×
13.12.2019
219.017.ecf7

ИНФРАКРАСНАЯ ВОЛОКОННО-ОПТИЧЕСКАЯ СИСТЕМА КОНТРОЛЯ ТЕМПЕРАТУРЫ ВЕТРОГЕНЕРАТОРА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к инфракрасной волоконно-оптической системе, предназначенной для контроля температуры и диагностики комплектующих узлов ветрогенератора (подшипников и обмоток электродвигателей), которые работают в температурном интервале от +300 до -20°С. Инфракрасная волоконно-оптическая система контроля температуры ветрогенератора включает источник ИК излучения, канал передачи и приемник. При этом канал передачи выполнен в виде волоконной сборки диаметром 990 мкм и длиной 5 м, состоящей из 91 световода каждый диаметром 90 мкм на основе монокристаллов системы AgTlBrI, где 0,03≤х≤0,31, на входном торце которой установлена цилиндрическая линза с фокусным расстоянием 30 мм, оптически связанная с источником ИК излучения, а на выходном торце размещена собирающая линза с тем же фокусным расстоянием, оптически связанная с приемником ИК излучения. Кроме того, в качестве источника ИК излучения используют подшипники или обмотки ветрогенератора, в качестве приемника используют тепловизор, а линзы изготовлены из тех же монокристаллов, что и волоконная сборка. Технический результат - повышение точности и надежности системы контроля температуры. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к инфракрасной волоконно-оптической системе, предназначенной для контроля температуры и диагностики комплектующих узлов ветрогенератора (подшипников и обмоток электродвигателей), которые работают в температурном интервале от +300 до -20 оС, что, согласно законам Планка и Вина, соответствует спектральному диапазону от 5,1 мкм до 11,5 мкм [M. Planck. The theory of Heat Radiation. – 2nd. – P. Blakiston's Son & Co. – 1914. – P. 252].

Известна диагностика температурного состояния ветрогенератора термопарами и термометрами сопротивления контактным методом
[A. D. Spacek, O. H. Ando Junior, J. M. Neto, V. L. Coelho, M. O. Oliveira,
V. Gruber, L. Schaeffer. Management of mechanical vibration and temperature in small wind turbines using ZigBee wireless network. – 2013. – Vol. 11, № 1. – P.512-517; K. E. Haman, S. P. Malinowski, B. D. Strus. Two new types of ultrafast aircraft thermometer. – 2001. – Vol. 18, Iss. 2. – P. 117-134].
Их недостатком является низкая точность измерения температуры
до ± 1,0 оС, а также помехи, возникающие в результате близкого расположения электрогенератора. Корме того, невозможно ими измерить температуру подвижного объекта.

Таким образом, измерение температуры в труднодоступных, удаленных или подвижных объектов требует применения особых приборов с длинными каналами доставки сигнала, сложной системы их обработки, большого количества дополнительных устройств генерации, преобразования и приема. Кроме того, при воздействии электромагнитных помех, дополнительным требованием к измерительным приборам является помехозащищенность.

Известна инфракрасная (ИК) волоконная сборка из семи галогенидсеребряных световодов системы AgCl – AgBr, предназначенная для бесконтактной визуализации распределения теплового поля от удаленного объекта в диапазоне температур от -150 до +900 оС. Показана принципиальная применимость в низкотемпературной ИК пирометрии на примере передачи теплового изображения нагретой проволоки и лопатки турбины через ИК световод [А. С. Корсаков. Структура фотонно-кристаллических световодов на базе модифицированных галогенидсеребряных кристаллов и исследование их функциональных свойств: автореф. док. дисс. на соиск. степени д-ра.
техн. наук., г. Санкт-Петербург. – 2018. – с. 29 (http://www.npkgoi.ru/?module=articles&c=Perso-nal&b=7&a=5)].

Известна также работа «Экспериментальное исследование теплопереноса инфракрасными галогенидсеребряными световодами» [Шмыгалев, А. С. Экспериментальное исследование теплопереноса инфракрасными галогенидсеребряными световодами: автореф. канд. дисс. на соиск. степени канд. техн., г. Новосибирск. – 2018. – с. 24 (https://www.nstu.ru/science/dissertation_sov/dissertations/view?id=17021)].

