×
02.10.2019
219.017.cd9d

Результат интеллектуальной деятельности: Способ синтеза слоистых гидроксинитратов гадолиния

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения ориентированных кристаллов слоистых гидроксисолей на основе гадолиния, которые могут быть использованы в производстве катализаторов, адсорбентов и анионно-обменных материалов, а также для формирования функциональных покрытий при создании различных гетероструктур и приборов для конверсии электромагнитного излучения, сенсоров и многоцветных светоизлучающих диодов (LEDs). Способ получения ориентированных кристаллов слоистого гидроксинитрата гадолиния включает в себя следующие стадии: получение раствора нитрата гадолиния; приведение в контакт указанного выше раствора нитрата гадолиния и раствора аммиака таким образом, что в процессе осаждения значение рН реакционной смеси остается постоянным и его значение находится в интервале 7-9 единиц рН при концентрации гадолиния в растворе нитрата в диапазоне от 0,05 до 1 моль/л; отделение сформировавшейся твердой фазы от маточного раствора; сушку осадка. Изобретение позволяет получать ориентированные кристаллы слоистого гидроксинитрата гадолиния, обладающие повышенной однородностью, при снижении энергоемкости и количества стадий процесса синтеза. 5 з.п. ф-лы, 9 ил., 5 пр.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ Изобретение относится к способам получения ориентированных кристаллов слоистых гидроксисолей редкоземельных элементов, более конкретно, к способам получения ориентированных кристаллов слоистых гидроксисолей на основе гадолиния, которые могут быть использованы в производстве катализаторов, адсорбентов и анионно-обменных материалов, а также для формирования функциональных покрытий при создании различных гетероструктур и приборов для конверсии электромагнитного излучения, сенсоров и многоцветных светоизлучающих диодов (LEDs).

УРОВЕНЬ ТЕХНИКИ, ПРЕДШЕСТВУЮЩИЙ ДАННОМУ ИЗОБРЕТЕНИЮ

Соединения гадолиния характеризуются высокой химической стабильностью и возможностью введения ионов редкоземельных элементов в широком диапазоне концентраций. Создание донорно-акцепторных ионных пар (Ег-Yb, Тm-Yb, Но-Тb) обеспечивает преобразование электромагнитного излучения УФ и ИК диапазонов в видимую область по механизмам «down-conversion» и «up-conversion». Наличие неспаренных электронов на 4г*-оболочке гадолиния обеспечивает парамагнетизм его соединений и широкие возможности их применения в биологии, медицине, атомной и альтернативной энергетике (МРТ, биоимиджинг, защита от тепловых нейтронов, солнечные батареи и др.).

Слоистые гидроксисоли гадолиния, в том числе гидроксинитрат гадолиния, являются прекурсорами для создания устойчивых коллоидных растворов, из которых возможно формирование тонкослойных покрытий. Известно, что свойства конечного покрытия напрямую зависят от размера, формы и ориентации кристаллов слоистого гидроксинитрата гадолиния.

В современной практике существуют способы получения ориентированных кристаллов слоистого гидроксинитрата гадолиния, включающие в себя стадии формирования разупорядоченных структур слоистых гидроксинитратов гадолиния и их дальнейшую кристаллизацию при повышенных температурах.

