×
27.04.2019
219.017.3df3

СПОСОБ ИЗГОТОВЛЕНИЯ СПИРАЛЬНОЙ ДЛИННОПЕРИОДНОЙ ВОЛОКОННОЙ РЕШЕТКИ (ВАРИАНТЫ)

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Способ включает скручивание вокруг оси заготовки со скоростью 0,5…1 об/с и одновременно растягивание продольно со скоростью 0,1…1 мм/с. В первом варианте заготовка представляет собой раствор полимера с концентрацией 50…80% и полученное волокно смачивают растворителем полимера в течение 2…15 с и высушивают. Во втором варианте заготовка представляет собой расплав полимера и полученное волокно нагревают в течение 5…10 с до температуры, превышающей температуру размягчения полимера на 5…10°С, и охлаждают до комнатной температуры. Способ позволяет формировать на полимерном волокне спиральные гофры с периодом от 50 мкм до 1 мм и высотой гофра от 1 до 20 мкм. Технический результат - упрощения технологии изготовления и расширение номенклатуры материалов и геометрических характеристик спиральных длиннопериодных волоконных решеток. 2 н.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к волноводной и волоконной оптике и может быть использовано для изготовления длиннопериодных волоконных решеток.

Длиннопериодные волоконные решетки используются в волоконной оптике в качестве датчиков температуры, давления, механического напряжения [S.W.James, R.P.Tatam. Optical fiber long-period grating sensors: characteristics and application. // Measur. Sci. and Technol., v.14, p.R49-R61, 2003], химических сенсоров [S.W.James, R.P.Tatam. Optical fiber long-period grating sensors: characteristics and application. // Measur. Sci. and Technol., v.14, p.R49-R61, 2003], в качестве широкополосных фильтров [H.J.Patric, A.D.Kersey, F.Bucholtz. Analysis of the response of long period fiber gratings to external index of refraction. // J. of Lightwave Technol., V.16, N.9, P.1606-1612, 1998], а также в качестве спектральных селекторов в волоконных лазерах [A.M.Vengsarkar, P.J.Lemaire, J.B.Judkins et al. Long-period fiber gratings as band-rejection filters. // J. of Lightwave Technol., v.14, N 1, p.58-65, 1996]. Как правило, они представляют собой волокно с гофрированной поверхностью, либо волокно с гладкой поверхностью, но с периодической модуляцией показателя преломления материала волокна. Гофры, либо модуляция показателя преломления длиннопериодной волоконной решетки может представлять собой спираль, ось которой совпадает с осью волокна [V.I.Kopp, V.M.Churikov, G. Zhang et al. Single- and double-helix chiral fiber sensors. // JOSA B, v.24, N.10, p.A48-A52, 2007]. У длиннопериодных волоконных решеток период гофра, модуляции показателя преломления, либо спирали лежит в интервале от 100 мкм до 1-2 мм. Длиннопериодные волоконные решетки применяются, в основном, для спектрального интервала 0.8-2 мкм.

Известен способ изготовления длиннопериодных волоконных решеток, на основе волокна из фоточувствительного стекла, заключающийся в том, что волокно подвергают воздействию ультрафиолетового лазерного излучения [S.W.James, R.P.Tatam. Optical fiber long-period grating sensors: characteristics and application. // Measur. Sci. and Technol., v.14, p.R49-R61, 2003]. Причем воздействие производится одновременно двумя лучами лазера. Интерференция лучей в объеме волокна приводит к образованию периодических областей с высокой и низкой интенсивностью излучения. В областях с высокой интенсивностью излучения происходит необратимое изменение показателя преломления волокна и формируется решетка. Вариантом изменения показателя преломления волокна и формируется решетка. Вариантом данного способа является способ, в котором воздействие ультрафиолетового лазерного излучения производится через амплитудную маску с периодическими отверстиями [S.W.James, R.P.Tatam. Optical fiber long-period grating sensors: characteristics and application. // Measur. Sci. and Technol., v.14, p.R49-R61, 2003]. Облучение волокна ультрафиолетовым излучением производится в течение 10-30 мин. Недостатками данных способов является сложность и высокая стоимость технологического оборудования - лазерные системы на основе эксимерных лазеров с высокой средней мощностью генерации, а также необходимость использования волокна из фоточувствительного стекла.

Известен способ изготовления длиннопериодных волоконных решеток, заключающийся в том, что участки волокна подвергают воздействию ускоренных ионов, после чего волокно отжигают при высокой температуре [М.Fujimaki, Y. Ohki. Fabrication of long-period fiber gratings by use of ion implantation. // Opt. Lett., v.25, p.88-89, 2000]. Ионы диффундируют в материал волокна, что приводит к изменению его показателя преломления. Недостатком данного способа является сложность и высокая стоимость технологического оборудования - ускорителя ионов, а также необходимость последующего отжига волокна.

