×
29.05.2019
219.017.66b2

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ГОФРИРОВАННЫХ ОПТИЧЕСКИХ ВОЛОКОН

Вид РИД

Изобретение

№ охранного документа
0002379719
Дата охранного документа
20.01.2010
Аннотация: Изобретение относится к волноводной и волоконной оптике и может быть использовано для изготовления длиннопериодных волоконных решеток. Способ изготовления гофрированных оптических волокон заключается в том, что волокно погружают вертикально в 5-30% раствор органического полимера в органическом растворителе и вертикально извлекают из раствора, повторяют процедуру 1-5 раз, после чего волокно высушивают. При вертикальном извлечении волокна из раствора происходит стекание капель раствора по волокну и одновременное частичное подсыхание раствора. Благодаря эффектам самоорганизации капель они располагаются периодически вдоль волокна. После полного высушивания волокна на месте капель образуются утолщения, формирующие гофр. Технический результат - упрощение технологии изготовления длиннопериодных волоконных решеток, расширение номенклатуры материалов для волоконных решеток. 2 ил.

Изобретение относится к волноводной и волоконной оптике и может быть использовано для изготовления длиннопериодных волоконных решеток.

Длиннопериодные волоконные решетки используются в волоконной оптике в качестве датчиков температуры, давления, напряжения [1], химических сенсоров [2], в качестве широкополосных фильтров [3], а также в качестве спектральных селекторов в волоконных лазерах [4]. Они представляют собой волокно с гофрированной поверхностью либо волокно с гладкой поверхностью, но с периодической модуляцией показателя преломления материала волокна. У длиннопериодных волоконных решеток период гофра или период модуляции показателя преломления лежит в интервале от 100 мкм до 1-2 мм. Длиннопериодные волоконные решетки применяются, в основном, для спектрального интервала 0.8-2 мкм.

Известен способ изготовления длиннопериодных волоконных решеток на основе волокна из фоточувствительного стекла, заключающийся в том, что волокно подвергают воздействию ультрафиолетового лазерного излучения [1]. Причем воздействие производится одновременно двумя лучами лазера. Интерференция лучей в объеме волокна приводит к образованию периодических областей с высокой и низкой интенсивностью излучения. В областях с высокой интенсивностью излучения происходит необратимое изменение показателя преломления волокна и формируется решетка. Вариантом данного способа является способ, в котором воздействие ультрафиолетового лазерного излучения производится через амплитудную маску с периодическими отверстиями [2]. Облучение волокна ультрафиолетовым излучением производится в течение 10-30 мин. Недостатками данных способов являются сложность и высокая стоимость технологического оборудования - лазерные системы на основе эксимерных лазеров с высокой средней мощностью генерации, а также необходимость использования волокна из фоточувствительного стекла.

Известен способ изготовления длиннопериодных волоконных решеток, заключающийся в том, что участки волокна подвергают воздействию ускоренных ионов, после чего волокно отжигают при высокой температуре [5]. Ионы диффундируют в материал волокна, что приводит к изменению его показателя преломления. Недостатком данного способа являются сложность и высокая стоимость технологического оборудования - ускорителя ионов, а также необходимость последующего отжига волокна.

Известен способ изготовления длиннопериодных волоконных решеток [6], выбранный в качестве прототипа, заключающийся в том, что волокно из фоточувствительного стекла подвергают воздействию ультрафиолетового лазерного излучения с пространственно-периодическим распределением интенсивности, после чего волокно подвергают травлению. В результате на поверхности волокна формируется гофр, представляющий собой длиннопериодную решетку. Недостатками данного способа являются сложность и высокая стоимость технологического процесса и технологического оборудования. Для изготовления гофрированного волокна требуются лазерные системы на основе эксимерных лазеров с высокой средней мощностью генерации, необходимость использования волокна из фоточувствительного стекла, а также необходимость последующего травления стекла.

Целью данного изобретения является упрощение технологии изготовления длиннопериодных волоконных решеток, расширение номенклатуры материалов для волоконных решеток и уменьшение стоимости необходимого технологического оборудования.

Поставленная цель достигается тем, что волокно погружают вертикально в 5-30% раствор органического полимера в органическом растворителе и вертикально извлекают из раствора, повторяют процедуру 1-5 раз, после чего волокно высушивают.

При вертикальном извлечении волокна из раствора происходит стекание капель раствора по волокну и одновременное частичное подсыхание раствора. Благодаря эффектам самоорганизации капель они располагаются периодически вдоль волокна. Период уменьшается при уменьшении диаметра волокна и уменьшении концентрации раствора. При повторном погружении волокна в раствор новые капли возникают на уже сформировавшихся каплях, увеличивая их размер без изменения периода расположения. После полного высушивания волокна на месте капель образуются утолщения, формирующие гофр.