В этих работах показан только принцип возможной передачи по галогенидсеребряным ИК световодам теплового изображения, но не предложена конструкция ИК волоконно-оптической системы контроля температуры, который может применяться в ветроненераторах.

Известен волоконно-оптический датчик (ВОД) температуры на основе кварцевых световодов, применяемый в ветрогенераторах [A feasibility study of transformer winding temperature and strain detection based on distributed optical fibre sensors / L. Yunpeng [et.al] // Optics and lasers in engineering. – 2018. – № 111. – P. 167-171], включающий:

– источник излучения – лазеры, длина волны (λ) 1,310 и 1,550 мкм, что соответствует температурам 1039 оС и 1596 оС, соответственно;

– канал передачи излучения – кварцевый световод длиной 90 м, выполненный в виде катушки, прозрачный в указанном спектральном диапазоне;

– приемник – фотодиоды, λ = 1310 мкм и 1550 мкм.

Такой ВОД косвенно определяет температуру с неудовлетворительной точностью определения ±1,0 оС и выше.

Также следует отметить, что главным недостатком данной конструкции, которая реализует метод оптического контроля, является невозможность прямого измерения температуры в диапазоне работы ветрогенератора от +300 до -20 оС, так как оптический диапазон кварцевых волокон ограничен длиной волны 2,0 мкм, что соответствует температуре 1176 оС [W. Wien. Temperature and entropy of starching. – Annals of Physics. – 1894. – Vol. 52. – P. 132-165.], а ветрогенераторные установки работают в диапазоне от -20 оС до +300 оС. Поэтому применяемый в данной конструкции метод контроля температуры требует использования специальных программ и сложных дополнительных систем обработки оптических сигналов. Недостатком данного ВОД является также низкая точность измерения температуры до ±1,0 °С и выше.

Существуют проблемы контроля температуры ветрогенератора, связанные с низкой точностью и косвенным измерением температуры, вызванные воздействием электромагнитных помех генератора и сложным аппаратным комплексом для обработки сигналов. Низкая точность измерения нарушает режим работы ветрогенератора, а также повышает риск его аварийности, а косвенное измерение приводит к снижению точности и надежности системы контроля температуры.

Указанные проблемы решаются за счет того, что в инфракрасной волоконно-оптической системе контроля температуры ветрогенератора, включающей источник ИК излучения, канал передачи и приемник, отличающейся тем, что канал передачи выполнен в виде волоконной сборки диаметром 990 мкм и длиной 5 м, состоящей из 91 световода, каждый диаметром 90 мкм, изготовленного на основе монокристаллов системы Ag1-xTlxBr1-0.54xI0.54x, где 0,03≤х≤0,31, на входном торце которой установлена цилиндрическая линза с фокусным расстоянием 30 мм, оптически связанная с источником ИК излучения, а на выходном торце размещена собирающая линза с тем же фокусным расстоянием, оптически связанная с приемником ИК излучения, при этом в качестве источника ИК излучения используют подшипники или обмотки ветрогенератора, в качестве приемника используют тепловизор, а линзы изготовлены из тех же монокристаллов, что и волоконная сборка.

На фигуре показана новая инфракрасная волоконно-оптическая система контроля температуры ветрогенератора, где 1 – источник инфракрасного излучения, 2 – цилиндрическая линза, 3 – волоконная сборка (канал передачи ИК излучения), 4 – собирающая линза, 5 – приемник ИК излучения (тепловизор).

ИК излучение, источником которого является комплектующий узел ветрогенератора (подшипники или обмотки ветрогенератора) (1), работающий в температурном диапазоне от -20 оС до +300 оС (при длинах волн от 11,5 до 5,1 мкм, соответственно) и оптически связанный с каналом передачи (3), собирается цилиндрической линзой (2), которая фокусирует ИК излучение на входной торец волоконной сборки при фокусном расстоянии
30 мм. Данное фокусное расстояние линзы обеспечивает прием ИК излучения от объекта в канал передачи для эффективного контроля температуры бесконтактным способом. Через входной торец ИК излучение поступает в волоконную сборку диаметром 990 мкм и длиной 5 м (3), состоящую из 91 световода, каждый диаметром 90 мкм, изготовленного на основе фото- и радиационно-стойких монокристаллов состава
Ag1-xTlxBr1-0.54xI0.54x, где 0,03≤х≤0,31, и передается к выходному торцу волоконной сборки. Волокна обладают минимально возможным диаметром равным 90 мкм, таким образом при количестве волокон, равном 91 штуке, в сборке обеспечивается высокое пространственное разрешение.
ИК излучение, выходящее из торца волоконной сборки, фокусируется с помощью собирающей линзы (4) на объектив приемника излучения (5), в качестве которого применяется тепловизор, регистрирующий указанную температуру комплектующих узлов ветрогенератора. Линзы изготовлены из тех же монокристаллов, что и световоды.

