×
12.12.2018
218.016.a57d

Способ записи оптической информации в стекле

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к оптике и фотонике и может быть использовано для записи в стекле оптической информации в цифровом или аналоговом форматах, а также для создания в стекле нано- и микроразмерных источников света. Способ записи оптической информации в стекле, содержащем ионы и заряженные молекулярные кластеры серебра, заключается в создании локальных областей путем его облучения ионизирующим излучением, при этом стекло облучают электронами с энергией 5-50 кэВ и дозой 5-40 мКл/см. Изобретение решает задачу повышения плотности записи оптической информации в стекле, содержащем серебро, увеличения интенсивности люминесценции облученных участков стекла и уменьшения интенсивности люминесценции в объеме стекла. 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к оптике и фотонике, и может быть использовано для записи в стекле оптической информации в цифровом или аналоговом форматах, а также для создания в стекле нано- и микроразмерных источников света.

Известен способ формирования металлических нанокластеров в стекле, содержащем ионы серебра или меди, центров окраски в виде наночастиц серебра или меди (Патент РФ №2394001, МПК С03 17/06, дата приоритета 05.11.2008, опубликовано 10.07.2010). Сущность способа заключается в том, что стекло, содержащее ионы серебра или меди, локально облучают электронами с энергией 2-50 кэВ и дозой 2-20 мКл/см2, после чего осуществляют термообработку стекла при температуре 400-600°С в течение 2-10 часов. При электронном облучении приповерхностный слой стекла приобретает отрицательный заряд за счет накопления электронов, потерявших энергию. Возникшее при этом электрическое поле приводит к полевой миграции положительных ионов серебра или меди в область отрицательного заряда и восстановлению ионов термализованными электронами до нейтрального состояния. В результате в облученной зоне возникает высокая концентрация нейтральных атомов металла. При последующей термообработке при температуре выше температуры стеклования (400-600°С) атомы металла формируют наночастицы, которые являются центрами окраски благодаря наличию у наночастиц плазмонного резонанса, приводящего к появлению плазмонной полосы оптического поглощения. Данный способ может быть использован для записи в стекле оптической информации путем создания локальных областей с повышенным поглощением. Недостатком способа является необходимость применения длительной термообработки стекла при высокой температуре.

Известен способ формирования в стекле, содержащем ионы серебра, люминесцентных центров в виде субнаноразмерных молекулярных кластеров серебра (Д.А. Клюкин, А.И. Сидоров, А.И. Игнатьев, Н.В. Никоноров, M. Silvennoinen, Ю.П. Свирко. Формирование люминесцентных центров и нелинейно-оптические эффекты в серебросодержащих стеклах при воздействии фемтосекундных лазерных импульсов // Опт. и Спектр., 2015, Т. 119, №3, С. 122-126). Сущность способа заключается в том, что стекло, содержащее ионы и заряженные молекулярные кластеры серебра, локально облучают фемтосекундными лазерными импульсами ближнего ИК диапазона (λ=790 нм). При лазерном облучении происходит многофотонная ионизация дефектов сетки стекла. Образующиеся при этом свободные электроны захватываются заряженными молекулярными кластерами серебра, которые переходят в нейтральное состояние. Для нейтральных молекулярных кластеров серебра характерна интенсивная люминесценция в видимой области спектра при ее возбуждении непрерывным излучением УФ диапазона. Данный способ может быть использован для записи в стекле оптической информации путем создания локальных областей, обладающих люминесценцией. Недостатком способа является то, что лазерный луч невозможно сфокусировать в пятно диаметром менее 3-5 длин волн из-за дифракционных ограничений. Недостатком является также то, что при фокусировке лазерного луча перед фокусом находится сходящийся пучок излучения, а за фокусом - расходящийся пучок излучения. В этих пучках также образуются люминесцентные центры, и появляется паразитная люминесценция в объеме стекла. Это ограничивает плотность записи оптической информации и может привести к ошибкам при считывании информации. Недостатком является также то, что из-за высокой интенсивности лазерного излучения в стекле возникают нелинейно-оптические эффекты, приводящие, в частности, к самофокусировке и самодефокусировке луча. Это может приводить к искажению оптической информации. Недостатком является также то, что в облученной зоне находится малое количество молекулярных кластеров, которые образовались в ней при синтезе стекла. Поэтому интенсивность люминесценции после лазерного облучения не является максимально возможной.

