×
23.08.2019
219.017.c329

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ДИМЕТИЛОВОГО ЭФИРА (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Настоящее изобретение относится к двум вариантам способа получения диметилового эфира из метанола. Как первый, так и второй варианты способа включают дегидратацию метанола в паровой фазе на термостабильном композитном катализаторе состава MZr(PO) в трубчатом реакторе, который помещают в количестве 0,3 грамма в смеси с чистым кварцевым песком между двумя секциями чистого кварцевого песка, активируют катализатор при 350°С в токе аргона и водорода в течение 3 часов, при этом пары метанола, охлажденного до 2°С, вводят в реактор током аргона и дегидратацию осуществляют при 200-400°С. При этом в первом варианте способа в качестве катализатора используют катализатор состава NiZr(PO) или CuZr(PO)а во втором варианте – катализатор состава NiFeZr(PO) или CuFeZr(PO)Предлагаемые варианты способа позволяют получить диметиловый эфир с высоким выходом при степени конверсии метанола и селективности по диметиловому эфиру, сравнимыми с показателями промышленных аналогов. 2 н.п.ф-лы, 10 ил., 4 пр.

Предлагаемая группа изобретений относится к области химии, касается способа получения диметилового эфира путем дегидратации метанола.

Диметиловый эфир (ДМЭ) в настоящее время получают двумя способами - одностадийным способом из синтез-газа и двухстадийным способом с получением метанола из синтез-газа и последующей его дегидратацией. В промышленности преимущественно реализован двухстадийный способ с использованием в качестве катализатора дегидратации метанола композитной твердой кислоты, каолина, модифицированного кислотой, активированного оксида алюминия, молекулярных сил, цеолитов. Для этого, как правило, используют реактор с неподвижным слоем. Указанные способы характеризуются малыми масштабами производства и достаточно высокой стоимостью, а используемые катализаторы не обладают высокой эффективностью.

Например, известен способ дегидратации метанола на катализаторе γ-Al2O3 в интервале температур 150-400°С. γ-Al2O3 признан наиболее эффективным катализатором для получения диметилового эфира из метанола ввиду его низкой цены, высокой селективности по ДМЭ, термической и механической прочности (Akarmazyan, S.S., Panagiotopoulou, P., Kambolis, A., Papadopoulou, C., & Kondarides, D.I. (2014). Methanol dehydration to dimethylether over Al2O3 catalysts. Applied Catalysis B: Environmental, 145, 136-148). Катализатор активируют при 450°C в токе водорода, затем охлаждают до 25°С. При 220°С степень конверсии метанола достигала 85-87% при селективности по ДМЭ, равной почти 100%. Выход диметилового эфира составлял 0.5⋅10-3 моль⋅ч-1⋅г-1. Недостатком данного процесса является образование побочных продуктов (углеводороды, сажа), быстро дезактивирующих катализатор, и низкая активность катализатора.

Также известен способ получения диметилового эфира (авт. св-во НРБ №24582, кл. С07С 41/10, опубл. 1978 г.) путем дегидратации метанола в паровой фазе над синтетическим алюмосиликатом в качестве катализатора состава 25-30% Al2O3 и 70-75% SiO2 при 200-250°С и избыточном давлении 5-20 атм. Реакцию проводят в трубчатом реакторе; степень конверсии метанола в диметиловый эфир составляет 60%. Недостатком данного способа является необходимость использования давления и невысокая степень конверсии сырья.

Известен способ дегидратации метанола в присутствии цеолитного катализатора при повышенной температуре (авт. св-во 11925928, кл. С07С 43/04, С07С 41/09, опубл. 07.05.1982 г.), в котором в качестве катализатора используют н-эрионит состава (0.022-0.004) Na2O⋅(0.34-0.16) К2О⋅Al2O3⋅6.4 SiO2 или н-морденит состава (0.066-0.015) Na2O⋅Al2O3 (12.8-16.6) SiO2, температура процесса составляет 140-220°С. Испытания проводят следующим образом - гранулированный катализатор массой 0.3-0.4 г активируют при 450°С в течение 2 часов, испытания ведут в интервале температур 140-220°С. Константа скорости на н-эрионите составляет (3-7)⋅10-2 с-1 при степени превращения метанола 67-93% и селективности по ДМЭ 100%; на н-модерните константа скорости равна (4.6-5.7)⋅10-2 с-1 при степени превращения метанола 65-86% и селективности по диметиловому эфиру 100%. Недостатком данного способа является быстрая потеря активности катализаторами.