Технический результат изобретения достигается благодаря прямому бесконтактному измерению температуры ветрогенератора с высокой точностью определения ±0,1 оС и ниже, в прототипе ±1,0 оС и выше. Прямой контроль температуры, вместо косвенного, стал возможным благодаря замене кварцевых волокон, прозрачных в узком спектральном диапазоне
от 0,2 до 2,5 мкм, применяемых в прототипе, на поликристаллические инфракрасные световоды, пропускающие в среднем ИК диапазоне
от 2,0 до 25,0 мкм, что соответствует температурному диапазону
от +900оС до -150 оС. Канал передачи ИК излучения изготовлен
из световодов, получаемых методом экструзии на основе нового класса фото- и радиационно-стойких монокристаллов системы AgBr-(TlBr0.46I0.54).
Из этих же кристаллов изготовлены линзы [Жукова Л. В., Корсаков А. С., Львов А. Е., Салимгареев Д. Д. Волоконные световоды для среднего инфракрасного диапазона: учебник. – Екатеринбург: Издательство УМЦ УПИ, 2016. – 247 с.]. Конструкция новой инфракрасной волоконно-оптической системы контроля температуры ветрогенератора не требует дополнительно сложных систем обработки сигналов и дорогостоящего оборудования, как в прототипе. Следует также отметить, что канал передачи и линзы изготовлены из диэлектриков, которые не реагируют на воздействие электромагнитного излучения.

Инфракрасная волоконно-оптическая система контроля температуры ветрогенератора, включающая источник ИК излучения, канал передачи и приемник, отличающаяся тем, что канал передачи выполнен в виде волоконной сборки диаметром 990 мкм и длиной 5 м, состоящей из 91 световода каждый диаметром 90 мкм на основе монокристаллов системы AgTlBrI, где 0,03≤х≤0,31, на входном торце которой установлена цилиндрическая линза с фокусным расстоянием 30 мм, оптически связанная с источником ИК излучения, а на выходном торце размещена собирающая линза с тем же фокусным расстоянием, оптически связанная с приемником ИК излучения, при этом в качестве источника ИК излучения используют подшипники или обмотки ветрогенератора, в качестве приемника используют тепловизор, а линзы изготовлены из тех же монокристаллов, что и волоконная сборка.
ИНФРАКРАСНАЯ ВОЛОКОННО-ОПТИЧЕСКАЯ СИСТЕМА КОНТРОЛЯ ТЕМПЕРАТУРЫ ВЕТРОГЕНЕРАТОРА
ИНФРАКРАСНАЯ ВОЛОКОННО-ОПТИЧЕСКАЯ СИСТЕМА КОНТРОЛЯ ТЕМПЕРАТУРЫ ВЕТРОГЕНЕРАТОРА
Источник поступления информации: Роспатент

Showing 1-10 of 207 items.
20.08.2016
№216.015.4acb

Способ удаления мелких частиц из крупнозернистого слоя сыпучих материалов

Изобретение относится к области разделения компонентов дисперсной сыпучей среды, различающихся размером, и может быть использовано в сельском хозяйстве для удаления посторонних примесей при очистке сельскохозяйственных зерновых культур (пшеница, рожь, ячмень и др.) от мелкодисперсной среды...
Тип: Изобретение
Номер охранного документа: 0002594494
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4e31

Реактор для аэробной ферментации биомассы

Изобретение используется в сельском и лесном хозяйстве. Цилиндрический термостатированный корпус реактора установлен вертикально и содержит трубу загрузочного устройства, соединенную через подшипниковые узлы с кольцевой пустотелой трубой мешалки, на выходе которой подключена гребенка с...
Тип: Изобретение
Номер охранного документа: 0002595143
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4e4e