Известен способ записи оптической информации в стекле, содержащем ионы серебра и субнаноразмерные молекулярные кластеры серебра (V.V. Gorbiak, A.I. Sidorov, V.N. Vasilyev, V.D. Dubrovin, N.V. Nikonorov. Multilevel optical information recording in silver-containing photosensitive glasses by UV laser pulses // Opt. Engineering, 2017, Vol. 56, No. 4, 047104), выбранный в качестве прототипа. Сущность способа заключается в том, что стекло, содержащее ионы и заряженные молекулярные кластеры серебра, локально облучают наносекундными лазерными импульсами УФ диапазона (λ=355 нм). При лазерном облучении происходит ионизация дефектов сетки стекла. Образующиеся при этом свободные электроны захватываются заряженными молекулярными кластерами серебра, которые переходят в нейтральное состояние. Для нейтральных молекулярных кластеров серебра характерна интенсивная люминесценция в видимой области спектра при ее возбуждении непрерывным излучением УФ диапазона. Данный способ использован для записи в стекле оптической информации путем создания локальных областей, обладающих люминесценцией. Недостатком способа является то, что лазерный луч невозможно сфокусировать в пятно диаметром менее 3-5 длин волн из-за дифракционных ограничений. Недостатком является также то, что при фокусировке лазерного луча перед фокусом находится сходящийся пучок излучения, а за фокусом - расходящийся пучок излучения. В этих пучках также образуются люминесцентные центры, и появляется паразитная люминесценция в объеме стекла. Это ограничивает плотность записи оптической информации и может привести к ошибкам при считывании информации. Недостатком является также то, что в облученной зоне находится малое количество молекулярных кластеров, которые образовались в ней при синтезе стекла. Поэтому интенсивность люминесценции после лазерного облучения не является максимально возможной.

Изобретение решает задачу повышения плотности записи оптической информации в стекле, увеличению интенсивности люминесценции облученных участков стекла и уменьшению интенсивности люминесценции в объеме стекла.

Сущность заявляемого технического решения заключается в том, что стекло, содержащее ионы и заряженные молекулярные кластеры серебра, локально облучают электронами с энергией 5-50 кэВ и дозой 5-40 мКл/см2. Серебросодержащие стекла, синтезированные в окислительных условиях, содержат серебро в виде ионов Ag+и заряженных молекулярных кластеров Agn+(n=2-4). Ионы и заряженные молекулярные кластеры серебра обладают чрезвычайно слабой люминесценцией в видимой области спектра. При локальном облучении электронами с энергией 5-50 кэВ они тормозятся в приповерхностном слое стекла толщиной 0.1-20 мкм, накапливаются в нем, и образуют в этом слое область с отрицательным зарядом. Возникшее при этом электрическое поле приводит к полевой миграции подвижных положительных ионов серебра в область отрицательного заряда и восстановлению ионов термализованными электронами до нейтрального состояния. В результате в облученной зоне возникает высокая концентрация нейтральных атомов серебра. Заряженные молекулярные кластеры серебра, находящиеся в облученной зоне, захватывают свободные электроны, и переходят в нейтральное состояние. Благодаря высокой концентрации нейтральных атомов серебра в облученной зоне появляется возможность возникновения новых нейтральных молекулярных кластеров серебра, вследствие чего их концентрация в облученной зоне увеличивается. Известно, что нейтральные молекулярные кластеры серебра в стекле обладают интенсивной люминесценцией в видимой области спектра при возбуждении люминесценции УФ или фиолетовым излучением (V.D. Dubrovin, A.I. Ignatiev, N.V. Nikonorov, A.I. Sidorov, Т.A. Shakhverdov, D.S. Agafonova, Luminescence of silver molecular clusters in photo-thermo-refractive glasses // Opt. Mater., 2014, Vol. 36, P. 753-759). Поэтому в облученных участках стекла появляется интенсивная люминесценция в видимой области спектра при ее возбуждении УФ или фиолетовым излучением. Таким образом, оптическая информация может быть записана в стекле, содержащем ионы и молекулярные кластеры серебра путем создания люминесцентных участков при локальном электронном облучении. Запись может производиться точечным воздействием сфокусированного электронного луча либо путем сканирования электронного луча по поверхности стекла. Для считывания информации в качестве источника, возбуждающего люминесценцию, может быть использован УФ светодиод с длиной волны излучения 365 нм или фиолетовый светодиод или полупроводниковый лазер с длиной волны излучения 405 нм. Для регистрации люминесценции может быть использован кремниевый фотодиод.

