×
27.06.2019
219.017.9930

Результат интеллектуальной деятельности: СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И СПОСОБ ОЧИСТКИ ГАЗОВЫХ СМЕСЕЙ ОТ ОКСИДА УГЛЕРОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к катализатору и процессу каталитического метода очистки газовых смесей от оксида углерода. Описан способ приготовления оксидного медно-цериевого катализатора процесса очистки газовых смесей от СО, в котором синтез катализатора ведут через получение полимерного предшественника, для получения которого используют соли меди и церия, а также лимонную кислоту и этиленгликоль с последующей температурной обработкой. Также описан способ очистки газовых смесей от оксида углерода путем окисления оксида углерода кислородом в присутствии катализатора при температуре не ниже 20°С и давлении не ниже 0,1 атм, в котором в качестве катализатора используют катализатор, приготовленный описанным выше способом. Технический результат - упрощение метода приготовления активных катализаторов при сохранении их высокой активности. 2 н. и 5 з.п. ф-лы, 4 табл.

Изобретение относится к катализатору и процессу каталитического метода очистки газовых смесей от оксида углерода. Такие газовые смеси, кроме оксида углерода, могут содержать различные количества диокисида углерода, паров воды, водорода и других органических соединений, преимущественно спиртов, эфиров и углеводородов. Например, одной из актуальных задач в настоящее время является очистка водородсодержащих смесей от СО.

Водород - один из самых важных индустриальных газов, широко использующийся в металлургической, химической, нефтехимической и пищевой промышленности. Также он может быть использован в качестве топлива для топливных элементов.

Водород может быть получен в каталитическом химическом процессе, например, из различного углеводородного сырья (бензин, природный газ, спирты, диметиловый эфир и др.). Это углеводородное сырье при помощи паровой и/или кислородной конверсии и последующей паровой конверсии оксида углерода перерабатывают в водородсодержащую газовую смесь. Такая смесь обычно состоит из Н2, CO2, N2, H2O и ~1 об.% СО. Известно, что оксид углерода при концентрации больше 0.001 об.% (10 ppm) является ядом для топливного электрода. Следовательно, такую водородсодержащую газовую смесь необходимо очищать от оксида углерода перед ее подачей в топливный элемент. Одним из возможных методов очистки газовой смеси от оксида углерода является процесс селективного окисления СО.

Известны реакции, протекающие при осуществлении такой очистки:

2СО+O2→2СО2

2+O2→2Н2О (газ)

Показателями эффективности очистки водородсодержащих газовых смесей от СО являются концентрация СО на выходе из реактора и селективность по кислороду, которая определяется как отношение количества кислорода, потраченного на окисление СО, к количеству кислорода, израсходованному по обеим реакциям:

Известны катализатор, способ его приготовления и способ проведения реакции окисления оксида углерода в присутствии водорода [Заявка WO 0160738, B0J 23/00, 23.08.2001], где в качестве катализатора используют оксидную систему CuxCe1-xO2-y (х - изменяется от 0,01 до 0,3, а y эквивалентен или больше, чем х). Катализатор готовят методом соосаждения. Недостаток данного способа приготовления заключается в проведении большого количества последовательных процедур: соосаждение солей меди и церия из водного раствора путем добавления в раствор щелочи, фильтрование получившегося осадка, промывание осадка теплой водой, сушка осадка, прокаливание осадка при температуре выше 500°С.

Известен метод синтеза каталитической оксидной системы CuxCe1-xO2-y горением смеси солей нитратов меди и церия, содержащих мочевину [Avgouropoulos G., Ioannides Т. // Appl. Catal. A: General, 2003, vol.244, рр.155-167]. Недостатком метода является резкое воспламенение получаемого катализатора во время процедуры прокаливания, приводящее к спеканию и существенному уменьшению его удельной поверхности.

Известен также золь-гель метод синтеза медно-цериевого оксидного катализатора [Pintar A., Batista J., Hocevar S., J. Coll Interface Science 2005, vol.285, pp.218-231]. Метод содержит большое количество процедур, включающих выдерживание растворов солей меди и церия в раздельных емкостях, в которые добавляется водный раствор перекиси H2O2, после окончания реакции в обоих сосудах растворы смешиваются и после испарения оставшегося количества перекиси добавляется этиловый спирт. Получившийся раствор в течение долгого времени высушивают на воздухе для испарения спирта. Полученный ксерогель прокаливают при температуре 400°С. Недостатком метода является наличие большого количества последовательных процедур, что существенно усложняет процесс приготовления катализатора.

