×
19.06.2019
219.017.87ff

НАНОСТРУКТУРИРОВАННЫЙ МИКРОПОРИСТЫЙ УГЛЕРОДНЫЙ МАТЕРИАЛ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002307704
Дата охранного документа
10.10.2007
Краткое описание РИД Свернуть Развернуть
Аннотация: Предложен материал, представляющий собой наноструктурированную клеткоподобную систему, состоящую из ячеек из 1-2 графитоподобных монослойных частиц размером 1-2 нм, с удельной поверхностью S=3170-3450 м/г, суммарным объемом пор V=1,77-2,97 см/г, объемом микропор V=1,48-1,87 см/г и характерным распределением суммарного объема пор по размерам. Материал обладает высокой сорбционной емкостью по водороду и метану. 2 з.п. ф-лы, 1 ил., 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к активированным углеродным материалам, обладающим высокой удельной поверхностью и микропористостью, которые могут использоваться, в качестве сорбентов энергетических (природного газа, водорода и пр.) и токсичных газов, а также в других областях науки и техники.

Известны пористые углеродные материалы, получаемые путем пиролиза твердых органических материалов, в том числе различных типов углей, нефтяных остатков, отходов биомассы, с последующей активацией их углекислым газом и/или водяным паром и/или кислородом воздуха (В.Б.Фенелонов, Пористый углерод / Новосибирск, 1995, 513 с.). В процессе активации происходит удаление связанной воды, летучих углеводородов, а также взаимодействие углерода с активирующими агентами с образованием водорода и оксидов углерода и формированием пористой структуры.

Кроме того, известны пористые углеродные материалы, представляющие собой активированные угли, полученные активацией действием введенных в исходный материал минеральных катализаторов, например катализаторов Фриделя-Крафтса - ZnCl2, AlCl3, Н3PO4, или катализаторов окислительно-восстановительного типа - соли или оксиды щелочных и щелочноземельных металлов (Уайткерст Д.Д., Митчелл Т.О., Фаркаши К. Ожижение угля. - М.: Мир. - 1986. - с.256; Патент США 6537947, МПК B01J 020/02, приоритет 11.04.1997, опубл. 25.03.2003; МсКее D.W. Fuel. - 1983. - v.63. - р.170; Патент США 6030922, С 01 В 031/10, приоритет 10.07.1998, опубл. 29.02.2000). Полученные данными методами активированные угли обладают Sуд. не более 850 м2/г и долей микропор не более 25%.

Основным недостатком известных углеродных материалов является то, что они обладают удельной поверхностью не более 3000 м2/г (расчет по изотермам адсорбции азота при 77 К методом БЭТ) и высокой долей (до 90%) и объемом (1,5-2,0 см3/г) микропор.

Известны пористые углеродные материалы, представляющие собой активированные угли, получаемые путем окисления углеродсодержащего материала (гумусных углей, либо их коксов, либо нефтяных коксов) азотной кислотой либо серной кислотой с добавлением солей азотистой кислоты (Патент США 4082694, В01J 21/18, С01В 31/08, С01В 31/12, приоритет 16.06.1976, опубл. 04.04.1978, патент США 5614460, B01J 020/02, С01В 31/08, С01В 31/12, приоритет 23.08.1995, опубл. 25.03.1997, патент США 6475411, В29С 041/16, В29С 041/50, В29С 067/20, С01В 031/10, приоритет 26.07.2000, опубл. 05.11.2002, патент РФ 2206394, С1 В01J 20/20, С01В 31/12, приоритет 26.08.2002, опубл. 20.06.2003). В результате наблюдается образование ароматических кислот, многоатомных карбоновых и многоатомных поликарбоновых кислот. Образовавшуюся смесь кислот смешивают в растворителе с гидроксидом металла первой (Ia) или второй (IIa) группы Периодической системы и подвергают активации в инертной атмосфере. Перед активацией вначале удаляют растворитель путем испарения при медленном повышении температуры. Оптимальная температура активации - 700-800°С. Полученный продукт отмывают от солей металлов первой (Ia) или второй (IIa) группы, сушат на воздухе, а затем при необходимости подвергают контролированному окислительному активированию диоксидом углерода. Известные углеродные материалы (адсорбенты) обладают с удельной поверхностью выше 2000 м2/г и объемом микропор не более 1,2 см3/г.