Достоинствами предлагаемого способа является следующее. Так как электронный луч может быть сфокусирован в пятно диаметром менее 10 нм, то расстояние между соседними пикселями может составлять 20 нм, благодаря чему повышается плотность записи информации по сравнению с прототипом. Так как при локальном электронном облучении концентрация люминесцентных центров, нейтральных молекулярных кластеров серебра, в облученной зоне увеличивается, то увеличивается интенсивность люминесценции в облученной зоне, по сравнению с прототипом. При электронном облучении с энергией электронов 5-50 кэВ нейтральные молекулярные кластеры серебра формируются в приповерхностном слое стекла толщиной 0.1-20 мкм. Поэтому паразитная люминесценция в объеме стекла не возникает. Это также позволяет увеличить плотность записи оптической информации.

Изобретение иллюстрируется следующими чертежами.

На фиг. 1 показаны спектры оптической плотности стекла до электронного облучения (1) и после облучения электронами с энергией 50 кэВ и дозой 30 мКл/см2 (2).

На фиг. 2 показана фотография люминесценции стекла после облучения электронами с энергией 50 кэВ и дозой 30 мКл/см2. Длина волны возбуждения люминесценции 365 нм.

На фиг. 3 показаны спектры люминесценции стекла после облучения электронами с энергией 50 кэВ и дозами 5 мКл/см2 (3) и 30 мКл/см2 (4). Длина волны возбуждения люминесценции 405 нм.

На фиг. 1 показана зависимость интегральной интенсивности люминесценции стекла после электронного облучения от дозы облучения. Длина волны возбуждения люминесценции 405 нм. Энергия электронов 50 кэВ.

Сущность изобретения раскрывается на примере, который не должен рассматриваться экспертом как ограничивающий притязания изобретения.

Сведения, подтверждающие возможность осуществления изобретения

Пример

Для записи оптической информации используют силикатное стекло системы: SiO2-Na2O-Al2O3-ZnO-NaCl с добавкой Ag2O (0.12 мол. %). Серебро в шихту стекла вводят в виде AgNO3, а синтез стекла проводят в воздушной атмосфере. Это обеспечивает окислительные условия синтеза. После синтеза и отжига стекло содержит ионы серебра Ag+и заряженные молекулярные кластеры серебра Agn+(n=2-4). Стекло прозрачно, бесцветно и обладает очень слабой люминесценцией в видимой области спектра, которая может быть зарегистрирована только с помощью фотоэлектронного умножителя. Образец стекла представляет собой плоскопараллельную полированную пластину толщиной 1 мм. Перед электронным облучением на поверхность стекла наносят пленку А1 толщиной 100 нм для удаления поверхностного заряда. После электронного облучения пленку А1 удаляют травлением в водном растворе KOH. Облучение стекла электронами проводят в сканирующем электронном микроскопе с энергией электронов 50 кэВ и дозами 10-35 мКл/см2 при комнатной температуре. Облучение проводят неподвижным электронным лучом с диаметром на поверхности стекла равным 1.5 мм. Диаметр электронного луча выбран для удобства последующих оптических измерений. После облучения электронами облученные участки стекла приобретают бледно-желтую окраску, и происходит длинноволновый спектральный сдвиг края полосы поглощения стекла (Фиг. 1). Это указывает на переход заряженных молекулярных кластеров серебра в нейтральное состояние. В облученных участках стекла возникает интенсивная люминесценция в видимой области спектра при ее возбуждении УФ или фиолетовым излучением (Фиг. 2). Так как нейтральные молекулярные кластеры серебра формируются только в тонком приповерхностном слое стекла, в котором электроны теряют энергию, то паразитной люминесценции в объеме стекла не возникает. Спектры люминесценции для двух доз электронного облучения показаны на (Фиг. 3). Из рисунка видно, что полоса люминесценции занимает спектральный интервал 450-750 нм и имеет максимум на длине волны 550 нм. Вклад в люминесценцию при возбуждении длиной волны 405 нм вносят нейтральные молекулярные кластеры серебра Ag2, Ag3 и Ag4. На Фиг. 4 показана зависимость интегральной интенсивности люминесценции стекла после электронного облучения от дозы облучения. Длина волны возбуждения люминесценции равна 405 нм. Измерение интенсивности люминесценции проводилось с помощью кремниевого фотодиода. Из Фиг. 4 видно, что при увеличении дозы электронного облучения от 5 до 35 мКл/см2 интенсивность люминесценции увеличивается в 3.4 раза. Такого изменения интенсивности люминесценции достаточно для записи информации в восьмеричном коде счисления. При этом каждому уровню интенсивности люминесценции будет соответствовать определенный код числа системы счисления. Это дает возможность дополнительного увеличения плотности записи информации.