Известен способ получения диметилового эфира окислительной дегидратацией метанола, в котором процесс проводят в интервале температур 275-400°С в присутствии кислорода и катализатора 1% Mn/CeO2, 3% Mn/CeO2, 5% Mn/CeO2 (US 20180273456 А1, кл. С07С 43/00, B01J 23/34, С07С 41/09, опубл. 27.09.2018 г.). Недостатком данного способа является невысокая степень конверсии метанола (до 50%).

Известен способ дегидратации метанола в присутствии цеолитного катализатора ZSM-5, согласно которому процесс дегидратации метанола проводят при 300°С. Катализатор предварительно активируют при 500°С в течение 1 часа в токе воздуха со скоростью подачи 30 мл/мин. Затем катализатор охлаждают до 200°С и при указанной температуре подают метанол в реактор с парциальным давлением 14.4 кПа током азота со скоростью 30 мл/мин. Выход диметилового эфира в данных условиях составляет 89.34⋅10-6 моль⋅с-1⋅г-1 (F.S. Ramos, А.М. Duarte de Farias, L.E.P. Borges et al. // Catalysts Today, 101 (2005) 39-44). Недостатком данного процесса является быстрое разрушение катализатора и невысокий выход диметилового эфира.

В этом же документе раскрывается способ дегидратации метанола на различных оксидах алюминия, выступающих в качестве катализаторов - пористый Al2O3-С (Petrobras) и непористый Al2O3-D (Degussa). После активации катализаторов реакцию проводят при 200°С, подача метанола осуществляется в инертной атмосфере со скоростью 30 мл/мин. Значения активности для Al2O3-С составляет 10.5⋅10-6 моль⋅с-1⋅г-1, для Al2O3-D-6.8⋅10-6 моль⋅с-1⋅г-1. Значения селективности по диметиловому эфиру равно 63-64% при конверсии исходного метанола около 65%. Недостатками данного процесса являются низкие селективность к целевому продукту и степень конверсии сырья.

Известен способ дегидратации метанола в диметиловый эфир (Yaripour F., Baghaei F., Schmidt I., Perregaard J. // Catalysis Communications, 6 (2005) 147-152), в котором в качестве катализаторов выступают алюмофосфаты различного состава Al2O3⋅nP2O5, n=0.33-1.00. Температуру процесса поддерживают на уровне 300°С; степень конверсии метанола находится в интервале 75-83% для различных составов, а выход диметилового эфира равен (1,2-2,7)⋅10-3 моль⋅ч-1⋅г-1 при различном n. Недостатком данного метода является невысокий удельный выход диметилового эфира на 1 г катализатора.

Известен способ конверсии метанола в диметиловый эфир в кварцевом трубчатом реакторе с неподвижным слоем с алюмосиликатным катализатором DME-FCAT производства компании Haldor A/S (Дания). Катализатор массой 0.5 г помещают между двумя слоями кварца на обоих концах реактора, предварительно активируют в токе азота в температурном интервале 25-200°С при скорости нагревания 5°С/мин. Конверсия метанола достигает 82%, а выход диметилового эфира составляет 3.8⋅10-7⋅моль⋅с-1⋅г-1 при проведении реакции при 300°С. Недостатком данного способа является невысокий выход целевого продукта.

Наиболее близким по технической сущности и достигаемому техническому результату к предлагаемой группе изобретений является способ конверсии метанола на цирконийсодержащих катализаторах каркасного строения вида Zr0.25Zr2(PO4)3 и NaZr2(PO4)3 (М.В. Суханов, М.М. Ермилова, Н.В. Орехова, Г.Ф. Терещенко, В.И. Петьков, И.А. Щелоков (2007). Каталитические свойства цирконийсодержащих фосфатов каркасного строения в дегидратации метанола. Вестник Нижегородского университета им. Н.И. Лобачевского, 1 89-94), принятый за ближайший аналог (прототип).