Система управления тепловым режимом в комплексе "печь ванюкова - котел-утилизатор"

Изобретение относится к области металлургии и может быть использовано, например, в печи Ванюкова. Система дополнительно снабжена корректирующим регулятором соотношения шихта/кислородно-воздушная смесь по температуре в котле-утилизаторе, датчиком температуры котла-утилизатора, установленным на...
Тип: Изобретение
Номер охранного документа: 0002595188
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4f6a

Способ упрочнения поверхности деталей обработкой трением с перемешиванием вращающимся инструментом

Изобретение относится к упрочнению плоских поверхностей заготовок. Осуществляют перемещение вращающегося упрочняющего инструмента по всей поверхности механически обработанной заготовки с установленными нагрузкой и скоростью по заданной траектории. Используют упрочняющий инструмент с рабочим...
Тип: Изобретение
Номер охранного документа: 0002595191
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.548e

Способ улучшения энергетического разрешения сцинтилляционного гамма-спектрометра

Изобретение относится к гамма-спектрометрам с неорганическими сцинтилляторами, имеющими зависимость световыхода от энергии образованных в них гамма-квантами вторичных электронов. Способ улучшения энергетического разрешения сцинтилляционного гамма-спектрометра включает преобразование с помощью...
Тип: Изобретение
Номер охранного документа: 0002593617
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5571

Способ получения извести

Изобретение относится к технологиям производства извести различного назначения, включая производство строительных материалов, и рекомендуется для предприятий мощностью от 10 до 300 тыс т в год. Технический результат заключается в повышении химической активности, улучшении технических и...
Тип: Изобретение
Номер охранного документа: 0002593396
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5d60

Валковый пресс для брикетирования

Изобретение относится к области обработки давлением и может быть использовано в оборудовании для брикетирования. Валковый пресс содержит станину, на которой размещены с возможностью вращения от привода валки. Валки выполнены с рядом формующих ячеек в форме плоского овала, последовательно...
Тип: Изобретение
Номер охранного документа: 0002590435
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5e53

Брикет для легирования алюминиевого сплава

Изобретение относится к брикетам для легирования при выплавке алюминиевых сплавов. Брикет содержит стружку сплава алюминия с медью и частицы меди в количестве 20-40 мас.% от общей массы брикета. Частицы меди могут быть использованы в виде стружки. Обеспечивается погружение брикета в расплав при...
Тип: Изобретение
Номер охранного документа: 0002590441
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5fd3

Способ обработки металлов

Изобретение относится к области обработки металлов давлением. Способ включает формоизменение заготовки протягиванием ее через деформирующий инструмент с нагревом от тепла деформации и трения за счет повышения скольжения на поверхности контакта между деформирующим инструментом и заготовкой, с...
Тип: Изобретение
Номер охранного документа: 0002590437
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.669c

Волновая электростанция

Изобретение предназначено для выработки электрической энергии от движения волн в морях и океанах. Волновая электростанция содержит платформу на понтонах с размещенными на ней электрическим генератором и штангой с шестерней. На платформе с помощью стоек размещено дугообразное зубчатое коромысло....
Тип: Изобретение
Номер охранного документа: 0002592094
Дата охранного документа: 20.07.2016
Showing 1-10 of 14 items.
13.01.2017
№217.015.728e

Способ повышения радиационной стойкости и стабилизации светопропускания германо-силикатных стекловолокон

Изобретение относится к германо-силикатным стекловолокнам. Технический результат изобретения заключается в снижении уровня радиационно-наведенного поглощения, повышении трансмиссионных свойств и надежности Ge-SiO стекловолокон, работающих в радиационных полях. Германо-силикатные стекловолокна...
Тип: Изобретение
Номер охранного документа: 0002598093
Дата охранного документа: 20.09.2016
20.01.2018
№218.016.1381

Инфракрасный световод с большим диаметром поля моды

Изобретение относится к фотонно-кристаллическим световодам для волоконной оптики среднего инфракрасного диапазона спектра, конкретно к медицинским СО лазерам. Инфракрасный световод с большим диаметром поля моды содержит сердцевину и оболочку, состоящую из стержней, расположенных в...
Тип: Изобретение
Номер охранного документа: 0002634492
Дата охранного документа: 31.10.2017
03.10.2018
№218.016.8d44