Эксперименты показали, что на качество записанной оптической информации не влияет нагрев до 350°С, а также облучение УФ ртутной лампой.

Таким образом, предлагаемое техническое решение позволяет повысить плотность записи оптической информации в стекле, содержащем серебро, увеличить интенсивность люминесценции облученных участков стекла и уменьшить интенсивность люминесценции в объеме стекла. Дополнительным достоинством является возможность записи оптической информации в кодах высокого порядка, например, в восьмеричной системе счисления.

Способ записи оптической информации в стекле, содержащем ионы и заряженные молекулярные кластеры серебра, заключающийся в создании локальных областей путем его облучения ионизирующим излучением, отличающийся тем, что стекло облучают электронами с энергией 5-50 кэВ и дозой 5-40 мКл/см.
Источник поступления информации: Роспатент

Showing 1-10 of 105 items.
10.01.2015
№216.013.17c3

Способ определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического импульса

Способ относится к лазерной технике и может быть использован для создания устройства прямого самореферентного определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического импульса. Способ определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического...
Тип: Изобретение
Номер охранного документа: 0002537511
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1d3d

Способ деперсонализации персональных данных

Изобретение относится к области защиты информации, хранимой в информационных системах персональных данных (ИСПДн), от несанкционированного доступа (НСД) и может быть использовано на стадиях разработки и оптимизации ИСПДн в защищенном исполнении. Техническим результатом является повышение уровня...
Тип: Изобретение
Номер охранного документа: 0002538913
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1e16

Волоконно-оптическое устройство для измерения напряженности электрического поля

Изобретение относится к измерительным устройствам на основе волоконно-оптических фазовых поляриметрических датчиков. Оптимизация структуры датчика, обуславливающая возникновение разноименной модуляции показателя преломления при подаче на двухканальный модулятор разности фаз напряжения одной...
Тип: Изобретение
Номер охранного документа: 0002539130
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2349

Способ получения резистивного элемента памяти

Изобретение относится к нанотехнологии и может применяться при изготовлении планарных двухэлектродных резистивных элементов запоминающих устройств. Способ получения резистивного элемента памяти включает в себя создание проводящих электродов на непроводящей подложке, напыление в зазор между...
Тип: Изобретение
Номер охранного документа: 0002540486
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.234c

Способ оценки степени обогатимости минерального сырья оптическим методом и устройство для его реализации

Группа изобретений относится к контрольно-измерительной технике и может быть использовано для предварительной оценки обогатимости руд твердых полезных ископаемых и определения параметров их селекции. Согласно способу определяют полезность и зоны различения каждого минерального объекта из партии...
Тип: Изобретение
Номер охранного документа: 0002540489
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2bab

Способ центрировки линзы в оправе и оправа для его осуществления

Способ включает установку линзы на плоский буртик промежуточной части оправы, размещаемой на буртике цилиндрического отверстия основной оправы с возможностью наклона. Вращают основную оправу вокруг ее базовой оси, измеряют биение центра кривизны первой рабочей поверхности линзы относительно оси...
Тип: Изобретение
Номер охранного документа: 0002542636
Дата охранного документа: 20.02.2015
20.03.2015
№216.013.320d

Способ центрировки линзы в оправе и оправа для его осуществления

Способ включает установку линзы сферической рабочей поверхностью на опорный буртик цилиндрического отверстия промежуточной цилиндрической части, размещаемой на опорном буртике цилиндрического отверстия основной оправы. Измеряют биение центра кривизны первой рабочей поверхности относительно оси...
Тип: Изобретение
Номер охранного документа: 0002544288
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3d3b

Способ измерения параметров и характеристик источников излучения

Изобретение относится к измерительной технике и касается способа измерения параметров и характеристик источников излучения. При реализации способа приемник оптического излучения размещают с возможностью перемещения по трем координатам в облучаемой зоне исследуемого источника излучения....
Тип: Изобретение
Номер охранного документа: 0002547163
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.4457

Измельчительный механизм волчка

Изобретение относится к пищевой промышленности, а именно к волчкам и мясорубкам. Измельчительный механизм волчка содержит корпус для шнека, шнек с хвостовиком, режущий инструмент, палец для крепления ножей и решеток. При этом в корпусе для шнека и в шнеке выполнены охлаждающие каналы. Каналы...
Тип: Изобретение
Номер охранного документа: 0002548993
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4530

Способ обнаружения объекта на малых дистанциях и устройство для его осуществления

