20.06.2019
219.017.8cda

Способ получения полиядерных тетрааминов, содержащих мостиковые атомы

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу получения полиядерных тетрааминов, содержащих мостиковые атомы, указанной ниже общей формулы, где R=H, Ar=(I); R=H, Ar=(II); R=H, Ar=(III); R=CF, Ar=(IV), которые могут найти применение в качестве мономеров для синтеза различных полигетероариленов - полифенилхиноксалинов, полинафтоиленбензимидазолов и полибензимидазолов. Способ включает процессы взаимодействия бисфенолов с 5-хлор-4-R-2-нитроанилином при микроволновой активации и восстановления полиядерных динитродиаминов в условиях гетерогенного катализа. При этом ароматическое нуклеофильное замещение атома хлора проводят в 1-бутил-3-метилимидазолий тетрафторборате в присутствии ацетата калия при мощности микроволнового излучения 160 Вт и температуре 100°С в течение 2 мин при молярном соотношении 5-хлор-4-R-2-нитроанилин:бисфенол=1:0.5. Процесс восстановления проводят в изопропиловом спирте при 60°С, давлении 20 бар в присутствии катализатора 10% Pd/C в течение 30 мин. Предлагаемый способ позволяет уменьшить время и температуру реакций ароматического нуклеофильного замещения и восстановления, а также повысить общий выход целевых продуктов. 8 пр.
Реферат Свернуть Развернуть

Изобретение относится к способу синтеза полиядерных тетрааминов, содержащих мостиковые атомы, общей формулы:

где I R= H, Ar = ,

II R = H, Ar = ,

III R = H, Ar = ,

IV R = CF3, Ar =

которые используются в качестве мономеров для синтеза различных классов полигетероариленов: полифенилхиноксалинов, полинафтоиленбензимидазолов, полибензимидазолов (Zhang, X.-M., Liu, J.-G., Yang, S.-Y. // Reviews on Advanced Materials Science, Vol. 46 (1), 2016, pp 22-38; Li, C., Li, Z., Liu, J., Zhao, X., Yang, H., & Yang, S. // Polymer, Vol. 51(17), 2010, pp 3851–3858; Merlet, S., Marestin, C., Schiets, F., Romeyer, O., & Mercier, R. // Macromolecules, Vol. 40 (6), 2007, pp 2070–2078; J.-C. Chen, Chen, P.-Y., Liu, Y.-C., Chen, K.-H. // Journal of Membrane Science, Vol. 513, 2016, pp 270-279; Olvera-Mancilla J., Palacios-Alquisira J., Alexandrova L. // High Performance Polymers, Vol. 30 (6), 2017, pp 699–709). Данные полимеры обладают комплексом уникальных свойств: термо-, тепло-, огне-, хемостойкостью, высокими гидролитическими, радиационными свойствами (B. Sillion, G. C. Eastmond, A. Ledwith, S. Russo, P. Sigwalt // Comprehensive Polymer Science, Vol. 5, Pergamon Press, Oxford, 1989, p 499; P. M. Hergenrother, H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, J. I. Kroschwitz // Encyclopedia of Polymer Science and Engineering, Vol. 13, Wiley, New York, 1988, p 55; Rabilloud G. // High performance polymers, Editions Technip, Paris, 1999, p 350; Lindley P.M., Reinhardt B.A. // J. Polym. Sci., Part A: Polym. Chem., Vol. 29, 1991, p 1061; Chen J.-C., Chen, P.-Y., Liu, Y.-C., Chen, K.-H., Journal of Membrane Science, Vol. 513, 2016, pp 270-279; Huang B., Wang, X., Fang, H., Jiang, S., Hou, H. // Materials Letters, Vol. 234, 2019, pp 354-356). В последнее время постепенно выявляются различные специфические свойства данных классов полимеров, такие как протонная проводимость (X.-B Yang, Meng, L.-H., Sui, X.-L., Wang, Z.-B // Journal of Materials Science, 2019, Vol. 54, pp 1640-1653; Hsu S.L., Liu, C.-W., Tu, C.-H., Chuang, H.-Y., Bulycheva, E., Belomoina, N. // Polymer Bulletin, Vol. 75, 2018, pp 5321-5331), низкая диэлектрическая проницаемость (Liu J., Zhang, X., Tian, F., Yang, S., Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, Vol. 32, 2017, pp 14-24) что значительно расширяет их применение в высокотехнологичных областях, таких как водородная энергетика (Ni H. J., Liu J.G., Yang S.Y. // Chem. Lett., Vol. 45, 2016, p 75; Li N., Zhang S., Liu J., Zhang F. // Macromolecules , Vol. 41, 2008, p 4165; Mao H., Zhang S. // Polymer, , Vol. 55, 2014, p 102; Belomoina N. M., Rusanov A. L., Bruma M., Polym. Sci. Ser. C, Vol. 49, 2007, p 386), интегрированная оптика (Ksianzou V., Velagapudi R.K., Grimm B., Schrader S. // Journal of Applied Physics, Vol. 100, 2006, № 063106), хранение импульсной энергии (Liu J., Zhang, X., Tian, F., Yang, S. // Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, Vol. 32, 2017, pp 14-24), формирование наноматериалов (Merlet S., Marestin C., Schiets F., Romeyer O., Mercier R. // Macromolecules, Vol. 40, 2007, pp. 2070-2078; Asadi Tashvigh A., Chung, T.-S. // Journal of Membrane Science, Vol. 572, 2019, pp 580-587).

