посредством вышеописанного устройства следующим образом. Подготавливают изучаемый образец, определяют его массу, после чего помещают его в тигель, который подвешивают коаксиально в электронагревателе 2 в центре зоны нагрева. Прозрачный трубчатый элемент 6 и датчик задымления 7 пристыковывают к патрубку 3 электропечи 1 с одной стороны и вакуумному шлангу 4 с другой. Электропечь 1 вакуумируют, для чего используют вакуумный насос и коммутируемый вакуумный шланг 4, подключая этот шланг 4 к насосу. Потом электропечь 1 заполняют гелием посредством этого же шланга 4, перекоммутированного к баллону с гелием (на схеме не показан). Затем начинают эксперимент, в ходе которого изучают фотометрическим методом ν(t), ρ(t) образца, при этом в ходе эксперимента непрерывно осуществляют пороговое контролирование задымления в электропечи 1.

Задымление происходит менее чем за одну минуту внутри всего объема электропечи 1 и имеет практически аналогичные характеристики в различных местах внутри этого объема, в том числе у смотрового окна (на схеме не показано), в патрубке 3 электропечи 1, прозрачном трубчатом элементе 6, стыке этого элемента и вакуумного шланга 4. Поскольку датчик задымления 7 закреплен, например зафиксирован, на прозрачном трубчатом элементе 6, он вырабатывает сигналы, зависящие от задымления, эквивалентные тому, как если бы он находился внутри электропечи 1, например, непосредственно в зоне нагрева тигля с расплавом или около смотрового окна. Эти сигналы через канал связи 8 и компьютер (на схеме не показан) управляют работой вакуумного насоса. Работоспособность датчика задымления 7 в данном случае не зависит от высокой температуры внутри электропечи, что обеспечивает надежность и стабильность его параметров. После появления задымления в данной температурной точке tj останавливают эксперимент, в течение нескольких минут, преимущественно 1 - 2 минуты, вакуумируют электропечь 1, уменьшают задымление и количество инертного газа в электропечи. Затем компенсируют уменьшение количества этого газа его докачиванием из баллона до величины давления газа в начале эксперимента, после чего прекращают докачивание газа, отключают этот баллон и продолжают эксперимент, при этом осуществляют последующие операции способа.

Предложенное техническое решение, независимо от высоких температур в электропечи, обеспечивает возможность функционирования и отсутствия повреждения датчика задымления, и сохранения объективности оценки оптических характеристик задымления при изучении образца. Это расширяет функциональные возможности устройства, обеспечивает возможность получения данных о начале задымления, динамике его устранения и продления исследования. Таким образом, возрастает помехозащищенность фотометрии при изучении образцов, а в конечном итоге, сохраняется достоверность и точность определения физических параметров исследуемого образца высокотемпературного металлического расплава.


Устройство определения задымления в лабораторной электропечи
Устройство определения задымления в лабораторной электропечи
Источник поступления информации: Роспатент

Showing 121-130 of 207 items.
23.08.2019
№219.017.c2db

Способ монтажа сборной части ригеля и монтажное приспособление для его осуществления

Изобретение к области строительства, в частности к способу монтажа ригеля и приспособлению для его монтажа. Технический результат заключается в повышении технологической надежности процесса монтажа. Способ монтажа сборной части ригеля включает установку ригеля на монтажные столики, закрепление...
Тип: Изобретение
Номер охранного документа: 0002697985
Дата охранного документа: 21.08.2019
27.08.2019
№219.017.c3de

Способ прокатки в валках с волнообразным профилем бочки

Изобретение относится к обработке металлов давлением и может быть использовано при прокатке литых слябов в черновых клетях листопрокатного стана горячей прокатки. Способ включает прокатку в два прохода, в первом проходе осуществляется обжатие заготовки высотой h в валках с волнообразным...
Тип: Изобретение
Номер охранного документа: 0002698241
Дата охранного документа: 23.08.2019
02.09.2019
№219.017.c5ed