Изобретение относится к области обнаружения в пространстве объектов, к способам и устройствам лазерной локации и может быть использовано в системах обнаружения и распознавания целей, в системах предупреждения столкновения транспортных средств, в навигационных устройствах и в системах охранной...
Тип: Изобретение
Номер охранного документа: 0002549210
Дата охранного документа: 20.04.2015
Showing 1-10 of 41 items.
10.11.2013
№216.012.7d7f

Способ каталитической конверсии целлюлозы в гекситолы

Изобретение относится к области переработки возобновляемого сырья (в частности, целлюлозы) в сырье для химического синтеза и биотопливо. В способе каталитической конверсии целлюлозы в гекситолы, включающем проведения процесса гидролитического гидрирования целлюлозы в течение 3-7 минут при...
Тип: Изобретение
Номер охранного документа: 0002497800
Дата охранного документа: 10.11.2013
10.03.2014
№216.012.a953

Способ формирования серебряных наночастиц в стекле

Способ формирования серебряных наночастиц в стекле относится к технологии оптических материалов и может быть использован в интегральной оптике и биосенсорных технологиях. Способ включает нанесение серебряной пленки на поверхность силикатного стекла, допированного церием, выдерживание полученной...
Тип: Изобретение
Номер охранного документа: 0002509062
Дата охранного документа: 10.03.2014
27.03.2014
№216.012.ae13

Способ получения сапонинсодержащих экстрактов (вариант)

Изобретение относится к фармацевтической промышленности, а именно к способу получения сапонинсодержащего экстракта. Способ получения сапонинсодержащего экстракта, включающий предварительное замачивание корней Saponaria officialis L. в дистиллированной воде, экстракцию под воздействием...
Тип: Изобретение
Номер охранного документа: 0002510278
Дата охранного документа: 27.03.2014
10.03.2015
№216.013.2faa

Способ записи оптической информации в стекле

Изобретение относится к области оптики и может быть использовано для записи и хранения оптической информации в виде текста, изображений, штрих-кодов и цифровой битовой информации. Целью изобретения является увеличение скорости записи оптической информации в стекле и упрощение состава стекла....
Тип: Изобретение
Номер охранного документа: 0002543670
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.38fa

Преобразователь напряжения в частоту импульсов

Изобретение относится к области автоматики и может использоваться при автоматизации технологических процессов. Достигаемый технический результат - повышение надежности преобразования напряжения в частоту импульсов путем диагностирования полярности подключения его выходных клемм к...
Тип: Изобретение
Номер охранного документа: 0002546074
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3904

Многозонный интегрирующий регулятор

Изобретение относится к области преобразовательной техники и может использоваться при автоматизации технологических процессов, например, в регуляторах температуры. Техническим результатом является стабилизация частоты несущих колебаний при отказах релейных элементов и тем самым сохранение...
Тип: Изобретение
Номер охранного документа: 0002546084
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.42b6

Волноводный концентратор солнечного элемента

Волноводный концентратор солнечного элемента относится к волноводной и волоконной оптике и может быть использован в солнечных элементах и солнечных батареях с монокристаллическими полупроводниковыми фотоэлектрическими преобразователями. Концентратор солнечного элемента состоит из трех...
Тип: Изобретение
Номер охранного документа: 0002548576
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.4707

Способ биоконверсии отходов промышленного производства сапонинов из корня saponaria officinalis

Изобретение относится к области получения удобрений на основе отходов переработки растительного сырья. Предложен способ биоконверсии отходов промышленного производства сапонинов из корня Saponaria Officinalis. Способ включает приготовление исходной смеси, загрузку смеси в биореактор и...
Тип: Изобретение
Номер охранного документа: 0002549687
Дата охранного документа: 27.04.2015
10.07.2015
№216.013.5ebb

Голографический коллиматорный прицел

Изобретение относится к коллиматорным оптическим прицелам для легкого стрелкового оружия и предназначено для формирования прицельного знака в бесконечности с помощью голограммного оптического элемента. Голографический коллиматорный содержит последовательно установленные на оптической оси...
Тип: Изобретение
Номер охранного документа: 0002555792
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60a2

Чувствительный элемент волоконно-оптического датчика температуры

Изобретение относится к волоконно-оптическим датчикам температуры. Чувствительный элемент выполнен в виде волокна из люминесцентного стекла, которое содержит нейтральные молекулярные кластеры серебра и ионы редкоземельного металла. Технический результат - увеличение температурной...
Тип: Изобретение
Номер охранного документа: 0002556279
Дата охранного документа: 10.07.2015
+ добавить свой РИД