Данное техническое решение является новым, а совокупность отличительных признаков не следует из известных технических решений. Следовательно, данное изобретение соответствует критерию неочевидность.

Примеры конкретной реализации изобретения

Волокно из кварцевого стекла диаметром 200 мкм вертикально погружают в 10% раствор нитроцеллюлозы в этилацетате, затем вертикально извлекают волокно из раствора. Процедуру повторяют 3 раза, после чего волокно высушивают при комнатной температуре в течение 3-4 часов. На фиг.1 показан участок волокна с гофром, сформировавшимся из высыхающих капель полимера. Видно, что период гофра составляет 1 мм, модуляция толщины гофра 20 мкм.

Волокно из силикатного стекла диаметром 50 мкм вертикально погружают в 30% раствор нитроцеллюлозы в этилацетате, затем вертикально извлекают волокно из раствора, после чего волокно высушивают при комнатной температуре в течение 3-4 часов. На фиг.2 показан участок волокна с гофром, сформировавшимся из высыхающих капель полимера. Видно, что период гофра составляет 200 мкм, модуляция толщины гофра 10 мкм.

Аналогичные результаты дает применение способа для полимерных волокон из полиамида диаметром 80-200 мкм, а также при использовании растворов других полимеров: полистирола в этилацетате, полиметилметакрилата в смеси ацетона, толуола и этилацетата, а также поливинилацетата в этилацетате.

Из приведенных примеров следует, что предлагаемое техническое решение позволяет получать гофрированные волокна без использования сложного и дорогостоящего технологического оборудования, что упрощает технологию и снижает стоимость необходимого оборудования и себестоимость изготовления гофрированных волокон и длиннопериодных волоконных решеток. Предлагаемый способ позволяет формировать гофры на волокнах, изготовленных из стекол различного состава, а также на волокнах из полимеров, которые не растворяются в используемом растворителе. Дополнительным достоинством является возможность подбора материала полимера или смеси полимеров, формирующих гофр, с оптимальным показателем преломления.

Предлагаемое техническое решение может быть использовано для изготовления длиннопериодных волоконных решеток, применяемых в волоконно-оптических датчиках и сенсорах.

Литература

1. S.W.James, R.P.Tatam. Optical fiber long-period grating sensors: characteristics and application // Measur. Sci. and Technol, V.14, P. R49-R61, 2003.

2. H.J.Patric, A.D.Kersey, F.Bucholtz. Analysis of the response of long period fiber gratings to external index of refraction // J. of Lightwave Technol., V.16, N.9, P.1606-1612, 1998.

3. A.M.Vengsarkar, P.J.Lemaire, J.B.Judkins et al. Long-period fiber gratings as band-rejection filters // J. of Lightwave Technol., V.14, N 1, P.58-65, 1996.

4. L.R.Chen. Phase-shifted long-period gratings by refractive index shifting // Opt. Comm., V.200, P.187-191, 2001.

5. M.Fujimaki, Y.Ohki. Fabrication of long-period fiber gratings by use of ion implantation // Opt. Lett., V.25, P.88-89, 2000.

6. С.-Y. Lin, G.-W.Chern, L.A.Wang. Periodical corrugated structure for forming sample fiber Bragg grating and long-period fiber grating with tunable coupling strength // J. of Lightwave Technol., V.19, N 8, P.1212-1220, 2001.

Способ изготовления гофрированных оптических волокон, заключающийся в формировании на поверхности волокна периодической структуры с переменной толщиной, отличающийся тем, что волокно погружают вертикально в раствор органического полимера в органическом растворителе с концентрацией полимера в растворе в пределах от 5 до 30% и вертикально извлекают из раствора, повторяют процедуру 1-5 раз, после чего волокно высушивают.
Источник поступления информации: Роспатент

Showing 1-1 of 1 item.
10.08.2015
№216.013.68ff

Способ инактивации патогенов

Изобретение относится к медицине и может быть использовано для инактивации патогенов в биологической жидкости. Для этого проводят смешивание биологической жидкости в присутствии кислорода с углеродным фотосенсибилизатором, представляющим собой фуллерен, нанесенный на твердофазный носитель, при...
Тип: Изобретение
Номер охранного документа: 0002558432
Дата охранного документа: 10.08.2015
Showing 21-30 of 34 items.
10.05.2018
№218.016.3975