В способе по прототипу термостабильный композитный катализатор состава MxZr2(PO4)3, где М - Zr (х=0.5), Na (х=1), в количестве 0.3 г смешивают с кварцем (средний диаметр частиц 1 мм), помещают в реактор между секциями кварца со средним диаметром частиц 1 мм и предварительно активируют при 350°С в течение 3 часов. Конверсию метанола проводят в инертной атмосфере в интервале температур 220-470°С, предпочтительно при 280-320°С. Пары метанола, охлажденного до 2°С, подают при скорости 20 мл/мин в реактор. При температуре 300°С конверсия спирта на катализаторе Zr0.25Zr2(PO4)3 составляет 70%, выход ДМЕ равен 5.2⋅10-3 моль⋅ч-1⋅г-1; конверсия спирта на катализаторе NaZr2(PO4)3 достигает 69%, выход ДМЕ равен 5.3⋅10-3 моль⋅ч-1⋅г-1 (для данного катализатора скорость подачи сырья 0.88 мл/мин). Недостатком данного способа является быстрая дезактивация катализаторов вследствие коксования.

В задачу группы изобретений положено создание нового способа получения диметилового эфира при использовании нескольких композитных катализаторов.

Техническим результатом от использования предлагаемой группы изобретений является повышение удельного выхода диметилового эфира на 1 г катализатора, предотвращение разрушения катализатора при воздействии высоких температур в процессе дегидратации метанола, возможность регенерации катализаторов без существенных изменений активности и пористых характеристик.

Поставленная задача достигается тем, что в способе получения диметилового эфира, включающем дегидратацию метанола в паровой фазе на термостабильном композитном катализаторе состава M0.5Zr2(PO4)3 в трубчатом реакторе, который помещают в количестве 0,3 грамма в смеси с чистым кварцевым песком между двумя секциями чистого кварцевого песка, активируют катализатор при 350°С в токе аргона и водорода в течение 3 часов, при этом пары метанола, охлажденного до 2°С, вводят в реактор током аргона, используют катализатор состава Ni0.5Zr2(PO4)3 или Cu0.5Zr2(PO4)3, проведение процесса дегидратации метанола осуществляют при 200-400°С.

Поставленная задача достигается также тем, что в способе получения диметилового эфира, включающем дегидратацию метанола в паровой фазе на термостабильном композитном катализаторе состава M0.5(1+x)2+Fex3+Zr2-x4+(PO4)3, где x=0.3 в трубчатом реакторе, который помещают в количестве 0,3 грамма в смеси с чистым кварцевым песком между двумя секциями чистого кварцевого песка активируют катализатор при 350°С в токе аргона и водорода в течение 3 часов, при этом пары метанола, охлажденного до 2°С, вводят в реактор током аргона, используют катализатор состава Ni0.65Fe0.3Zr1.7(PO4)3 или Cu0.65Fe0.3Zr1.7(PO4)3, проведение процесса дегидратации метанола осуществляют при 200-400°С.

На фиг. 1 представлена зависимость степени конверсии метанола от температуры на катализаторах Ni2+0.5(1+x) Fe3+xZr4+2-x(PO4)3, х=0, 0.3, где по оси ординат - степень конверсии метанола X, %; по оси абсцисс - температура, градус Цельсия.

На фиг. 2 представлена зависимость степени конверсии метанола от температуры на катализаторах Cu2+0.5(1+x)Fe3+xZr4+2-x(PO4)3, х=0, 0.3, где по оси ординат - степень конверсии метанола X, %; по оси абсцисс - температура, градус Цельсия.

На фиг. 3 представлена зависимость селективности по диметиловому эфиру от температуры на катализаторах Ni2+0.5(1+x) Fe3+xZr4+2-x(PO4)3, x=0, 0.3, где по оси ординат -селективность по диметиловому эфиру S, %; по оси абсцисс - температура, градус Цельсия.

На фиг. 4 представлена зависимость селективности по диметиловому эфиру от температуры на катализаторах Cu2+0.5(1+x)Fe3+xZr4+2-x(PO4)3, х=0, 0.3, где по оси ординат - селективность по диметиловому эфиру S, %; по оси абсцисс - температура, градус Цельсия.