Недостатком известных углеродных материалов является образование большого количества окислов азота и серы, вредных для окружающей среды, которые обусловлены использованием в процессе их получения разбавленных азотной и серной кислот, а также удельная поверхность менее 3000 м2/г и объем микропор менее 1,2 см3/г, сорбционная емкость по метану менее 15% вес. при 55 атм и 273 К, по водороду менее 3,6% вес. при 45 атм и 77 К.

Наиболее близким к предлагаемому техническому решению, взятым в качестве прототипа является углеродный материал, представляющий собой микропористые угли, получаемые активацией КОН активированных углей при 650-1100°С (Патент США 5710092, С01В 031/08; В 31/12, приоритет 14.03.1995, опубл. 20.01.1998). Микропористые угли характеризуются содержанием микропор размером менее 2 нм более 70%, менее 5 нм более 95%. Полученные микропористые угли имеют удельную поверхность 2352-2372 м2/г, общий объем пор 1,14-1,15 см3/г, объем микропор размером менее 2 нм 0,83-0,86 см3/г, объем пор размером менее 5 нм 1,12 см3/г. Сорбционная емкость полученных углей по метану составляет 17,8-19,5% вес. при 35 атм и 0°С.

Недостатком известного углеродного материала, представляющего собой микропористые угли, являются его относительно невысокие удельная поверхность, объем микропор и не превышающая 20% вес. сорбционная емкость по метану при 35 атм и 0°С. Кроме того, для полученных углей не приводятся данные по их сорбционной емкости по водороду.

Задача ищобретения - разработать наноструктурированный микропористый углеродный материал, обладающий более высокими значениями удельной поверхности (Sуд=3170-3450 м2/г), объемом пор (Vпор=1,77-2,18 см3/г) и микропор (vμ=1,45-1,87 см3/г) и более высокой сорбционной емкостью по метану (25-30,5% по весу при 35 атм и 0°С и 38-46% по весу при 60 атм и 0°С) и водороду (4,7-6,3% по весу при 50 атм и -196°С). Поставленная задача решается тем, что наноструктурированный микропористый углеродный материал представляет собой наноструктурированную клеткоподобную систему, состоящую из ячеек из 1-2 графитоподобных монослойных частиц размером 1-2 нм, имеет удельную поверхность SБЭТ=3170-3450 м2/г, суммарный объем пор Vпор=1,77-2,18 см3/г, объем микропор Vμ=1,45-1,87 см3/г, измеренные методом БЭТ по тепловой десорбции азота, а характерное распределение объема пор от общего объема пор по размерам в сумме составляет для: 0,5-1 нм - 11,5-23,7%, 1-1,5 нм - 40,2-56,2%, 1,5-2 нм - 16,9-19,3%, 2-2,5 нм - 2,7-8,3%, 2,5-3 нм - 4,6-5,9%, 3-5 нм - 2,7-4,7%, 5-10 нм - 0,9-1,5%, 10-20 нм - 0,4-0,8%, 20-50 нм - 0,0-0,1%, 50-100 нм - 0,0-1,1%. При этом сорбционная емкость материала по водороду составляет 4,7-6,3% по весу при 50 атм и -196°С, а сорбционная емкость по метану составляет 25-30,5% по весу при 35 атм и 0°С и 38-46% по весу при 60 атм и 0°С.

Технический эффект заявляемого изобретения заключается в большей удельной поверхности и объеме пор микропористого углеродного материала, в обеспечении более высоких значений сорбционной емкости полученных материалов по водороду и метану.

На чертеже представлен снимок электронной микроскопии высокого разрешения (ТЕМ) заявляемого наноструктурированного микропористого углеродного материала, поясняющий структуру получаемых углеродных материалов с Sуд=3360 м2/г, V=2,18 см3/г, Vμ=1,87 см3/г. На снимке выделена стенка изогнутой щелевидной поры толщиной 0,15-0,18 нм, длинной 2,5 нм и ориентированной по оси фокуса снимка. Анализ большого количества снимков подтвердил типичность данной поры. Толщина данной стенки поры соответствует однослойной плоскости, состоящей из конденсированных бензольных колец. Подобная структура имеет высокую удельную поверхность, объем микропор и описана в Marsh, Н., Crawford, D, O'Grandy, T.M., Wennerberg, A. Carbon, - 1981, - Vol.2, - №5, - р.419, где показано, что подобной высокой поверхностью могут обладать только графитоподобные монослойные частицы (графены) нанометровых размеров с клеткоподобной структурой отдельных ячеек, состоящие из одного-двух графенов.