Другим известным способом приготовления каталитической оксидной системы CuxCe1-xO2-y является метод пропитки [Avgouroponlos G., Ioarnnides Т., Matralis H., Appl. Cat. В: Environmental, 2005, vol.56 pp.87-93]. Вначале одним из вышеуказанных методов или каким-либо другим способом готовят оксид церия, после чего его пропитывают водным раствором соли меди; полученный катализатор высушивают на воздухе при комнатной или повышенной температуре и затем прокаливают при температуре выше 200°С. Недостатком метода также является наличие большого количества последовательных процедур, что существенно усложняет процесс приготовления катализатора.

Наиболее близким является метод синтеза медно-цериевого оксидного катализатора обработкой раствора смеси солей меди и церия с лимонной кислотой в гидротермальном режиме с последующей сушкой и прокалкой [Avgouropoulos G., Ioannides Т. // Appl. Catal. B: Environmental 2006, vol.67, pp.1-11]. Недостатком метода является наличие стадии гидротермальной обработки при высоком давлении, что существенно усложняет процесс приготовления катализатора.

Изобретение решает задачу упрощения метода приготовления активных катализаторов процесса очистки газовых смесей от СО при сохранении высокой активности.

Предлагаемый способ приготовления оксидного медно-цериевого катализатора через образование полимерного предшественника позволяет максимально упростить процесс его приготовления и достичь высокодисперсного состояния катализатора.

Задача решается способом приготовления оксидного медно-цериевого катализатора процесса очистки газовых смесей от СО, по которому синтез катализатора ведут через получение полимерного предшественника, для получения которого используют соли меди и церия, а также лимонную кислоту и этиленгликоль с последующей температурной обработкой.

Азотнокислые соли меди и церия, а также лимонную кислоту и этиленгликоль берут в соотношениях: лимонная кислота к сумме катионов 0,5-3,0, предпочтительно 1,0; этиленгликоль к лимонной кислоте 0,5-3,0, предпочтительно 2,0.

Температурную обработку полимерного предшественника осуществляют при подъеме температуры со скоростью 0,1-1,0°С в 1 мин до температуры в интервале 280-900°С, предпочтительно до 300-400°С.

Катализатор содержит 1-30 мас.% меди, предпочтительно 5-10 мас.%.

Процесс приготовления позволяет вводить в оксидный медно-цериевый катализатор одновременно с его синтезом различные компоненты в виде соединений переходных, редкоземельных, щелочноземельных металлов и металлов III и IV группы Периодической системы химических элементов.

Отличительной особенностью метода является высокая степень дисперсности получающихся оксидных композиций, а также простота его выполнения, позволяющая проводить синтез от загрузки исходных компонентов до выгрузки продукта без промежуточных стадий.

Задача решается также способом очистки газовых смесей от оксида углерода путем окисления оксида углерода на катализаторе, описанном выше. Процесс осуществляют при температуре не ниже 20°С, давлении не ниже 0.1 атм.

Очищаемая газовая смесь может содержать в своем составе водород, диоксид углерода, пары воды и другие органические соединения, преимущественно спирты, эфиры и углеводороды, а также любые их комбинации.

Предлагаемое изобретение иллюстрируется следующими примерами, описывающими способ приготовления катализаторов, и примерами, описывающими результаты испытаний катализаторов в процессе очистки газовых смесей от СО. Весь процесс приготовления катализаторов проводят в реакционном сосуде из термостойкого материала.

Примеры 1-9 иллюстрируют приготовление катализаторов.

Пример 1 (приготовление оксидного медно-цериевого катализатора, содержащего 1 мас.% Cu).

К 58 мл 1М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 0,405 г Cu(NO3)2·3H2O и 12, 45 г лимонной кислоты (ЛК), добиваясь растворения кристаллов нитрата меди и ЛК. По истечении 1 ч к полученному раствору добавляют 7,45 г этиленгликоля (ЭГ), после чего температуру поднимают до 400°С, со скоростью 0,1-0,5 градуса в минуту. По достижении 400°С катализатор выдерживают при этой температуре в течение 2 ч.

Пример 2 (приготовление оксидного медно-цериевого катализатора, содержащего 5 мас.% Cu).