На фиг. 5 представлена зависимость активности по диметиловому эфиру от температуры на катализаторах Ni2+0.5(1+x) Fe3+xZr4+2-x(PO4), x=0, 0.3, где по оси ординат-активность по диметиловому эфиру А, %; по оси абсцисс - температура, градус Цельсия.

На фиг. 6 представлена зависимость активности по диметиловому эфиру от температуры на катализаторах Cu2+0.5(1+x)Fe3+xZr4+2-x(PO4)3, х=0, 0.3, где по оси ординат-активность по диметиловому эфиру А, %; по оси абсцисс - температура, градус Цельсия.

На фиг. 7 представлена зависимость выхода всех продуктов от температуры на катализаторе Ni0.5Zr2(PO4)3, где по оси ординат - выход продуктов Y, %; по оси абсцисс - температура, градус Цельсия.

На фиг. 8 представлена зависимость выхода всех продуктов от температуры на катализаторе Ni0.65Fe0.3Zr1.7(PO4)3, где по оси ординат - выход продуктов Y, %; по оси абсцисс - температура, градус Цельсия.

На фиг. 9 представлена зависимость выхода всех продуктов от температуры на катализаторе Cu0.5Zr2(PO4)3, где по оси ординат - выход продуктов Y, %; по оси абсцисс -температура, градус Цельсия.

На фиг. 10 представлена зависимость выхода всех продуктов от температуры на катализаторе Cu0.65Fe0.3Zr1.7(PO4)3, где по оси ординат - выход продуктов Y, %; по оси абсцисс - температура, градус Цельсия.

Предлагаемый способ получения диметилового эфира осуществляют следующий образом.

В трубчатый реактор длиной 21.5 см и с эффективным диаметром 0.9 см помещают термостабильный композитный катализатор состава Ni0.5Zr2(PO4)3, или Cu0.5Zr2(PO4)3, Ni0.65Fe0.3Zr1.7(PO4)3, или Cu0.65Fe0.3Zr1.7(PO4)3, в смеси с чистым кварцем со средним диаметром частиц 0.8-1.0 мм, в количестве 0.3 грамма, между двумя секциями чистого кварца со средним диаметром частиц 0.8-1.0 мм. Катализатор активируют при 350°С в токе аргона и водорода в течение 3 часов. Пары метанола, охлажденного до 2°С, током аргона вводят в реактор. Процесс ведут при 200-400°С в инертной атмосфере, предпочтительно при 360-380°С. Образование побочных продуктов наблюдается при температуре лишь выше 400°С. Выбор температурного интервала для каталитических испытаний обусловлен знанием температурных интервалов уже известных процессов, приведенных выше; при температуре ниже 200°С конверсия метанола невысока, выше 400°С наблюдается разложение метанола на оксиды углерода и водород.

В процессе испытаний каталитической активности наблюдалась только дегидратация метанола с образованием диметилового эфира (1):

Рассчитывают конверсию метанола X (%), селективность S (%), удельную нагрузку на 1 грамм катализатора или активность (производительность или активность) (А, ммоль/ч⋅г):

где ϕ0 и ϕ1 - исходная и текущая объемные доли спирта, ϕi - доля спирта, пошедшего на целевую реакцию, F - скорость подачи метанола, моль/ч, W - масса катализатора, г.

В предлагаемом способе полученный выход диметилового эфира существенно выше, чем для используемых в промышленности катализаторов цеолитного типа ZSM-5, алюмосиликатных, алюмофосфатных, алюмотитанатных и DME-FCAT катализаторов. Кроме того, термическая стабильность композитных катализаторов позволяет их регенерировать при высоких температурах без существенного изменения их пористых характеристик и каталитической активности, а также предотвращает разрушение при воздействии высоких температур в ходе дегидратации спирта.

Таким образом, способ обеспечивает высокий выход диметилового эфира при степени конверсии метанола и селективности по диметиловому эфиру, сравнимых с показателями промышленных аналогов.

Ниже представлены примеры конкретного осуществления предлагаемой группы изобретений.

Пример 1.