Известен двухстадийный способ синтеза 1,4-бис-(3,4-диаминофенокси)бензола (II) (Wang J., Li N., Zhang F., Zhang S., Liu J. // Polymer, Vol. 50, 2009, p 810), заключающийся во взаимодействии гидрохинона с 5-хлор-2-нитроанилином в ДМАА в присутствии К2СО3 при температуре 120-140 °С в течение 24 ч и последующем восстановлении полученного
1,4-бис-(3-амино-4-нитрофенокси)бензола гидразин моногидратом в этаноле в присутствии 10% Pd/C в течение 12 ч. Общий выход продукта 72%. Аналогично были синтезированы другие полиядерные тетраамины.

Недостатками известного способа получения полиядерных тетрааминов являются: длительность и жесткие условия синтеза, низкий общий выход продукта.

Цель изобретения – уменьшение времени и температуры реакций ароматического нуклеофильного замещения и восстановления, повышение общего выхода целевых продуктов.

Поставленная цель достигается тем, что процесс взаимодействия бисфенолов с 5-хлор-4-R-2-нитроанилином осуществляют при микроволновой активации. Причем ароматическое нуклеофильное замещение атома хлора проводят в 1-бутил-3-метилимидазолий тетрафторборате в присутствии ацетата калия при мощности микроволнового излучения 160 Вт и температуре 100 °С в течение 2 мин при молярном соотношении 5-хлор-4-R-2-нитроанилин : бисфенол = 1 : 0.5. Восстановление полиядерных динитродиаминов осуществляют в условиях гетерогенного катализа. Причем процесс проводят в изопропиловом спирте при 60 ºС, давлении 20 бар в присутствии катализатора 10 % Pd/C в течении 30 мин. Генерация водорода осуществляется в ходе электролиза воды.

Реализация предложенной схемы синтеза полиядерных тетрааминов, содержащих мостиковые атомы, позволяет уменьшить время с 24 ч до 2 мин и температуру с 140 °С до 100 °С процесса ароматического нуклеофильного замещения, а также время реакции восстановления с 12 ч до 30 мин и получить не содержащих посторонних примесей целевые продукты с общим выходом 85-87 %.

Строение и чистоту продуктов анализировали методами 1Н ЯМР, 19F ЯМР спектроскопии, масс-спектрометрии, определением температуры плавления и элементного состава.

Изобретение иллюстрируется следующим примерами.

Пример 1. 1,3-бис(3-амино-4-нитрофенокси)бензол.

Реакционную смесь, содержащую 0.274 г (0.0028 моль) CH3COOK, 0.483 г (0.0028 моль) 5-хлор-2-нитроанилина и 0.154 г (0.0014 моль) 1,3-дигидроксибензола в 2 мл 1-бутил-3-метилимидазолий тетрафторбората, подвергали действию микроволнового излучения при 100 ºС в течение 2 мин. После охлаждения смесь выливали в воду, выпавший продукт отфильтровывали и сушили. Выход 0.515 г (96 %), т.пл. 195-197 °С.

Найдено (%): С, 56.29; Н, 3.61; N, 14.86. C18H14N4O6.

Вычислено (%): С, 56.54; Н, 3.66; N, 14.66.

Спектр ЯМР 1H (ДМСО-d6, δ, м.д., J/Гц): 6.33 (дд, 2Н, Н (6',6''), J = 2.7, J = 9.5), 6.45 (д, 2Н, Н (2',2''), J = 2.7), 7.01 (д, 1Н, Н (1), J = 2.3), 7.08 (дд, 2Н, H (3,5), J = 2.3, J = 8.2), 7.48 (c, 4Н, (NH2)2), 7.57 (т, 1Н, Н (4), J = 8.2), 8.01 (д, 2Н, Н (5',5''), J = 9.5).

Найдено: m/z 383.0984 [M+H]+. C18H14N4O6. Вычислено: 383.0992.