Измерения удельной поверхности проводили на установках ASAP-2400 Micrometrics и ASAP-2020 Micrometrics по адсорбции азота при 77 К после предварительной тренировки образцов при 300°С и остаточном давлении менее 0,001 мм рт. ст. до прекращения газовыделения без контакта с атмосферой после тренировки. Измерения изотерм адсорбции азота проводили в диапазоне относительных давлений от 0,001 до 0,995 атм и их стандартную обработку с расчетом суммарной поверхности методом БЭТ, объема микропор (с размером менее 2 нм) и поверхности мезопор, остающейся после заполнения микропор (см. С.Грегг, К.С.В.Сигн. Адсорбция, удельная поверхность, пористость. Мир, М., 1984). Распределение пор по размерам определялось методом функционала плотности для пор диаметром менее 3 нм (Ustinov E.A., Do D.D., Fenelonov V.B. Carbon, - 2006, - V. 44, - р.653.) и методом Баррета-Джойнера-Халенды для пор диаметром более 3 нм (James P. Olivier, Journal of Porous Materials, - 1995, - №2, - р.9).

Сущность изобретения иллюстрируется следующими примерами и данными таблицы.

Пример 1.

Для приготовления наноструктурированного микропористого углеродного материала используют карбонизированную в кипящем слое катализатора состава CuO+MgO+Cr2O3 (10-15 вес.%), нанесен на у-Al2О3; соотношение CuCr2О4: MgCr2O4=1:1 по массе, при 550°С рисовую шелуху со временем контакта 1 с. 11 г углеродсодержащего материала смешивают с раствором КОН (44 г или 72 моль/кг) и после упаривания воды помещают в статический реактор для дальнейшей активации. Смесь нагревают до 700°С и выдерживают при этой температуре 2 часа. После охлаждения карбонизат промывают водой до нейтральной среды. Полученный продукт сушат в сушильном шкафу при температуре 110-120°С до постоянного веса. Удельную поверхность (Sуд), объем пор оценивают по адсорбции азота методом БЭТ, и она составляет 3170 м2/г, суммарный объем пор (V) 1,77 см3/г, объем микропор (Vμ) 1,45 см3/г. Углеродный материал характеризуется распределением пор, приведенным в таблице. Углеродный материал представляет собой наноструктурированную клеткоподобную систему, состоящую в основном из ячеек из 2 графитоподобных монослойных частиц размером 2 нм. Сорбционная емкость по водороду составляет 4,7% вес. при 50 атм и -196°С. При 0°С сорбционная емкость по метану составляет 25% вес. при 35 атм и 41% при 60 атм, что на 22% выше сорбционной емкости при 35 атм лучшего образца, заявляемого в прототипе.

Пример 2.

Отличается от примера 1 тем, что для приготовления наноструктурированного микропористого материала используют карбонизированную в течение 3 секунд при 450°С шелуху овса. 15 г углеродсодержащего материала смешивают с щелочным раствором КОН, содержащим 24 г КОН и 10 г NaOH. Активацию проводят при 750°С. Удельная поверхность (Sуд) составляет 3450 м2/г, суммарный объем пор (V) 2,01 см3/г, объем микропор (vμ) 1,68 см3/г. Образец характеризуется распределением пор, приведенным в таблице. Углеродный материал представляет собой наноструктурированную клеткоподобную систему, состоящую в основном из ячеек из 1 графитоподобной монослойной частицы размером 1 нм. Сорбционная емкость по водороду составляет 5,7% вес. при 50 атм и -196°С. При 0°С сорбционная емкость по метану поставляет 25% вес. при 35 атм и 38% при 60 атм, что на 22% выше сорбционной емкости при 35 атм лучшего образца, заявляемого в прототипе.