В трубчатый реактор загружают порошковый катализатор Ni0.5Zr2(PO4)3, смешанный с кварцем, между двумя секциями чистого кварца в количестве 0.3 г. Катализатор активируют в токе водорода и аргона при 350°С в течение 3 часов. В трубчатый реактор подают пары метанола из термостатированного при 2°С барботера с объемной скоростью 20 мл/мин током аргона. Продукты реакции анализируют на хроматографе с детектором по теплопроводности и колонкой с порапаком-Т.

Выход диметилового эфира при 360°С составляет 5.75 ммоль⋅ч-1⋅г-1, степень превращения метанола равна 65% при селективности по диметиловому эфиру 93%. Выход диметилового эфира при 380°С составляет 5.35 ммоль⋅ч-1⋅г-1, степень превращения метанола равна 76% при селективности по диметиловому эфиру 90%.

Пример 2.

В трубчатый реактор загружают порошковый катализатор Ni0.65Fe0.3Zr1.7(PO4)3, смешанный с кварцем, между двумя секциями чистого кварца в количестве 0.3 г. Катализатор активируют в токе водорода и аргона при 350°С в течение 3 часов. В трубчатый реактор подают пары метанола из термостатированного при 2°С барботера с объемной скоростью 20 мл/мин током аргона. Продукты реакции анализируют на хроматографе с детектором по теплопроводности и колонкой с порапаком-Т.

Выход диметилового эфира при 380°С составляет 4.73 ммоль⋅ч-1⋅г-1, степень превращения метанола равна 75% при селективности по диметиловому эфиру 81%.

Пример 3.

В трубчатый реактор загружают порошковый катализатор Cu0.5Zr2(PO4)3, смешанный с кварцем, между двумя секциями чистого кварца в количестве 0.3 г. Катализатор активируют в токе водорода и аргона при 350°С в течение 3 часов. В трубчатый реактор подают пары метанола из термостатированного при 2°С барботера с объемной скоростью 20 мл/мин током аргона. Продукты реакции анализируют на хроматографе с детектором по теплопроводности и колонкой с порапаком-Т.

Выход диметилового эфира при 380°С составляет 4.64 ммоль⋅ч-1⋅г-1, степень превращения метанола равна 75% при селективности по диметиловому эфиру 75%.

Пример 4.

В трубчатый реактор загружают порошковый катализатор Cu0.65Fe0.3Zr1.7(PO4)3, смешанный с кварцем, между двумя секциями чистого кварца в количестве 0.3 г. Катализатор активируют в токе водорода и аргона при 350°С в течение 3 часов. В трубчатый реактор подают пары метанола из термостатированного при 2°С барботера с объемной скоростью 20 мл/мин током аргона. Продукты реакции анализируют на хроматографе с детектором по теплопроводности и колонкой с порапаком-Т.

Выход диметилового эфира при 380°С составляет 5.25 ммоль⋅ч-1⋅г-1, степень превращения метанола равна 68% при селективности по диметиловому эфиру 81%.

Таким образом, предлагаемый способ дегидратации метанола в диметиловый эфир при использовании композитных катализаторов позволяет увеличить выход диметилового эфира при сходных показателях с промышленными аналогами, а термостойкость катализатора позволяет его регенерировать без изменения химического и фазового состава.


СПОСОБ ПОЛУЧЕНИЯ ДИМЕТИЛОВОГО ЭФИРА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ДИМЕТИЛОВОГО ЭФИРА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ДИМЕТИЛОВОГО ЭФИРА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ДИМЕТИЛОВОГО ЭФИРА (ВАРИАНТЫ)
СПОСОБ ПОЛУЧЕНИЯ ДИМЕТИЛОВОГО ЭФИРА (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Showing 41-50 of 90 items.
10.05.2018
№218.016.4c31

Система для регистрации и декодирования биоэлектрической активности мозга и мышц человека

Изобретение относится к медицинской технике, а именно к аппаратно-компьютерным системокомплексам, которые используют биоинформационные индикаторы в виде сигналов мозга и мышц человека в робототехнических средствах реабилитации людей с нарушениями функции мозга и центральной нервной системы....
Тип: Изобретение
Номер охранного документа: 0002652058
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4f8f

Рекомбинантное антитело, специфичное к фактору некроза опухоли и маркеру иммунных клеток миелоидного ряда