Пример 2. 1,4-бис(3-амино-4-нитрофенокси)бензол получают аналогично примеру 1.

Выход 1,4-бис(3-амино-4-нитрофенокси)бензола 0.498 г 93 %, т.пл. 280-282 °С.

Найдено (%): С, 56.39; Н, 3.62; N, 14.81. C18H14N4O6.

Вычислено (%): С, 56.54; Н, 3.66; N, 14.66.

Спектр ЯМР 1H (ДМСО-d6, δ, м.д., J/Гц): 6.33 (дд, 2Н, Н (6',6''), J = 2.5, J = 9.0), 6.46 (д, 2Н, Н (2',2''), J = 2.0), 7.27 (д, 4Н, Н (2,3,5,6), J=8.0), 7.56 (с, 4Н, (NH2)2), 8.03 (д, 2Н, Н (5',5'''), J = 9.0).

Найдено: m/z 383.0986 [M+H]+. C18H14N4O6. Вычислено: 383.0992.

Пример 3. 2,2-бис[4-(3-амино-4-нитрофенокси)фенил]гексафторпропан получают аналогично примеру 1.

Выход 2,2-бис[4-(3-амино-4-нитрофенокси)фенил]гексафторпропана 0.801 г 94 %, т.пл. 182-184 °С.

Найдено (%): C, 53.30; H, 2.93; N, 9.24. C27H18F6N2O6.

Вычислено (%): C, 53.21; H, 2.96; N, 9.20.

Спектр ЯМР 1H (ДМСО-d6, δ, м.д., J/Гц): 6.35 (дд, 2Н, Н (6'',6''), J = 1.3, J = 8.2), 6.52 (д, 2Н, Н (2'',2''), J = 1.5), 7.28 (д, 4H, H (3',3'5',5'), J = 8.5), 7.45 (д, 4H, H (2',2',6',6'), J = 8.4), 7.53 (с, 4H, (NH2)2), 8.05 (д, 2Н, Н (5'',5''), J = 8.8).

Спектр ЯМР 19F (ДМСО-d6, δ, м.д., J/Гц): -63.33.

Найдено: m/z 609.1201 [M+H]+. C27H18F6N4O6. Вычислено: 609.1210.

Пример 4. 2,2-бис{4-[5-амино-4-нитро-2-(α,α,α-трифторметил)фенокси]фенил}
гексафторпропан получают аналогично примеру 1.

Выход 2,2-бис{4-[5-амино-4-нитро-2-(α,α,α-трифторметил)фенокси]фенил}
гексафторпропана 1.022 г 98 %, т.пл. 112-115 °С.

Найдено (%): C, 46.67; H, 2.12; N. 7.56. C29H16F12N4O6.

Вычислено (%): C, 46.71; H, 2.15; N, 7.52.

Спектр ЯМР 1H (ДМСО-d6, δ, м.д., J/Гц): 6.51 (с, 2Н, Н (6'',6''), 7.37 (д, 4H, Н (3',3',5',5'), J = 8.5), 7.5 (д, 4H, Н (2',2',6',6'), J = 8.5), 7.90 (с, 4H, (NH2)2), 8.32 (с, 2Н, Н (3'',3'')).

Спектр ЯМР 19F (ДМСО-d6, δ, м.д., J/Гц): -57.56, -63.49.

Найдено: m/z 745.0951 [M+H]+. C29H16F12N4O6. Вычислено: 745.0957.

Пример 5. 1,3-бис(3,4-диаминофенокси)бензол

В реактор H-Cube Pro помещали картридж, содержащий катализатор 10% Pd/C. Сначала через реактор пропускали изопропанол в течение 5 минут для удаления воздуха из системы. Раствор реагента готовили растворяя 0.5 г 1,3-бис(3-амино-4-нитрофенокси)бензола в 25 мл изопропанола. Задавали на приборе H-Cube температуру 60 ºC и давление 20 бар. Когда в реакторе устанавливались стабильные условия, переключали впускную систему с растворителя на реагент и пропускали вещество через катализатор в течение 25 мин. После сбора всего раствора впускной клапан переключали обратно на растворитель и промывали систему ещё 5 минут. Реакционный раствор пропускали через колонку с активированным углем, после чего большую часть растворителя упаривали и после охлаждения выпавший осадок отфильтровывали. Выход 0.38 г 91%, т.пл. 169-171 °С.

Найдено (%): C, 66.89; H, 5.52; N, 17.36. C18H18N4O2.

Вычислено (%): C, 67.10; H, 5.57; N, 17.34.