К 110 мл 0,5М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 1,91 г Cu(NO3)2·3Н2О, и 13,24 г ЛК, добиваясь растворения кристаллов нитрата меди и ЛК. По истечении 1 ч к полученному раствору добавляют 7,32 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Пример 3 (приготовление оксидного медно-цериевого катализатора, содержащего 10 мас.% Cu).

К 86 мл 0,5М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 3,02 г Cu(NO3)2·3H2O и 11,58 г ЛК, добиваясь растворения кристаллов нитрата меди и ЛК. По истечении 1 ч к полученному раствору добавляют 6,85 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Пример 4 (приготовление оксидного медно-цериевого катализатора, содержащего 12 мас.% Cu).

К 100 мл 0,5М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 4,42 г Cu(NO3)2·3H2O, и 13,41 г ЛК, добиваясь растворения кристаллов нитрата меди и ЛК. По истечении 1 ч к полученному раствору добавляют 7,96 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Пример 5 (приготовление оксидного медно-цериевого катализатора, содержащего 15 мас.% Cu).

К 100 мл 0,5М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 5,69 г Cu(NO3)2·3H2O, и 15,33 г ЛК, добиваясь растворения кристаллов нитрата меди и ЛК. По истечении 1 ч к полученному раствору добавляют 9,08 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Пример 6 (приготовление оксидного медно-цирконий-цериевого катализатора, содержащего 5 мас.% Cu и 0,1 мас.% ZrO2).

К 110 мл 0,5М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 1,91 г Cu(NO3)·3H2O, 0,02 г ZrO(NO3)2·2H2O и 13,5 г ЛК, добиваясь растворения кристаллов нитратов меди и цирконила и ЛК. По истечении 1 ч к полученному раствору добавляют 7,47 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Пример 7 (приготовление оксидного медно-алюминий-цериевого катализатора, содержащего 5 мас.% Cu и 3 мас.% Al2O3).

К 110 мл 0,5М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 1,91 г Cu(NO3)2·3H2O, 1.09 г Al(NO3)3·9H2O и 13,85 г ЛК, добиваясь растворения кристаллов нитратов меди алюминия и ЛК. По истечении 1 ч к полученному раствору добавляют 7,67 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Пример 8 (приготовление оксидного медно-лантано-цериевого катализатора, содержащего 5 мас.% Cu и 0.5 мас.% La2O3).

К 110 мл 0,5М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 1,91 г Cu(NO3)2·3H2O, 0,07 г La(NO3)3·6H2O и 13,5 г ЛК, добиваясь растворения кристаллов нитратов меди и лантана и ЛК. По истечении 1 ч к полученному раствору добавляют 7,45 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Пример 9 (приготовление оксидного медно-самарий-цериевого катализатора, содержащего 5 мас.% Cu и 0,5 мас.% Sm2O3).

К 110 мл 0,5 М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 1,91 г Cu(NO3)2·3H2O, 0,064 г Sm(NO3)3·6H2O и 13,5 г ЛК, добиваясь растворения кристаллов нитратов меди и самария и ЛК. По истечении 1 ч к полученному раствору добавляют 7,45 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Пример 10 (приготовление оксидного медно-барий-цериевого катализатора, содержащего 5 мас.% Cu и 0,1 мас.% ВаО).

К 110 мл 0,5 М раствора Се(NO3)3·6H2O при перемешивании и температуре 60°С последовательно прибавляют 1,91 г Cu(NO3)2·3H2O, 0,017 г Ва(NO3)2 и 13,5 г ЛК, добиваясь растворения кристаллов нитратов меди и бария и ЛК. По истечении 1 ч к полученному раствору добавляют 7,45 г ЭГ. Последующую обработку проводят аналогично примеру 1.

Полученные катализаторы имеют высокую удельную поверхность, преимущественно более 80 м2/г. Размер частиц оксида церия, определенный при помощи метода рентгенофазового анализа составляет не более 8 нм, преимущественно 2-5 нм; соединения меди, а также добавки различных соединений металлов методом рентгенофазового анализа не детектируются, что свидетельствует о высокой дисперсности этих компонентов в катализаторе.

Примеры 11-14 иллюстрируют испытание катализаторов.