Способ извлечения хрома (vi) из растворов с получением железо-хромового осадка

Изобретение может быть использовано в гальванотехнике при утилизации хромсодержащих стоков. Способ извлечения хрома (VI) из хромсодержащих растворов гальванических производств с получением малообводненного железо-хромсодержащего осадка включает введение в хромсодержащий раствор...
Тип: Изобретение
Номер охранного документа: 0002698810
Дата охранного документа: 30.08.2019
05.09.2019
№219.017.c78b

Способ получения высокоглинозёмистого цемента

Изобретение относится к области производства высокоглиноземистого цемента, в частности к его производству при комплексном использовании продуктов комбинированного безотходного обогащения низкокачественных бокситов. Технический результат изобретения - обеспечение возможности использования...
Тип: Изобретение
Номер охранного документа: 0002699090
Дата охранного документа: 03.09.2019
07.09.2019
№219.017.c867

Способ ковки раскатных колец

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении кованых раскатных колец из труднодеформируемой стали. Осуществляют обжатие стенки кольца по периметру посредством бойка и оправки с поворотом кольца. За первый оборот кольца обжатие его...
Тип: Изобретение
Номер охранного документа: 0002699428
Дата охранного документа: 05.09.2019
02.10.2019
№219.017.cd9d

Способ синтеза слоистых гидроксинитратов гадолиния

Изобретение относится к технологии получения ориентированных кристаллов слоистых гидроксисолей на основе гадолиния, которые могут быть использованы в производстве катализаторов, адсорбентов и анионно-обменных материалов, а также для формирования функциональных покрытий при создании различных...
Тип: Изобретение
Номер охранного документа: 0002700509
Дата охранного документа: 17.09.2019
04.10.2019
№219.017.d1ea

Конструкция антенной решетки свч с частотным сканированием

Изобретение относится к технике сверхвысоких частот (СВЧ) и может быть применено в составе бортовых радиолокационных систем с частотным сканированием. Технической задачей изобретения является существенное увеличение сектора сканирования антенны с высоким быстродействием, оптимизация...
Тип: Изобретение
Номер охранного документа: 0002701877
Дата охранного документа: 02.10.2019
13.12.2019
№219.017.ecf7

Инфракрасная волоконно-оптическая система контроля температуры ветрогенератора

Изобретение относится к инфракрасной волоконно-оптической системе, предназначенной для контроля температуры и диагностики комплектующих узлов ветрогенератора (подшипников и обмоток электродвигателей), которые работают в температурном интервале от +300 до -20°С. Инфракрасная волоконно-оптическая...
Тип: Изобретение
Номер охранного документа: 0002708814
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed04

Способ термической обработки износостойких втулок буровых насосов нефтегазового оборудования из инструментальных хромистых сталей

Изобретение относится к области производства деталей бурового нефтегазового оборудования, в частности цилиндровых втулок бурового насоса из стали Х12МФЛ, работающих в условиях абразивного износа, коррозионного воздействия и высоких переменных давлениях. Для увеличения ресурса работы цилиндровых...
Тип: Изобретение
Номер охранного документа: 0002708722
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed4e

Анод для электролитических ванн

Изобретение относится к области гальванотехники и может быть использовано в гальванических процессах для растворения отходов медных сплавов. Предложенный анод представляет собой перфорированный контейнер из неэлектропроводного материала, устойчивого к воздействию электролита, с насыпной...
Тип: Изобретение
Номер охранного документа: 0002708725
Дата охранного документа: 11.12.2019
Showing 21-21 of 21 items.
10.05.2023
№223.018.538f

Способ определения микронеоднородности расплава образца многокомпонентного металлического сплава

Изобретение относится к технической физике и металлургии. Предложен способ определения микронеоднородности расплава образца многокомпонентного металлического сплава посредством получения температурных зависимостей кинематической вязкости ν(T) при нагреве и охлаждении расплавленного образца...
Тип: Изобретение
Номер охранного документа: 0002795262
Дата охранного документа: 02.05.2023
+ добавить свой РИД