Так известен способ синтеза ориентированных кристаллов слоистых гидроксисолей редкоземельных элементов [Патент CN101812295, приор, от 09.02.2010, опубл. 25.08.2010, МПК C09K 11/78]. Способ включает себя следующие стадии: приготовление раствора, содержащего ионы трехвалентного иттрия и ионы других редкоземельных элементов (РЗЭ), выбранных из Eu3+, Gd3+, Tb3+, Dy3+, Но3+, Er3+, Tm3+, Yb3+ или Lu3+, причем мольное соотношение ионов Y3+ к ионами других РЗЭ находится в диапазоне от 1/9 до 9/1, а молярная концентрация ионов иттрия находится в диапазоне от 0,005 до 0,2 моль/л; приготовление общего раствора гидроксида натрия и нитрата натрия, в котором концентрации гидроксида натрия и нитрата натрия находятся в интервалах 0,1-0,5 моль/л и 0,05-0,25 моль/л соответственно; приведение в контакт растворов, полученных на первой и второй стадии путем медленного вливания общего раствора гидроксида натрия и нитрата натрия в раствор содержащего ионы трехвалентного иттрия и ионы других редкоземельных элементов до достижения значения рН реакционной смеси от 6 до 7 единиц; выдержка полученной смеси в течении 10-50 минут при постоянном перемешивании, обработка смеси при повышенной температуре в диапазоне от 70 до 150°С в течении 6-48 часов; фильтрация полученного осадка, его промывка и сушка. Недостатками предложенного способа являются многостадийность процесса, необходимость использования стадии выдержки осадка при повышенной температуре, что существенно повышает энергоемкость предложенного способа и затрудняет его промышленное использование.

Наиболее близким к заявляемому решению является подход к синтезу ориентированных кристаллов гидроксинитрата гадолиния [One-step freezing temperature crystallization of layered rare-earth hydroxide (Ln2(OH)5NO3⋅nH2O) nanosheets for a wide spectrum of Ln (Ln=Pr-Er, and Y), anion exchange with fluorine and sulfate, and microscopic coordination probed via photoluminescence", Journal of Materials Chemistry C", 2015, Vol. 3, No.14, pp. 3428-3437], где предусмотрено введение аммиака в исходный раствор нитратов РЗЭ, который предварительно был охлажден до температуры 4°С. В процессе образования осадка указанное значение температуры также поддерживалось постоянным. рН в процессе незначительно возрастает до значения 7,91 за счет практически полного поглощения вводимых ОН- -ионов при образовании осадка. Процесс останавливают при резком подъеме рН до значения 8,4, что означает завершение поглощения ОН- -ионов из-за отсутствия необходимого количества катионов металлов в растворе для формирования твердой фазы. Далее осадок фильтровали, последовательно промывали дистиллированной водой и этанолом, подвергали термообработке. Недостатком указанного способа могут быть названы малый размер сформированных ориентированных кристаллов и их неоднородность, а также энергоемкость стадии охлаждения.

РАСКРЫТИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Настоящее изобретение направлено на преодоление описанных выше недостатков: снижение количества стадий процесса получения ориентированных кристаллов слоистого гидроксинитрата гадолиния, снижение энергоемкости процесса синтеза, а также повышение однородности получаемых ориентированных кристаллов слоистого гидроксинитрата гадолиния.

Технический результат достигается последовательностью следующих технологических операций:

- получения раствора нитрата гадолиния или общего раствора нитратов гадолиния и других редкоземельных элементов (La, Се, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb или Y); при формировании общего раствора в исходный раствор нитрата гадолиния вводят добавку раствора нитрата металла группы лантаноидов, или нитрата иттрия, или их смеси в мольном отношении Me/Gd=0,005-0,2, где Me соответствует La, Се, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb или Y.

- приведения в контакт указанного выше раствора нитрата гадолиния или общего раствора нитратов гадолиния и других редкоземельных элементов и раствора аммиака таким образом, что в процессе осаждения значение рН реакционной смеси поддерживают постоянным в интервале 7-9 единиц рН, более предпочтительно 7,5-8,5 единиц рН при суммарной концентрации ионов гадолиния и ионов металлов в растворе нитратов в диапазоне от 0,05 до 1 моль/л.

- отделения сформировавшейся твердой фазы от маточного раствора любым известным методом;

- сушки указанного выше осадка в атмосфере воздуха до получения заявленного соединения.

Более того возможно проведение стадии промывки осадка после стадии его отделения от маточного раствора. В качестве промывной жидкости может быть использована вода или спирт (этиловый спирт, изопропиловый спирт или бутиловый спирт), или обе жидкости, где предпочтительной последовательностью является промывка сначала водой, а затем спиртом.