Процесс очистки газовых смесей от оксида углерода проводят в проточном реакторе с одним слоем катализатора. Реактор представляет собой кварцевую трубку с внутренним диаметром 3 мм. Слой состоит из 0,125 г катализатора. В качестве катализаторов берут оксидные медно-цериевые образцы. Объемную скорость варьируют в интервале 1000-250000 ч-1, температуру слоя катализатора - в интервале 20-400°С. Реакция протекает в интервале давлений 1-10 атм. Реакционная газовая смесь имеет состав, об.%: СО 0,01-66,6, O2 0,005-33,3, Н2 0-99,985, CO2 0-99,985, H2O 0-99,985, N2 0-99,985, СН3ОН 0-5, СН3ОСН3 0-5, СН4 0-5.

Пример 11. Процесс очистки газовых смесей от оксида углерода осуществляют в проточном реакторе на медно-цериевом оксидном образце с содержанием 5 мас.% Cu, приготовленном по примеру 2, при объемной скорости 15000 ч-1 и атмосферном давлении. Реакционная газовая смесь содержит, об.%: 1 СО, 1,5 O2, 69 Н2, 18 CO2, 10 H2O, 0,5 СН4. Полученные результаты приведены в таблице 1.

Таблица 1.
Температура, °С Концентрация СО на выходе из реактора, об.%
160 0,001
170 0,001

Пример 12. Процесс, аналогичный примеру 11, проводят на медно-цериевом оксидном образце с содержанием 10 мас.% Cu, приготовленном по примеру 3, при объемной скорости 45000 ч-1 и атмосферном давлении. Реакционная газовая смесь содержит, об.%: 1 СО, 1,5 О2, 69 Н2, 0,5 СН3ОН. Полученные результаты приведены в таблице 2.

Таблица 2.
Температура, °С Концентрация СО на выходе из реактора, об.%
150 0,001
130 0,0007

Пример 13. Процесс, аналогичный примеру 11, проводят на медно-алюминий-цериевом оксидном образце с содержанием 5 мас.% Cu и 3 мас.%

Al2O3, приготовленном по примеру 7, при объемной скорости 5000 ч-1 и давлении 3 атм. Реакционная газовая смесь содержит, об.%: 0,5 СО, 0,25 O2, 99 N2, 0,25 СН3ОСН3. Полученные результаты приведены в таблице 3.

Таблица 3.
Температура, °С Концентрация СО на выходе из реактора, об.%
80 0,001
90 0,0006
100 0,0006

Пример 14. Процесс, аналогичный примеру 11, проводят на медно-лантано-цериевом оксидном образце с содержанием 5 мас.% Cu и 0.5 мас.%

La2O3, приготовленном по примеру 8, при объемной скорости 1000 ч-1 и атмосферном давлении. Реакционная газовая смесь содержит, об.%: 1 СО, 0,5 О2, 98,5 N2. Полученные результаты приведены в таблице 4.

Таблица 4.
Температура, °С Концентрация СО на выходе из реактора, об.%
90 0,0003
100 0,0004
110 0,0006

Таким образом, как видно из примеров и таблиц, предлагаемое изобретение позволяет эффективно осуществлять процесс очистки газовых смесей до уровня содержания СО меньше 0,001 об.% (т.е. 10 ppm), при этом предлагаемый способ приготовления оксидных медно-цериевых катализаторов максимально упрощается, достигаются высокодисперсное состояние катализатора и его высокая активность. Предлагаемый способ также предоставляет широкую возможность варьирования состава катализатора без усложнения процесса его приготовления путем добавления к исходной смеси солей меди и церия других солей переходных, редкоземельных, щелочноземельных металлов и металлов III и IV группы периодической системы химических элементов.

Источник поступления информации: Роспатент

Showing 11-20 of 23 items.
18.05.2019
№219.017.5414

Способ получения цеолита

Предложен способ получения цеолита типа ZSM-5, включающий смешение в воде источников кремния, дополнительных элементов, щелочи и затравки, проведение кристаллизации, ионного обмена, разделения полученных пульп, модифицирования, грануляции, сушки, прокалки и извлечения основных компонентов из...
Тип: Изобретение
Номер охранного документа: 0002276656
Дата охранного документа: 20.05.2006
18.05.2019
№219.017.5623

Установка и способ термоударной обработки сыпучих материалов

Изобретение относится к области химической промышленности. Может найти применение во всех случаях, когда необходима термическая обработка сыпучих материалов в узком интервале температур: в производстве катализаторов, носителей, адсорбентов, осушителей, для проведения процессов сушки, охлаждения...
Тип: Изобретение
Номер охранного документа: 0002343970
Дата охранного документа: 20.01.2009
29.05.2019
№219.017.698e