Способ получения кристаллов твердых растворов галогенидов серебра и таллия (i)

Изобретение относится к области получения кристаллов на основе твердых растворов бромида серебра (AgBr) и иодида одновалентного таллия (TlI). Кристаллы прозрачны от видимой до дальней инфракрасной (ИК) области спектра (0,5-67,0 мкм), пластичны, не обладают эффектом спайности, поэтому из них...
Тип: Изобретение
Номер охранного документа: 0002668247
Дата охранного документа: 27.09.2018
21.03.2019
№219.016.eadb

Инфракрасный световод с большим диаметром поля моды

Изобретение относится к радиационностойким фотонно-кристаллическим световодам для длины волны 10,0 мкм, в которых одномодовый режим работы соблюдается за счет влияния двух механизмов: фотонных запрещенных зон (ФЗЗ) и полного внутреннего отражения (ПВО). Инфракрасный световод с большим диаметром...
Тип: Изобретение
Номер охранного документа: 0002682603
Дата охранного документа: 19.03.2019
21.03.2019
№219.016.ebbb

Одномодовый кристаллический инфракрасный световод

Изобретение относится к одномодовым кристаллическим ИК световодам, которые предназначены для доставки ИК излучения медицинских твердотельных лазеров с параметрическим преобразованием частоты на длине волны 5,75 мкм. Одномодовый кристаллический инфракрасный световод включает сердцевину и...
Тип: Изобретение
Номер охранного документа: 0002682563
Дата охранного документа: 19.03.2019
10.04.2019
№219.017.056a

Способ получения волоконных сцинтилляторов

Изобретение относится к сцинтилляционным материалам, конкретно к волоконным сцинтилляторам, предназначенным для измерения ионизирующих излучений. Способ получения волоконных сцинтилляторов, включающий разогрев материала сцинтиллятора с последующим формированием структуры волокна,...
Тип: Изобретение
Номер охранного документа: 0002361239
Дата охранного документа: 10.07.2009
01.05.2019
№219.017.481a

Двухслойный кристаллический инфракрасный световод для спектрального диапазона 2-50 мкм

Изобретение относится к оптоволоконной ИК-Фурье спектроскопии, конкретно к двухслойным ИК световодам, которые прозрачны в среднем ИК диапазоне спектра от 2,0 до 50,0 мкм и изготовлены из радиационно-стойких кристаллов определенного состава на основе системы бромид серебра - твердый раствор...
Тип: Изобретение
Номер охранного документа: 0002686512
Дата охранного документа: 29.04.2019
14.12.2019
№219.017.edf0

Способ получения волоконных сборок на основе поликристаллических инфракрасных световодов

Изобретение относится для применений в различных областях специальной волоконной оптики на основе инфракрасных (ИК) волоконных сборок, изготовленных из фото- и радиационно-стойких световодов новой системы AgBr – (TlBrI). Способ получения волоконных сборок на основе поликристаллических...
Тип: Изобретение
Номер охранного документа: 0002708900
Дата охранного документа: 12.12.2019
19.12.2019
№219.017.ef4d

Способ получения инфракрасных волоконных сборок на основе галогенидсеребряных световодов

Изобретение относится к области получения ИК волоконных сборок из галогенидсеребряных световодов, предназначенных для передачи теплового изображения в среднем инфракрасном диапазоне (2-20 мкм) и востребованных для применения в промышленной и медицинской термографии с целью визуализации...
Тип: Изобретение
Номер охранного документа: 0002709371
Дата охранного документа: 17.12.2019
12.04.2023
№223.018.4578

Терагерцовый кристалл

Изобретение относится к терагерцовым (ТГц) материалам прозрачным в видимом, инфракрасном (0,5 – 50,0 мкм), терагерцовом и миллиметровом диапазонах – 0,05 – 10,0 ТГц, что соответствует длинам волн 6000,0 – 30,0 мкм. Терагерцовый кристалл согласно изобретению характеризуется тем, что он выполнен...
Тип: Изобретение
Номер охранного документа: 0002756582
Дата охранного документа: 01.10.2021
+ добавить свой РИД