За счет организации процесса осаждения при постоянном значении рН реакционной среды в указанном диапазоне обеспечивается ориентированный рост кристаллов непосредственно при осаждении слоистых гидроксинитратов гадолиния, что делает возможным исключение стадии гидротермального синтеза.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Сущность изобретения поясняется фигурами, где изображено:

- на фиг. 1 - таблица параметров образцов слоистых гидроксинитратов гадолиния, синтезированных в Примерах 1-5;

- на фиг. 2 - гранулометрическое распределение частиц по размеру слоистого гидроксинитрата гадолиния, синтезированного в Примере 1;

- на фиг. 3 - рентгенограмма слоистого гидроксинитрата гадолиния, синтезированного в Примере 1;

- на фиг. 4 - СЭМ-изображение частиц образца, синтезированного по примеру 1;

- на фиг. 5 - распределение частиц по размеру слоистого гидроксинитрата гадолиния, синтезированного в Примере 5;

- на фиг. 6 - рентгенограмма слоистого гидроксинитрата гадолиния, синтезированного в Примере 5.

- на фиг. 7 - СЭМ-изображение частиц образца, синтезированного по примеру 5.

- на фиг. 8 - спектры поглощения в области длин волн 200-300 нм с пиком возбуждения при длины волны, равной 217 нм, и люминесценций образца в области длин волн 500-700 нм образца, синтезированного по Примеру 2 после сушки, где 1 - пик, соответствующий переходу Er3+:4S3/24I15/2 при длине волны, равной 540 нм.

- на фиг. 9 - спектры поглощения в области длин волн 200-300 нм и люминесценций образца в области длин волн 500-700 нм образца, синтезированного по Примеру 2 после обжига при 600°С, где 1 - соответствует переходу Gd3+:8S1/26DJ при длины волны, равной 230 нм, 2 - пик, соответствующий переходу Er34+:2Н11/24I15/2, 3 - максимуму интенсивности при переходе Er34+: 4S3/24I15/2 при длине волны 554 нм, 4 - переходу Er3+:4FJ4I15/2.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

На первой стадии готовят раствор нитрата гадолиния. Для приготовления раствора нитрата гадолиния обычно используют воду, деионизированная вода является особенно предпочтительной. Прекурсорами для приготовления раствора нитрата гадолиния могут быть как соли нитрата гадолиния, так и любые соединения гадолиния, которые при контакте с любым соединением - донором NO3--группы - дают нитрат гадолиния в качестве продукта реакции. Значение концентрации раствора нитрата гадолиния может находится в интервале 0,05-1 моль/л, предпочтительно 0,4-0,9 моль/л. Слишком высокая концентрация раствора нитрата гадолиния приводит к снижению однородности получаемых ориентированных кристаллов слоистого гидроксинитрата гадолиния, слишком низкая концентрация раствора нитрата гадолиния снижает производительность процесса и не является целесообразной для промышленного применения.

В раствор нитрата гадолиния может быть введена добавка раствора нитрата металла группы лантаноидов или иттрия, или их смеси в мольном отношении Me/Gd=0,005-0,2 (Me соответствует La, Се, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb или Y).

На второй стадии осуществляют процесс осаждения путем приведения в контакт указанного выше раствора нитрата гадолиния или общего раствора нитратов гадолиния и других редкоземельных элементов и осадителя таким образом, что в процессе осаждения значение рН реакционной смеси остается постоянным и его значение находится в интервале 7-9 единиц рН, более предпочтительно 7,5-8,5 единиц рН. В качестве осадителя используют водный раствора аммиака в том объеме, который необходим для поддержания значения рН в указанном интервале. Значение концентрации водного раствора аммиака может находится в интервале от 1 до 10 моль/л, предпочтительнее от 4 до 6 моль/л.

Приведение в контакт раствора нитрата гадолиния и раствора осадителя может быть выполнено в полунепрерывном или непрерывном режимах, при этом раствор нитрата гадолиния и раствор осадителя дозируют в общий реакционный объем в котором поддерживают выбранное значение рН за счет регулирования скорости дозирования растворов. Дозирование растворов может быть выполнено при использовании перистальтических насосов, мембранных насосов, насосов прямого дозирования, центробежных насосов с регулируемой скоростью вращения, а также другими способами. Контроль рН реакционного объема ведут в течение всего процесса осаждения при помощи рН-метров с ион-селективными электродами или при помощи иных систем детектирования концентрации Н+ ионов в растворе. Для поддержания значения рН в реакционном объеме на заданном уровне возможно использование систем скоростей дозирования раствора нитрата гадолиния и раствора осадителя.