Изобретение относится к области иммунологии. Предложено рекомбинантное антитело, состоящее из двух однодоменных антител VHH, специфичных к ФНО, содержащее домен специфичности к ФНО и к гликопротеину CD11b, содержащее домен специфичности к маркеру иммунных клеток миелоидного ряда CD11b,...
Тип: Изобретение
Номер охранного документа: 0002652876
Дата охранного документа: 03.05.2018
10.05.2018
№218.016.5009

Антитела, связывающие опухолеассоциированный muc1, и способы их получения

Изобретение относится к области молекулярной иммунологии, биотехнологии и медицины, конкретно к получению антител, специфически блокирующих опухолеассоциированный MUC1, и может быть использовано в медицине. Предложено рекомбинантное одноцепочное антитело, связывающие опухолеассоциированный...
Тип: Изобретение
Номер охранного документа: 0002652901
Дата охранного документа: 03.05.2018
09.06.2018
№218.016.5a78

Способ генерации узкополосного терагерцового излучения (варианты)

Изобретение относится к области оптики и касается способа генерации узкополосного терагерцового излучения. Генерация осуществляется путем воздействия линейно поляризованными фемтосекундными лазерными импульсами на входную поверхность анизотропного нелинейного монокристалла, приводящего к...
Тип: Изобретение
Номер охранного документа: 0002655469
Дата охранного документа: 28.05.2018
06.07.2018
№218.016.6d4d

Способ определения атомной массы металлических ионов в спорадическом слое е (es)

Изобретение относится к способам определения состава и концентрации положительных ионов в ионосфере Земли. Технический результат - возможность дистанционного радиофизического метода определения атомной массы положительных ионов металлов, преобладающих в спорадическом слое Е (E) ионосферы, то...
Тип: Изобретение
Номер охранного документа: 0002660119
Дата охранного документа: 05.07.2018
21.07.2018
№218.016.737b

Способ непрерывного получения пластификаторов поливинилхлорида и аппарат для его осуществления

Изобретение относится к получению сложных эфиров дикарбоновых кислот с алифатическими спиртами, которые применяются в качестве пластификаторов поливинилхлорида при изготовлении пеноплена, линолеума, обувных и листовых пластикатов, искусственных кож и др. Процесс этерификации ведут в два этапа...
Тип: Изобретение
Номер охранного документа: 0002661872
Дата охранного документа: 20.07.2018
24.07.2018
№218.016.7459

Способ определения знака циркулярной поляризации света и детектор для его осуществления

Изобретение относится к области измерительной техники и касается способа определения знака циркулярной поляризации света. Знак циркулярной поляризации света определяется путем воздействия света на снабженный двумя электродами фоторезистивный элемент, чувствительный к смене знака циркулярной...
Тип: Изобретение
Номер охранного документа: 0002662042
Дата охранного документа: 23.07.2018
19.08.2018
№218.016.7d70

Способ настройки магнетронного распыления составной мишени

Изобретение относится к магнетронному распылению составной мишени с частями, изготовленными из отдельных компонентов осаждаемого на подложку материала пленки. Подготавливают тонкие плоские шаблоны, имеющие форму и соответствующую заданному изменению состава осаждаемого на подложку материала...
Тип: Изобретение
Номер охранного документа: 0002664350
Дата охранного документа: 16.08.2018
01.09.2018
№218.016.81be

Способ непрерывной растворной полимеризации каучуков и устройство для его осуществления

Настоящее изобретение относится к способу непрерывной растворной полимеризации каучуков, включающий подачу газожидкостной смеси, содержащей мономер или мономеры, растворитель, водород и отдельно приготовленный каталитический комплекс в первый и последующие реакторы при перемешивании реакционной...
Тип: Изобретение
Номер охранного документа: 0002665468
Дата охранного документа: 30.08.2018
01.09.2018
№218.016.8234

Цианопорфиразиновое свободное основание и его применение

Изобретение относится к области биомедицины, к мультимодальным противораковым препаратам для персонализированной медицины, в частности к цианопорфиразиновому свободному основанию и его применению в качестве фотосенсибилизатора и одновременно в качестве оптического сенсора внутриклеточной...
Тип: Изобретение
Номер охранного документа: 0002665471
Дата охранного документа: 30.08.2018
Showing 1-10 of 10 items.
10.09.2013
№216.012.691e