Способ изготовления нанокомпозитов в стекле

Изобретение относится к изготовлению нанопористых электродов для батарей, аккумуляторов и солнечных элементов, катализаторов и др. Способ изготовления металл-стеклянных и полупроводник-стеклянных нанокомпозитов заключается в приложении электрического поля к нанопористому силикатному стеклу,...
Тип: Изобретение
Номер охранного документа: 0002647132
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.437e

Способ определения коррозионного состояния заземляющих устройств

Изобретение относится к контрольно-измерительной технике и может быть использовано для количественной оценки коррозионного состояния элементов заземляющих устройств электроустановок подстанций различного вида и назначения без проведения вскрышных работ. Заявлен способ определения коррозионного...
Тип: Изобретение
Номер охранного документа: 0002649630
Дата охранного документа: 04.04.2018
20.06.2018
№218.016.64d2

Способ записи оптической информации в фототерморефрактивном стекле

Изобретение относится к оптике и фотонике и может быть использовано для записи и длительного, архивного, хранения оптической информации в кодах высших порядков, например в восьмеричной или в шестнадцатеричной системах счисления. В заявленном способе записи оптической информации в...
Тип: Изобретение
Номер охранного документа: 0002658114
Дата охранного документа: 19.06.2018
12.12.2018
№218.016.a57d

Способ записи оптической информации в стекле

Изобретение относится к оптике и фотонике и может быть использовано для записи в стекле оптической информации в цифровом или аналоговом форматах, а также для создания в стекле нано- и микроразмерных источников света. Способ записи оптической информации в стекле, содержащем ионы и заряженные...
Тип: Изобретение
Номер охранного документа: 0002674402
Дата охранного документа: 07.12.2018
20.02.2019
№219.016.bfa6

Регулятор интенсивности излучения

Изобретение относится к области оптоэлектроники и может найти применение в аппаратуре для оптической записи и воспроизведения информации. Регулятор интенсивности излучения включает в себя две призмы полного внутреннего отражения с регулируемым зазором между ними. На поверхность призм нанесены...
Тип: Изобретение
Номер охранного документа: 0002355004
Дата охранного документа: 10.05.2009
11.03.2019
№219.016.db42

Подложка для биочипа и способ ее изготовления

Изобретения относятся к оптике, технологиям обработки оптических материалов и нанотехнологиям. Подложка для биочипа представляет собой стеклянную пластину с наночастицами металла (Au, Ag, Pt). Согласно изобретению пластина выполнена из силикатного фотохромного или фототерморефрактивного стекла...
Тип: Изобретение
Номер охранного документа: 0002411180
Дата охранного документа: 10.02.2011
11.03.2019
№219.016.db72

Способ изготовления спиральной длиннопериодной волоконной решетки

Способ изготовления спиральной длиннопериодной волоконной решетки из заготовки оптического волокна заключается в том, что на заготовку оптического волокна из стекла или полимера наматывают виток к витку полимерное волокно и фиксируют концы наматываемого волокна. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002426158
Дата охранного документа: 10.08.2011
27.04.2019
№219.017.3df2

Способ изготовления длиннопериодной волоконной решетки

Способ может быть использован для изготовления длиннопериодных волоконных решеток, применяемых в волоконно-оптических датчиках и сенсорах. Способ обеспечивает формирование на поверхности стеклянного волокна периодической структуры переменной толщины. Волокно погружают вертикально в раствор...
Тип: Изобретение
Номер охранного документа: 0002398251
Дата охранного документа: 27.08.2010
27.04.2019
№219.017.3df3

Способ изготовления спиральной длиннопериодной волоконной решетки (варианты)

Способ включает скручивание вокруг оси заготовки со скоростью 0,5…1 об/с и одновременно растягивание продольно со скоростью 0,1…1 мм/с. В первом варианте заготовка представляет собой раствор полимера с концентрацией 50…80% и полученное волокно смачивают растворителем полимера в течение 2…15 с и...
Тип: Изобретение
Номер охранного документа: 0002392646
Дата охранного документа: 20.06.2010
27.04.2019
№219.017.3df9

Способ формирования металлических нанокластеров в стекле

Формирование металлических нанокластеров в стекле применяется в интегральной оптике для создания матриц микролинз, плазменных волноводов, оптических переключателей, химических и биосенсоров на основе плазменных наноструктур и метаматериалов. Способ позволяет получать композитные слои с...
Тип: Изобретение
Номер охранного документа: 0002394001
Дата охранного документа: 10.07.2010
+ добавить свой РИД