На третьей стадии происходит отделение сформировавшейся на предыдущей стадии твердой фазы от маточного раствора любым известным методом (фильтрованием, выпариванием, центрифугированием и т.д.). Предпочтительнее проводить вакуумную фильтрацию, так как этот метод является наиболее удобным в промышленных масштабах, и более того, этот метод наиболее удобен при осуществлении последующей стадии промывки осадка.

Дополнительной стадией может являться промывка осадка от адсорбированных ионов маточного раствора и молекул воды. Для удаления ионов маточного раствора в качестве промывной жидкости можно использовать воду, причем деионизированная вода является предпочтительной. Предпочтительным также является соотношение твердого к жидкому, находящееся в интервале от 1/10 до 1/20. Больший объем промывных вод является нецелесообразным для промышленного применения. Для удаления адсорбированных молекул воды в качестве промывной жидкости может быть использован любой спирт. В качестве примеров могут быть названы этиловый спирт, изопропиловый спирт или бутиловый спирт. Более того, для промывки может быть использована как одна промывная жидкость, так и несколько промывных жидкостей, причем последовательная промывка сначала водой, а потом спиртом является предпочтительной.

На последней стадии проводят сушку осадка в атмосфере воздуха до постоянной массы и получения заявленного соединения. Температура сушки может находиться в диапазоне 20-120°С, наиболее предпочтительным является диапазон 50-80°С.

Сущность и преимущества изобретения могут быть пояснены следующими примерами. На фиг. 1 изображена таблица параметров образцов слоистых гидроксинитратов гадолиния, синтезированных в Примерах 1-5.

Пример 1.

Пример относится к осаждению гидроксинитрата гадолиния при значении рН=7 и с концентрацией раствора нитрата гадолиния 0,5 моль/л.

В химический стакан вводят 281 мл раствора нитрата гадолиния с концентрацией 322 г/л в пересчете на оксид гадолиния, доводят деионизованной водой до 1 литра. В другой химический стакан вводят 87 мл раствора аммиака с концентрацией 14,4 моль/л, доводят деионизованной водой до 250 мл, таким образом получают раствор аммиака с концентрацией 5,0 моль/л.

В химический стакан, снабженный верхнеприводной мешалкой и датчиком рН вводят 250 мл деионизованной воды. Далее в стакан при перемешивании при помощи перистальтических насосов дозируют раствор нитрата гадолиния со скоростью 5 мл/мин и водный раствор аммиака со скоростью 1,5 мл/мин, причем значение рН в стакане поддерживают в диапазоне от 6,8 до 7,2 ед. за счет периодического прерывания дозирования водного раствора аммиака.

Полученный осадок сушат на воздухе в течении 24 часов с последующей сушкой в сушильном шкафу при температуре 60°С в течении 24 часов.

Определение гранулометрического состава проводили с помощью метода лазерной дифракции при использовании прибора Analysette 22 NanoTec. На фиг. 2 приведено распределение частиц образца, полученного по примеру 1, по размеру. На фиг. 3 приведена рентгенограмма слоистого гидроксинитрата гадолиния, полученного по примеру 1. Морфологию частиц исследовали с помощью метода сканирующей электронной микроскопии, на фиг. 4 приведена фотография частиц образца, полученного по примеру 1, с увеличением в 2500 раз.

Пример 2.

Пример относится к осаждению гидроксинитрата гадолиния с содержанием гидроксинитрата эрбия 1 мол % при значении рН=7,5 и с концентрацией общего раствора нитратов гадолиния и эрбия 0,1 моль/л.