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства катодного материала литий-ионных аккумуляторных батарей для питания портативной электроники, электроинструмента, электротранспорта. Предложен композиционный катодный материал, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002492557
Дата охранного документа: 10.09.2013
27.03.2014
№216.012.ae90

Способ получения проницаемого ионообменного материала

Изобретение относится к способу получения проницаемого ионообменного материала, который может быть использован в качестве сырья для изготовления мембран, пленок, гранул и модифицирующих покрытий, обладающих ионообменными свойствами и способностью к быстрому переносу ионов. Способ заключается в...
Тип: Изобретение
Номер охранного документа: 0002510403
Дата охранного документа: 27.03.2014
27.08.2014
№216.012.efe9

Композиционная ионообменная мембрана

Изобретение относится к технологии изготовления композиционных ионообменных мембран, обладающих свойством селективности сорбции или переноса нитрат-аниона. Предложена композиционная ионообменная мембрана, характеризующаяся повышенной подвижностью нитрат-анионов и повышенной константой ионного...
Тип: Изобретение
Номер охранного документа: 0002527236
Дата охранного документа: 27.08.2014
25.08.2017
№217.015.ba0d

Способ определения удельной электропроводности ионпроводящих материалов

Изобретение относится к физико-химическим исследованиям и может быть использовано в химической и других родственных с ней отраслях промышленности для определения удельной электропроводности ионпроводящих материалов, в том числе полимерных пленок и тканей. Предложен способ определения удельной...
Тип: Изобретение
Номер охранного документа: 0002615601
Дата охранного документа: 05.04.2017
26.08.2017
№217.015.d75a

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства улучшенного катодного активного материала литий-ионных аккумуляторных батарей с повышенной удельной емкостью при циклировании токами высокой плотности. Предложен композиционный катодный материал...
Тип: Изобретение
Номер охранного документа: 0002623212
Дата охранного документа: 23.06.2017
29.12.2017
№217.015.f33c

Способ синтеза сульфат-фосфатов металлов

Изобретение может быть использовано при производстве термомеханически стабильных материалов и изделий на их основе, требующих высокого сопротивления термоудару и устойчивых к резким изменениям температур. Способ синтеза сульфат-фосфатов металлов включает определение максимально допустимого...
Тип: Изобретение
Номер охранного документа: 0002637244
Дата охранного документа: 01.12.2017
10.07.2019
№219.017.afe8

Металлокерамический композит и способ его получения

Изобретение относится к области создания новых композиционных материалов на основе пористых металлов и оксидной композиции и может быть использовано для приготовления металлокерамических мембран барометрических и мембранно-каталитических процессов, в частности, проявляющих каталитическую...
Тип: Изобретение
Номер охранного документа: 0002450082
Дата охранного документа: 10.05.2012
10.07.2019
№219.017.b0ec

Способ окислительного дегидрирования метанола

Изобретение относится к области производства катализаторов для химической и нефтехимической промышленности, которые могут быть использованы в процессах превращения спиртов с целью получения удобных и экологически чистых видов энергоносителей и перспективных химических продуктов. Способ...
Тип: Изобретение
Номер охранного документа: 0002443464
Дата охранного документа: 27.02.2012
27.03.2020
№220.018.10a4

Способ получения композитного термостабильного катализатора каркасного строения для дегитратации метанола в диметиловый эфир (варианты)

Предлагаемая группа изобретений относится к области химии, касается способа получения композитного термостабильного катализатора каркасного строения для дегидратации метанола в диметиловый эфир в инертной атмосфере. Способ получения композитного термостабильного катализатора каркасного строения...
Тип: Изобретение
Номер охранного документа: 0002717686
Дата охранного документа: 25.03.2020
28.03.2020
№220.018.1108

Способ получения сверхчистого водорода паровым риформингом этанола

Изобретение относится к области создания катализаторов и реакторов для химической и нефтехимической промышленности, а именно к процессам дегидрирования и парового риформинга низших алифатических спиртов с целью получения высокочистого водорода, пригодного для использования в топливных...
Тип: Изобретение
Номер охранного документа: 0002717819
Дата охранного документа: 25.03.2020
+ добавить свой РИД