Спектр ЯМР 1H (ДМСО-d6, δ, м.д., J/Гц): 4.49 (c, 8H, (3,4-NH2)4), 6.09 (дд, 2H, H (6',6'), J = 1.8, J = 8.6), 6.24 (д, 2H, H (2',2'), J = 1.6), 6.36 (т, 1H, H (2), J = 7.3), 6.44 (дд, 2H, H (2,6), J = 1.7, J = 8.8), 6.49 (д, 2H, H (5',5'), J = 9.1), 7.15 (т, 1H, H (2), J = 9.2).

Найдено: m/z 323.1506 [M+H]+.C18H18N4O2. Вычислено: 323.1509.

Пример 6. 1,4-бис(3,4-диаминофенокси)бензол получают аналогично примеру 5.

Выход 1,4-бис(3,4-диаминофенокси)бензола 0.39 г 93%, т.пл. 224-227 °С.

Найдено (%): C, 66.95; H, 5.51; N, 17.38. C18H18N4O2.

Вычислено (%): C, 67.10; H, 5.57; N, 17.34.

Спектр ЯМР 1H (ДМСО-d6, δ, м.д., J/Гц): 4.42-4.51 (c, 8H, 4NH2), 6.08 (дд, 2H, H (6',6'), J = 1.8, J = 8.6), 6.26 (д, 2H, H (2',2'), J = 1.6), 6.49 (д, 2H, H (5',5'), J = 9.1), 6.83 (4H, H (2,3,5,6)).

Найдено: m/z 323.1508 [M+H]+ . C18H18N4O2. Вычислено: 323.1509.

Пример 7. 2,2-бис[4-(3,4-диаминофенокси)фенил]гексафторпропан получают аналогично примеру 5.

Выход 2,2-бис[4-(3,4-диаминофенокси)фенил]гексафторпропана 0.649 г 91%, т.пл. 154-157 °С.

Найдено (%): C, 58.94; H, 3.98; N, 10.23. C27H22F6N4O2.

Вычислено (%): C, 59.01; H, 4.01; N, 10.20.

Спектр ЯМР 1H (ДМСО-d6, δ, м.д., J/Гц): 4.37 (c, 4H, (4-NH2)2), 4.66 (c, 4H, (3-NH2)2), 6.14 (дд, 2H, H (6'',6''), J = 1.6, J = 8.5), 6.28 (д, 2Н, Н (2'',2''), J = 1.5), 6.51 (д, 2Н, Н (5'',5''), J = 8.8), 6.92 (д, 4H, H (3',3',5',5'), J = 8.5), 7.24 (д, 4H, H (2',2',6',6'), J = 8.4).

Спектр ЯМР 19F (ДМСО-d6, δ, м.д., J/Гц): -63.49.

Найдено: m/z 549.1713 [M+H]+. C27H22F6N4O2. Вычислено: 549.1726.

Пример 8. 2,2-бис{4-[4,5-диамино-2-(α,α,α-трифторметил)фенокси]фенил} гексафторпропан получают аналогично примеру 5.

Выход 2,2-бис{4-[4,5-диамино-2-(α,α,α-трифторметил)фенокси]фенил} гексафторпропана 0.792 г 89%, т.пл. 232-235 °С.

Найдено (%): C, 50.76; H, 2.89; N, 8.20. C29H20F12N4O2.

Вычислено (%): C, 50.80; H, 2.92; N, 8.18.

Спектр ЯМР 1H (ДМСО-d6, δ, м.д., J/Гц): 4.76 (c, 4H, (4-NH2)2), 5.27 (c, 4H, (5-NH2)2), 6.29 (с, 2Н, Н (6'',6''), 6.85 (с, 2Н, Н (3'',3''), 6.95 (д, 4H, Н (3',3',5',5'), J = 8.5), 7.29 (д, 4H, Н (2',2',6',6'), J = 8.5).

Спектр ЯМР 19F (ДМСО-d6, δ, м.д., J/Гц): -57.53, -63.46.

Найдено: m/z 685.1463 [M+H]+. C29H20F12N4O2. Вычислено: 685.1474.


Способ получения полиядерных тетрааминов, содержащих мостиковые атомы
Способ получения полиядерных тетрааминов, содержащих мостиковые атомы
Способ получения полиядерных тетрааминов, содержащих мостиковые атомы
Способ получения полиядерных тетрааминов, содержащих мостиковые атомы
Способ получения полиядерных тетрааминов, содержащих мостиковые атомы
Способ получения полиядерных тетрааминов, содержащих мостиковые атомы
Способ получения полиядерных тетрааминов, содержащих мостиковые атомы
Способ получения полиядерных тетрааминов, содержащих мостиковые атомы
Источник поступления информации: Роспатент

Всего документов: 5
Всего документов: 13

Похожие РИД в системе