В этом случае поступают также, как в примере 1, но для осаждения гидроксинитрата гадолиния в химический стакан вводят 56 мл нитрата гадолиния с концентрацией 322 г/л в пересчете на оксид гадолиния и 6,1 мл раствора нитрата эрбия с концентрацией 313 г/л в пересчете на оксид эрбия, доводят деионизованной водой до 1 литра. На протяжении всего осаждения значение рН в стакане поддерживают в диапазоне от 7,3 до 7,7 ед.

После осаждения суспензию фильтруют на нуч-фильтре. Осадок помещают в реактор с 250 мл абсолютного спирта и репульпируют с образованием водно-спиртовой суспензии в течении 30 минут. Далее водно-спиртовую суспензию фильтруют на вакуумном нуч-фильтре. Полученный осадок сушат на воздухе в течении 24 часов с последующей сушкой в сушильном шкафу при температуре 60°С в течении 24 часов. Люминесцентные свойства образца были исследованы после сушки при 60°С, а также после обжига при 600°С на спектрометре Lambda1000. Спектры возбуждения и люминесценций представлены на фигуре 8 и 9 соответственно.

Пример 3.

Пример относится к осаждению гидроксинитрата гадолиния с содержанием гидроксинитрата эрбия 20 мол. % при значении рН=7,5 и с концентрацией общего раствора нитратов гадолиния и эрбия 0,5 моль/л.

В этом случае поступают также, как в примере 1, однако для осаждения гидроксинитратов гадолиния и эрбия в химический стакан к нитрату гадолиния вводят 76 мл раствора нитрата эрбия с концентрацией 313 г/л в пересчете на оксид эрбия, так же доводят деионизованной водой до 1 литра. Осаждения и все дальнейшие операции проводят также, как описано в примере 1.

Пример 4.

Пример относится к осаждению гидроксинитрата гадолиния с содержанием гидроксинитрата эрбия 5 мол.% и гидроксинитрата иттербия 15%мол. при значении рН=7 и с концентрацией общего раствора нитратов гадолиния, эрбия и иттербия 0,5 моль/л.

В этом случае поступают также, как в примере 1, но для осаждения гидроксинитратов в химический стакан к нитрату гадолиния вводят 19 мл раствора нитрата эрбия с концентрацией 313 г/л в пересчете на оксид эрбия, а также вводят 36 мл раствора нитрата иттербия с концентрацией 298 г/л в пересчете на оксид иттербия, так же доводят деионизованной водой до 1 литра. Осаждения и все дальнейшие операции проводят также, как описано в примере 1.

Пример 5 (сравнительный).

Этот пример относится к осаждению гидроксинитрата гадолиния при значении рН=10 и с концентрацией раствора нитрата гадолиния 0,5 моль/л.

В этом случае поступают также, как в примере 1, но на протяжении всего осаждения поддерживают постоянное значение рН в диапазоне от 9,8 до 10,2 ед. Все последующие операции проводят также, как описано в примере 1.

На фиг. 5 приведено распределение частиц образца по размеру, полученного по примеру 5. На фиг. 6 приведена рентгенограмма слоистого гидроксинитрата гадолиния, полученного по примеру 1, на фиг. 7 приведена фотография частиц образца, полученного по примеру 1, с увеличением в 2500 раз.

Источник поступления информации: Роспатент

Showing 1-10 of 207 items.
20.08.2016
№216.015.4acb

Способ удаления мелких частиц из крупнозернистого слоя сыпучих материалов

Изобретение относится к области разделения компонентов дисперсной сыпучей среды, различающихся размером, и может быть использовано в сельском хозяйстве для удаления посторонних примесей при очистке сельскохозяйственных зерновых культур (пшеница, рожь, ячмень и др.) от мелкодисперсной среды...
Тип: Изобретение
Номер охранного документа: 0002594494
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4e31

Реактор для аэробной ферментации биомассы

Изобретение используется в сельском и лесном хозяйстве. Цилиндрический термостатированный корпус реактора установлен вертикально и содержит трубу загрузочного устройства, соединенную через подшипниковые узлы с кольцевой пустотелой трубой мешалки, на выходе которой подключена гребенка с...
Тип: Изобретение
Номер охранного документа: 0002595143
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4e4e