Нанокомпозиты диоксида титана для инактивации вирусного генома внутри клеток, способ их получения

Изобретение относится к области молекулярной биологии, биоорганической химии и медицины. Предлагаются нанокомпозиты, обладающие противовирусной активностью и предназначенные для инактивации вирусного генома внутри клеток. Данные нанокомпозиты состоят из наночастиц диоксида титана, на которые...
Тип: Изобретение
Номер охранного документа: 0002444571
Дата охранного документа: 10.03.2012
19.06.2019
№219.017.87b3

Катализатор, способ его приготовления и способ получения бензойной кислоты

Изобретение относится к области органического синтеза, а именно к способу получения бензойной кислоты (СНСООН, бензолкарбоновая кислота) каталитическим окислением бензилового спирта раствором пероксида водорода, а также к катализаторам для его осуществления и способу их получения. Описан...
Тип: Изобретение
Номер охранного документа: 0002335341
Дата охранного документа: 10.10.2008
19.06.2019
№219.017.87ff

Наноструктурированный микропористый углеродный материал

Предложен материал, представляющий собой наноструктурированную клеткоподобную систему, состоящую из ячеек из 1-2 графитоподобных монослойных частиц размером 1-2 нм, с удельной поверхностью S=3170-3450 м/г, суммарным объемом пор V=1,77-2,97 см/г, объемом микропор V=1,48-1,87 см/г и характерным...
Тип: Изобретение
Номер охранного документа: 0002307704
Дата охранного документа: 10.10.2007
27.06.2019
№219.017.992a

Устройство для беспламенного сжигания сбросных газов

Изобретение может быть использовано для сжигания сбросных газов, в том числе высокого давления, в процессе добычи и переработки природного газа и нефти. Корпус горелочного устройства, установленного на газоподводящем стволе, выполнен коническим с расширением вверху, в корпусе дополнительно...
Тип: Изобретение
Номер охранного документа: 0002266469
Дата охранного документа: 20.12.2005
27.06.2019
№219.017.992c

Способ получения дизельного топлива

Изобретение относится к каталитическим способам получения малосернистых дизельных топлив из углеводородного сырья с высоким содержанием серы. Описан способ получения дизельного топлива, заключающийся в превращении прямогонного дизельного топлива с высоким содержанием серы в присутствии...
Тип: Изобретение
Номер охранного документа: 0002312886
Дата охранного документа: 20.12.2007
27.06.2019
№219.017.9931

Катализатор, способ его приготовления (варианты) и способ гидродеоксигенации жирных кислот, их эфиров и триглицеридов

Изобретение относится к области получения углеводородов путем каталитической гидродеоксигенации животных жиров, растительных масел, эфиров жирных кислот, свободных жирных кислот и разработки катализатора для этого процесса. Описан катализатор гидродеоксигенации кислородсодержащих алифатических...
Тип: Изобретение
Номер охранного документа: 0002356629
Дата охранного документа: 27.05.2009
27.06.2019
№219.017.9932

Способ регулирования дисперсности углеродметаллических катализаторов (варианты)

Изобретение относится к области приготовления нанесенных на пористый углерод металлических катализаторов с управляемой дисперсностью частиц активного компонента, эффективных при осуществлении структурно-чувствительных реакций. Описан способ регулирования дисперсности катализатора, включающего...
Тип: Изобретение
Номер охранного документа: 0002374172
Дата охранного документа: 27.11.2009
27.06.2019
№219.017.9934

Катализатор, способ его получения и процесс дегидрирования c-c-парафиновых углеводородов в олефины

Изобретение относится к области получения олефиновых углеводородов каталитическим дегидрированием соответствующих парафиновых С-С углеводородов и может найти применение в химической и нефтехимической промышленности. Описан катализатор дегидрирования С-С-парафиновых углеводородов в олефины,...
Тип: Изобретение
Номер охранного документа: 0002322290
Дата охранного документа: 20.04.2008
Showing 11-20 of 23 items.
01.03.2019
№219.016.ca01

Способ приготовления нанесенных полиметаллических катализаторов (варианты)

Изобретение относится к способам получения катализаторов окисления на любых твердых носителях нанесением на них твердых растворов металлов. Катализаторы могут быть использованы в различных областях катализа, например, для проведения фотокаталитических, электрокаталитических, каталитических и...
Тип: Изобретение
Номер охранного документа: 0002294240
Дата охранного документа: 27.02.2007
20.03.2019
№219.016.e721