Известен способ изготовления длиннопериодных волоконных решеток [С.-Y.Lin, G.-W.Chern, L.A.Wang. Periodical corrugated structure for forming sample fiber Bragg grating and long-period fiber grating with tunable coupling strength. // J. of Lightwave Technol., v.19, N.8, p.1212-1220, 2001], заключающийся в том, что волокно из фоточувствительного стекла подвергают воздействию ультрафиолетового лазерного излучения с пространственно-периодическим распределением интенсивности, после чего волокно подвергают химическому травлению. В результате на поверхности волокна формируется гофр, представляющий собой длиннопериодную решетку. Недостатками данного способа являются сложность и высокая стоимость технологического процесса и технологического оборудования. Для изготовления гофрированного волокна требуются лазерные системы на основе эксимерных лазеров с высокой средней мощностью генерации, необходимость использования волокна из фоточувствительного стекла, а также необходимость последующего химического травления стекла.

Известен способ изготовления спиральных длиннопериодных волоконных решеток [О.V.Ivanov. Fabrication of long-period gratings by twisting a standard single-mode fiber. // Opt. Lett., v.30, p.3290-3292, 2005], выбранный в качестве прототипа, заключающийся в том, что волокно из стекла нагревают до температуры размягчения стекла, скручивают его вдоль оси, затем охлаждают. В результате волокно приобретает продольную спиральную структуру. Недостатком способа является необходимость использования высоких температур (для волокна из кварцевого стекла - 1400…1500°С), невозможность получения периода менее 100 мкм и малое значение толщины формируемого спирального гофра - менее 0.5 мкм.

Изобретение решает задачу упрощения технологии изготовления и расширение номенклатуры материалов и геометрических характеристик спиральных длиннопериодных волоконных решеток.

Сущность заявляемого способа заключается в следующем. Заготовку одновременно со скручиванием растягивают продольно со скоростью 0.1…1 мм/с, а скручивают - со скоростью 0.5…1 об/с, полученное волокно, в случае заготовки, представляющей собой раствор полимера с концентрацией 50…80%, смачивают растворителем полимера в течение 2…15 с и высушивают. Полученное волокно, в случае заготовки, представляющей собой расплав полимера, нагревают в течение 5…10 с до температуры, превышающей температуру размягчения полимера на 5…10°С, и охлаждают до комнатной температуры.

При одновременном растягивании и скручивании капли раствора либо расплава полимера формируется волокно в виде спирали с плотно упакованными витками. Период витков спирали зависит от соотношения скоростей растягивания и вращения. Значения скоростей растягивания и скручивания получены экспериментально. В результате кратковременного смачивания волокна растворителем полимера либо кратковременного нагрева его до температуры, превышающей температуру размягчения, происходит склеивание либо сплавление поверхностей соседних витков спирали и формируется сплошное волокно со спиральной гофрированной поверхностью. Толщина спирального гофра определяется продолжительностью смачивания растворителем либо продолжительностью нагрева.

Примеры конкретной реализации изобретения.

Сущность изобретения поясняется фиг.1 и фиг.2. На фиг.1, а схематично показана капля раствора или расплава полимера, расположенная на совмещенных торцах двух стержней или стеклянных волокон. На фиг.1, б показано сформированное спиральное волокно после растяжения и скручивания капли полимера. На фиг.1, в показано сформированное спиральное волокно после его обработки путем смачивания растворителем либо нагрева. На фиг.2, а показано сформированное спиральное волокно из поливинилацетата. На фиг.2, б показано сформированное спиральное волокно из полиуретана.

Пример 1. В качестве стержней используют два отрезка волокна из кварцевого стекла диаметром 130 мкм. Каплю раствора поливинилацетата в этилацетате с концентрацией 70% и объемом 3 мм3 помещают между торцами совмещенных волокон (фиг.1, а). Одно из волокон удаляют от другого волокна со скоростью 0.5 мм/с с одновременным вращением волокна вокруг оси со скоростью 1 об/с. В результате формируется полимерное волокно в виде спирали с плотно упакованными витками (фиг.1, б). Затем сформированное полимерное волокно смачивают этилацетатом в течение 5 с и высушивают. При этом происходит склеивание поверхностей соседних витков спирали и формируется сплошное полимерное волокно со спиральной гофрированной поверхностью (фиг.1, в). Фотография волокна показана на Фиг.2, а. Диаметр волокна равен 50 мкм, период спирального гофра равен 55 мкм, высота гофра - 15 мкм. При увеличении продолжительности смачивания растворителем до 15 с высота гофра уменьшается до 1 мкм.