Система управления тепловым режимом в комплексе "печь ванюкова - котел-утилизатор"

Изобретение относится к области металлургии и может быть использовано, например, в печи Ванюкова. Система дополнительно снабжена корректирующим регулятором соотношения шихта/кислородно-воздушная смесь по температуре в котле-утилизаторе, датчиком температуры котла-утилизатора, установленным на...
Тип: Изобретение
Номер охранного документа: 0002595188
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4f6a

Способ упрочнения поверхности деталей обработкой трением с перемешиванием вращающимся инструментом

Изобретение относится к упрочнению плоских поверхностей заготовок. Осуществляют перемещение вращающегося упрочняющего инструмента по всей поверхности механически обработанной заготовки с установленными нагрузкой и скоростью по заданной траектории. Используют упрочняющий инструмент с рабочим...
Тип: Изобретение
Номер охранного документа: 0002595191
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.548e

Способ улучшения энергетического разрешения сцинтилляционного гамма-спектрометра

Изобретение относится к гамма-спектрометрам с неорганическими сцинтилляторами, имеющими зависимость световыхода от энергии образованных в них гамма-квантами вторичных электронов. Способ улучшения энергетического разрешения сцинтилляционного гамма-спектрометра включает преобразование с помощью...
Тип: Изобретение
Номер охранного документа: 0002593617
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5571

Способ получения извести

Изобретение относится к технологиям производства извести различного назначения, включая производство строительных материалов, и рекомендуется для предприятий мощностью от 10 до 300 тыс т в год. Технический результат заключается в повышении химической активности, улучшении технических и...
Тип: Изобретение
Номер охранного документа: 0002593396
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5d60

Валковый пресс для брикетирования

Изобретение относится к области обработки давлением и может быть использовано в оборудовании для брикетирования. Валковый пресс содержит станину, на которой размещены с возможностью вращения от привода валки. Валки выполнены с рядом формующих ячеек в форме плоского овала, последовательно...
Тип: Изобретение
Номер охранного документа: 0002590435
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5e53

Брикет для легирования алюминиевого сплава

Изобретение относится к брикетам для легирования при выплавке алюминиевых сплавов. Брикет содержит стружку сплава алюминия с медью и частицы меди в количестве 20-40 мас.% от общей массы брикета. Частицы меди могут быть использованы в виде стружки. Обеспечивается погружение брикета в расплав при...
Тип: Изобретение
Номер охранного документа: 0002590441
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5fd3

Способ обработки металлов

Изобретение относится к области обработки металлов давлением. Способ включает формоизменение заготовки протягиванием ее через деформирующий инструмент с нагревом от тепла деформации и трения за счет повышения скольжения на поверхности контакта между деформирующим инструментом и заготовкой, с...
Тип: Изобретение
Номер охранного документа: 0002590437
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.669c

Волновая электростанция

Изобретение предназначено для выработки электрической энергии от движения волн в морях и океанах. Волновая электростанция содержит платформу на понтонах с размещенными на ней электрическим генератором и штангой с шестерней. На платформе с помощью стоек размещено дугообразное зубчатое коромысло....
Тип: Изобретение
Номер охранного документа: 0002592094
Дата охранного документа: 20.07.2016
Showing 1-10 of 45 items.
27.01.2013
№216.012.200f

Способ извлечения редкоземельных элементов из фосфогипса

Изобретение относится к технологии получения соединений редкоземельных элементов (РЗЭ) при комплексной переработке апатитов, в частности к извлечению РЗЭ из фосфогипса. Способ включает приготовление пульпы из фосфогипса и сорбцию редкоземельных элементов на сорбенте. Приготовление пульпы ведут...
Тип: Изобретение
Номер охранного документа: 0002473708
Дата охранного документа: 27.01.2013
10.06.2013
№216.012.4896

Способ извлечения редкоземельных элементов из технологических и продуктивных растворов и пульп

Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов при комплексной переработке технологических и продуктивных растворов. Способ извлечения редкоземельных элементов из растворов, содержащих железо(III) и алюминий, включает сорбцию...
Тип: Изобретение
Номер охранного документа: 0002484162
Дата охранного документа: 10.06.2013
10.08.2013
№216.012.5d51

Способ извлечения концентрата природного урана из сернокислых растворов подземного выщелачивания и установка для его осуществления

Изобретения относятся к гидрометаллургии и могут быть использованы для извлечения урана из продуктивных растворов и пульп, в частности для получения концентратов природного урана при сернокислотном подземном выщелачивании с использованием нитратно-сернокислотной десорбции анионита. Способ...
Тип: Изобретение
Номер охранного документа: 0002489510
Дата охранного документа: 10.08.2013
10.07.2014
№216.012.da14

Способ утилизации сбросных растворов в производстве тетрафторида урана

Изобретение относится к гидрометаллургии урана и может быть использовано для утилизации маточников, образующихся при получении тетрафторида урана из азотнокислых растворов с использованием процессов экстракции, реэкстракции и термообработки соединений урана, получаемых из реэкстрактов с...
Тип: Изобретение
Номер охранного документа: 0002521606
Дата охранного документа: 10.07.2014
10.12.2014
№216.013.0ef3

Имплантированная ионами олова пленка оксида кремния на кремниевой подложке

Изобретение относится к материаловедению. Пленка оксида кремния на кремниевой подложке, имплантированная ионами олова, включает нанокластеры альфа-олова. Толщина пленки составляет 80÷350 нм, средняя концентрация олова находится в пределах от 2,16 до 7,1 атомных процентов, нанокластеры...
Тип: Изобретение
Номер охранного документа: 0002535244
Дата охранного документа: 10.12.2014
20.11.2015
№216.013.8fe8

Способ получения имплантированного ионами цинка кварцевого стекла

Изобретение относится к способу получения имплантированного ионами цинка кварцевого стекла из диоксида кремния с поверхностным слоем, содержащим нанокластеры цинка. Способ может быть использован при создании компонентов микро-(нано-) и оптоэлектронных устройств. Проводят имплантацию ионов цинка...
Тип: Изобретение
Номер охранного документа: 0002568456
Дата охранного документа: 20.11.2015
20.01.2016
№216.013.a134

Способ выщелачивания урана из руд

Изобретение относится к гидрометаллургическим способам переработки руд и может быть использовано для извлечения урана из рудных материалов подземным (ПВ) выщелачиванием. Новым в способе является дополнительная обработка предварительно приготовленного с нитритом натрия выщелачивающего раствора...
Тип: Изобретение
Номер охранного документа: 0002572910
Дата охранного документа: 20.01.2016
20.05.2016
№216.015.3e9c

Материал для конверсии вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния sios на кремниевой подложке

Изобретение относится к люминесцентным материалам для конверсии вакуумного ультрафиолетового излучения в излучение видимого диапазона, предназначенным для создания функциональных элементов фотонных приборов нового поколения, а также для контроля жесткого ультрафиолетового излучения в вакуумных...
Тип: Изобретение
Номер охранного документа: 0002584205
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.42d0

Имплантированное ионами цинка кварцевое стекло

Изобретение относится к кварцевым стеклам, имплантированным ионами цинка, и может быть использовано при создании компонентов микро-(нано-) и оптоэлектронных устройств, в частности микроминиатюрных источников света для планарных тонкопленочных волноводных систем и оптических интегральных схем....
Тип: Изобретение
Номер охранного документа: 0002585009
Дата охранного документа: 27.05.2016
13.01.2017
№217.015.8752

Способ извлечения скандия и редкоземельных элементов из красных шламов

Изобретение относится к извлечению скандия и редкоземельных элементов (РЗЭ) из красных шламов. Распульповку красного шлама проводят при рН=0,5-1. Пульпу подвергают механоактивации, сорбционное выщелачивание скандия ведут с органическим сорбентом, в поры которого импрегнирован эфир фосфорной...
Тип: Изобретение
Номер охранного документа: 0002603418
Дата охранного документа: 27.11.2016
+ добавить свой РИД