Пример 3.

Отличается от примера 1 тем, что активацию проводят при 800°С, а предварительную карбонизацию при 700°С в течение 0,5 секунд. Удельная поверхность (Sуд) составляет 3360 м2/г, суммарный объем пор (V) 2,18 см3/г, объем микропор (Vμ) 1,87 см3/г. Образец характеризуется распределением пор, приведенным в таблице. Углеродный материал представляет собой наноструктурированную клеткоподобную систему, состоящую в основном из ячеек из 1 графитоподобной монослойной частицы размером 1 нм. Сорбционная емкость по водороду составляет 6,3% вес. при 50 атм и -196°С. При 0°С сорбционная емкость по метану поставляет 30,5% вес. при 35 атм и 46% при 60 атм, что на 36% выше сорбционной емкости при 35 атм лучшего образца, заявляемого в прототипе.

Преимущество заявляемого изобретения заключается в следующем.

Как видно из приведенных примеров и таблицы, предлагаемые наноструктурированные микропористые углеродные материалы обладают высокими значениями удельной поверхности, объема пор в целом и объема микропор в частности, что позволяет достигать высоких значений их сорбционной емкости по водороду и метану. Полученный материал может найти широкое применение в качестве высокоэффективного сорбента трудносорбируемых газов.

Таблица.
Текстурные характеристики наноструктурированных микропористых углей и распределение их пор по размерам.
№ примера123
АБЭТm, м23170/30603450/32703360/3100
VΣ/Vm, см31,77/1,452,01/1,682,18/1,87
dпор, нмVпор, см3%Vпор, см3%Vпор, см3%
0,5-10,3922,30,4823,70,2511,5
1-1,50,7140,20,8642,81,2356,2
1,5-20,3419,30,3416,90,3918,1
2-2,50,158,30,105,20,062,7
2,5-30,084,70,125,90,104,6
3-50,063,30,052,70,104,7
5-100,031,50,020,90,031,2
10-200,010,40,020,80,010,6
20-500,000,00,000,00,000,1
50-1000,000,00,021,10,010,3
1,77100,02,01100,02,18100,0

0,5-1нм-11,5-23,7%,1-1,5нм-40,2-56,2%,1,5-2нм-16,9-19,3%,2-2,5нм-2,7-8,3%,2,5-3нм-4,6-5,9%,3-5нм-2,7-4,7%,5-10нм-0,9-1,5%,10-20нм-0,4-0,8%,20-50нм-0,0-0,1%,50-100нм-0,0-1,1%.1.Наноструктурированныймикропористыйуглеродныйматериал,отличающийсятем,чтоонпредставляетсобойнаноструктурированнуюклеткоподобнуюсистему,состоящуюизячеекиз1-2графитоподобныхмонослойныхчастицразмером1-2нм,имеетудельнуюповерхностьS=3170-3450м/г,суммарныйобъемпорV=1,77-2,18см/г,объеммикропорV=1,45-1,87см/г,измеренныеметодомБЭТпотепловойдесорбцииазота,ахарактерноераспределениеобъемапоротобщегообъемапорпоразмерамвсуммесоставляетдля12.Наноструктурированныймикропористыйуглеродныйматериалпоп.1,отличающийсятем,чтосорбционнаяемкостьматериалаповодородусоставляет4,7-6,3%повесупри50атми-196°С.23.Наноструктурированныймикропористыйуглеродныйматериалпоп.1,отличающийсятем,чтосорбционнаяемкостьпометанусоставляет25-30,5%повесупри35атми0°Си38-46%повесупри60атми0°С.3
Источник поступления информации: Роспатент

Showing 1-10 of 22 items.
20.02.2019
№219.016.bda2

Катализатор и способ конверсии аммиака

Изобретение относится к катализаторам и процессам окисления аммиака в производстве слабой азотной кислоты. Описаны катализатор конверсии аммиака на основе смешанных оксидов блочной структуры и способ окисления аммиака в производстве слабой азотной кислоты. Катализатор представляет собой...
Тип: Изобретение
Номер охранного документа: 0002251452
Дата охранного документа: 10.05.2005
20.02.2019
№219.016.beeb

Катализатор, способ получения носителя, способ получения катализатора и процесс гидрообессеривания дизельных фракций