Катализатор, способ его приготовления и активации и способ фторирования галогенированных углеводородов

Изобретение относится к области химической промышленности, к катализаторам, которые могут использоваться в реакциях газофазного фторирования галогенированных углеводородов. Описан катализатор фторирования галогенированных углеводородов газообразным фтористым водородом, включающий оксид хрома...
Тип: Изобретение
Номер охранного документа: 0002322291
Дата охранного документа: 20.04.2008
10.04.2019
№219.017.05db

Катализатор, способ его приготовления и способ получения синтез-газа

Изобретение относится к катализаторам автотермической конверсии углеводородного топлива для получения синтез-газа. Синтез-газ может быть использован в химических производствах, для сжигания в каталитических тепловых установках, в водородной энергетике. Описан катализатор получения синтез-газа,...
Тип: Изобретение
Номер охранного документа: 0002320408
Дата охранного документа: 27.03.2008
29.04.2019
№219.017.41c3

Способ очистки водородсодержащих газовых смесей от оксида углерода (варианты)

Изобретение может быть использовано для очистки от оксида углерода обогащенных водородом газовых смесей. Процесс проводят в две стадии при температуре не ниже 90°С и давлении не ниже 1 атм. Очистку в первой из стадий проводят путем селективного окисления оксида углерода кислородом и/или...
Тип: Изобретение
Номер охранного документа: 0002359741
Дата охранного документа: 27.06.2009
29.05.2019
№219.017.69a0

Устройство предпускового подогрева двигателя, автономного отопления, генерации водородсодержащего газа и способ работы устройства

Изобретения относятся к области машиностроения, а именно к предпусковому подогревателю двигателя и способу работы указанного устройства. Предпусковой подогреватель двигателя, автономного отопления, генерации водородсодержащего газа состоит из системы запуска, конвертора, теплообменника, системы...
Тип: Изобретение
Номер охранного документа: 0002440507
Дата охранного документа: 20.01.2012
30.05.2019
№219.017.6bd8

Бифункциональный катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира

Изобретение относится к каталитическому способу осуществления реакции паровой конверсии диметилового эфира (ДМЭ) с целью получения обогащенной по водороду газовой смеси, которая может использоваться в водородной энергетике, в частности, в качестве топлива для питания топливных элементов...
Тип: Изобретение
Номер охранного документа: 0002286210
Дата охранного документа: 27.10.2006
30.05.2019
№219.017.6bdb

Катализатор, способ его приготовления и способ очистки водородсодержащих газовых смесей от оксида углерода

Изобретение относится к катализатору, способу его приготовления и процессу каталитической очистки от оксида углерода обогащенных водородом газовых смесей. Описан катализатор очистки водородсодержащих газовых смесей от оксида углерода путем метанирования оксида углерода, содержащий...
Тип: Изобретение
Номер охранного документа: 0002323044
Дата охранного документа: 27.04.2008
30.05.2019
№219.017.6bdc

Катализатор, способ его приготовления и способ получения водорода

Изобретение относится к каталитическому способу осуществления реакции паровой конверсии метанола с целью получения обогащенной по водороду газовой смеси, которая может использоваться в водородной энергетике, в частности, в качестве топлива для питания топливных элементов различного назначения....
Тип: Изобретение
Номер охранного документа: 0002431526
Дата охранного документа: 20.10.2011
19.06.2019
№219.017.87ac

Катализатор очистки водородсодержащей газовой смеси от со и способ его приготовления

Изобретение относится к области катализаторов, в частности предназначенных для процессов очистки водородсодержащей газовой смеси от СО путем селективного каталитического окисления СО кислородом воздуха. Описан катализатор очистки водородсодержащей газовой смеси от СО, включающий металлическую...
Тип: Изобретение
Номер охранного документа: 0002336947
Дата охранного документа: 27.10.2008
27.06.2019
№219.017.9938

Способ приготовления платиновых катализаторов

Изобретение относится к области приготовления металл-углеродных композиций. Описан способ приготовления платиновых катализаторов, представляющих собой металл-углеродные композиции на основе наночастиц платины, закрепленных на поверхности пористых углеродных носителей, с содержанием металла от...
Тип: Изобретение
Номер охранного документа: 0002415707
Дата охранного документа: 10.04.2011
+ добавить свой РИД