Изобретение относится к катализаторам, предназначенным для глубокой гидроочистки углеводородного сырья, в частности дизельных фракций, от сернистых соединений, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Описан катализатор для процессов гидрообессеривания...
Тип: Изобретение
Номер охранного документа: 0002311959
Дата охранного документа: 10.12.2007
11.03.2019
№219.016.da3a

Способ получения полиэтилена

Изобретение относится к способу получения полиэтилена с узким молекулярно-массовым распределением (ММР) и с возможностью получения ПЭ с различной молекулярной массой. Описан способ получения полиэтилена с повышенным индексом расплава и узким молекулярно-массовым распределением в режиме...
Тип: Изобретение
Номер охранного документа: 0002303605
Дата охранного документа: 27.07.2007
20.03.2019
№219.016.e6aa

Способ получения сверхвысокомолекулярного полиэтилена

Изобретение относится к способу получения сверхвысокомолекулярного полиэтилена. Описан способ получения сверхвысокомолекулярного полиэтилена в режиме суспензии при температуре 40 - меньше 70°С в среде углеводородного растворителя с использованием нанесенного катализатора, содержащего соединение...
Тип: Изобретение
Номер охранного документа: 0002303608
Дата охранного документа: 27.07.2007
20.03.2019
№219.016.e701

Способ и устройство для импульсной тепловой обработки сыпучих материалов

Изобретение относится к способу и устройству термохимической активации (термоактивации) продуктов в производстве катализаторов, их носителей, адсорбентов, осушителей, наполнителей, керамики, магнитных материалов, неорганических пигментов, твердых электролитов, лекарственных и косметических...
Тип: Изобретение
Номер охранного документа: 0002361160
Дата охранного документа: 10.07.2009
20.03.2019
№219.016.e721

Катализатор, способ его приготовления и активации и способ фторирования галогенированных углеводородов

Изобретение относится к области химической промышленности, к катализаторам, которые могут использоваться в реакциях газофазного фторирования галогенированных углеводородов. Описан катализатор фторирования галогенированных углеводородов газообразным фтористым водородом, включающий оксид хрома...
Тип: Изобретение
Номер охранного документа: 0002322291
Дата охранного документа: 20.04.2008
10.04.2019
№219.016.ff9c

Способ и устройство для импульсной тепловой обработки сыпучих материалов

Изобретение относится к способу и аппаратурному оформлению процессов кратковременной тепловой обработки сыпучих материалов и может быть использовано в химической, пищевой, деревообрабатывающей промышленности и др. Способ импульсной тепловой обработки сыпучих материалов включает стадии испарения...
Тип: Изобретение
Номер охранного документа: 0002264589
Дата охранного документа: 20.11.2005
10.04.2019
№219.017.005e

Носитель катализатора (варианты)

Изобретение относится к конструкции и составу носителя на основе сетчатой ткани из стеклянного, кремнеземного или другого неорганического волокна, обработанного составами, придающими сеткам жесткость и предотвращающими разрушение волокон вследствие деформации, применяемого преимущественно для...
Тип: Изобретение
Номер охранного документа: 0002298435
Дата охранного документа: 10.05.2007
10.04.2019
№219.017.05db

Катализатор, способ его приготовления и способ получения синтез-газа

Изобретение относится к катализаторам автотермической конверсии углеводородного топлива для получения синтез-газа. Синтез-газ может быть использован в химических производствах, для сжигания в каталитических тепловых установках, в водородной энергетике. Описан катализатор получения синтез-газа,...
Тип: Изобретение
Номер охранного документа: 0002320408
Дата охранного документа: 27.03.2008
29.04.2019
№219.017.3ee1

Способ получения полимеров и олигомеров, содержащих функциональные группы

Изобретение относится к способу получения полимеров или олигомеров, содержащих в своем составе карбонильные функциональные группы. Описан способ получения полимеров или олигомеров, содержащих функциональные карбонильные группы, путем оксигенирования двойных связей С=С полимеров и олигомеров с...
Тип: Изобретение
Номер охранного документа: 0002280044
Дата охранного документа: 20.07.2006
Showing 1-10 of 96 items.
20.01.2013
№216.012.1bb2

Катализатор гидродеоксигенации кислородорганических продуктов переработки растительной биомассы и процесс гидродеоксигенации с применением этого катализатора

Изобретение относится к области разработки катализатора и процесса для процесса получения углеводородов путем каталитической гидродеоксигенации продуктов переработки растительной биомассы, включая биомассу микроводорослей. Описан катализатор гидродеоксигенации кислородорганических продуктов...
Тип: Изобретение
Номер охранного документа: 0002472584
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.1f1d

Литий-кобальт-оксидный материал и способ его приготовления

Изобретение может быть использовано в химической промышленности. Литий-кобальт-оксидный материал имеет состав LiCoO, где х может принимать значения от+0,2 до -0,2, постоянную сумму коэффициентов атомного содержания X+Y=2,0 и представляет собой диамагнитную матрицу на основе кристаллитов LiCoO,...
Тип: Изобретение
Номер охранного документа: 0002473466
Дата охранного документа: 27.01.2013
27.06.2013
№216.012.503d

Способ получения фотокаталитически активного диоксида титана

Изобретение может быть использовано в производстве пигментов, керамики, адсорбентов, косметики, антибактериальных препаратов, катализаторов. Способ получения фотокаталитически активного диоксида титана из четыреххлористого титана включает осаждение диоксида титана одновременным сливанием в воду...
Тип: Изобретение
Номер охранного документа: 0002486134
Дата охранного документа: 27.06.2013
10.08.2013
№216.012.5c25

Элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций

Изобретение относится к области каталитического сжигания топлив, а именно к способам приготовления элементов малообъемных каталитических насадок для осуществления сжигания газообразных, жидких и твердых топлив в организованном псевдоожиженном слое частиц инертного материала. Описан элемент...
Тип: Изобретение
Номер охранного документа: 0002489210
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.614f

Каталитический реактор - парогенератор

Изобретение относится к теплоэнергетике и может быть использовано при экологически безопасной выработке пара для получения электроэнергии и теплоснабжения потребителей. Технический результат заключается в снижении расхода дефицитного и дорогостоящего катализатора и уменьшении содержания...
Тип: Изобретение
Номер охранного документа: 0002490543
Дата охранного документа: 20.08.2013
27.10.2013
№216.012.78c3

Катализатор гидрооблагораживания

Изобретение относится к области разработки катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы. Описан катализатор гидрооблагораживания кислородорганических продуктов переработки растительной биомассы, который является композитом, содержащим никель...
Тип: Изобретение
Номер охранного документа: 0002496577
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78c5

Способ приготовления катализатора и способ каталитического сжигания топлив в псевдоожиженном слое

Изобретение относится к катализаторам. Описан способ приготовления катализатора сжигания топлива в псевдоожиженном слое на основе мартеновского шлака, в котором гранулы мартеновского шлака подвергают обработке парами воды при температуре максимального выделения водорода с последующим нанесением...
Тип: Изобретение
Номер охранного документа: 0002496579
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78c6

Способ приготовления катализатора гидрооблагораживания

Изобретение относится к области разработки способа приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы. Описан способ приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы,...
Тип: Изобретение
Номер охранного документа: 0002496580
Дата охранного документа: 27.10.2013
27.12.2013
№216.012.90a7

Способ получения нитродифениламинов

Изобретение относится к способу получения нитродифениламинов общей формулы где нитро-группа может находиться в орто-, мета- или пара-положении относительно анилинового фрагмента. Способ заключается во взаимодействии анилина с нитрогалогенбензолами общей формулы CH(NO)X, где X=Cl, Br, I, при...
Тип: Изобретение
Номер охранного документа: 0002502724
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.90a8

Способ получения n-алкил-n'-фенил-пара-фенилендиаминов

Изобретение относится к усовершенствованному способу получения N-алкил-N'-фенил-п-фенилендиаминов общей формулы 1, где R, R - алкильные заместители. Способ заключается в восстановительном алкилировании 4-нитродифениламина (4-НДФА) алифатическими кетонами общей формулы R-CO-R, где R, R -...
Тип: Изобретение
Номер охранного документа: 0002502725
Дата охранного документа: 27.12.2013
+ добавить свой РИД