Пример 2. В качестве стержней используют два отрезка волокна из кварцевого стекла диаметром 130 мкм. Каплю расплава полиуретана (Тразм=193°С) объемом 3 мм3 помещают между торцами совмещенных волокон (фиг.1, а). Одно из волокон удаляют от другого волокна со скоростью 1 мм/с с одновременным вращением волокна вдоль оси со скоростью 0.8 об/с. В результате формируется полимерное волокно в виде спирали с плотно упакованными витками (фиг.1, б). Затем полимерное волокно нагревают до температуры 200°C в течение 5 с и охлаждают до комнатной температуры. При этом происходит сплавление поверхностей соседних витков спирали и формируется сплошное полимерное волокно со спиральной гофрированной поверхностью (фиг.1, в). Фотография волокна показана на фиг.2, б. Диаметр волокна равен 100 мкм, период спирального гофра равен 300 мкм, высота гофра - 20 мкм. При увеличении продолжительности нагрева до 10 с высота гофра уменьшается до 10 мкм.

Из приведенных примеров следует, что предлагаемое техническое решение позволяет изготавливать спиральные длиннопериодные волоконные решетки из полимеров без использования сложного и дорогостоящего технологического оборудования, что упрощает технологию. Предлагаемый способ позволяет формировать спиральные гофры на полимерных волокнах различного состава. Дополнительным достоинством является возможность варьирования высоты спирального гофра. Высокая чувствительность полимеров к внешним воздействиям (температура, давление и др.) по сравнению со стеклами дает возможность повысить чувствительность волоконных датчиков.

Предлагаемое техническое решение может быть использовано для изготовления длиннопериодных волоконных решеток, применяемых в волоконно-оптических датчиках и сенсорах.

Источник поступления информации: Роспатент

Showing 1-10 of 11 items.
11.03.2019
№219.016.db42

Подложка для биочипа и способ ее изготовления

Изобретения относятся к оптике, технологиям обработки оптических материалов и нанотехнологиям. Подложка для биочипа представляет собой стеклянную пластину с наночастицами металла (Au, Ag, Pt). Согласно изобретению пластина выполнена из силикатного фотохромного или фототерморефрактивного стекла...
Тип: Изобретение
Номер охранного документа: 0002411180
Дата охранного документа: 10.02.2011
11.03.2019
№219.016.db72

Способ изготовления спиральной длиннопериодной волоконной решетки

Способ изготовления спиральной длиннопериодной волоконной решетки из заготовки оптического волокна заключается в том, что на заготовку оптического волокна из стекла или полимера наматывают виток к витку полимерное волокно и фиксируют концы наматываемого волокна. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002426158
Дата охранного документа: 10.08.2011
11.03.2019
№219.016.db82

Способ получения поверхностных наноструктур

Изобретение относится к области изготовления поверхностных наноструктур. Согласно способу напыляют материал наноструктуры на подложку в вакууме при одновременном облучении подложки пространственно модулированным оптическим излучением. Области нулевой интенсивности излучения совпадают с местами...
Тип: Изобретение
Номер охранного документа: 0002429190
Дата охранного документа: 20.09.2011
11.03.2019
№219.016.db95

Интегрально-оптический элемент и способ его изготовления

Изобретение относится к области интегральной оптики. Устройство представляет собой подложку в виде полированной пластины, выполненной из натрийборосиликатного стекла. Ликвировавшее отожженное при температуре 530°С в течение 72 часов стекло имеет состав NaO:BO:SiO=7:23:70. В подложке сформирован...
Тип: Изобретение
Номер охранного документа: 0002425402
Дата охранного документа: 27.07.2011
11.03.2019
№219.016.dbb9

Оптико-электронная система для контроля пространственного положения железнодорожного пути

Оптико-электронная система для контроля пространственного положения железнодорожного пути относится к контрольно-измерительной технике. Система содержит источник излучения (2) и расположенные на измерительной тележке (9), устанавливаемой на железнодорожном пути (10), блок обработки сигналов (3)...
Тип: Изобретение
Номер охранного документа: 0002424932
Дата охранного документа: 27.07.2011
29.03.2019
№219.016.f4be

Диссоциативный люминесцентный наносенсор

Изобретение относится к области приборостроения. Наносенсор включает в себя полупроводниковые нанокристаллы (квантовые точки, КТ), связанные посредством координационной связи с молекулами органического красителя в комплекс, в котором собственная люминесценция КТ отсутствует. В наносенсор входят...
Тип: Изобретение
Номер охранного документа: 0002414696
Дата охранного документа: 20.03.2011
27.04.2019
№219.017.3df2

Способ изготовления длиннопериодной волоконной решетки

Способ может быть использован для изготовления длиннопериодных волоконных решеток, применяемых в волоконно-оптических датчиках и сенсорах. Способ обеспечивает формирование на поверхности стеклянного волокна периодической структуры переменной толщины. Волокно погружают вертикально в раствор...
Тип: Изобретение
Номер охранного документа: 0002398251
Дата охранного документа: 27.08.2010
27.04.2019
№219.017.3df9

Способ формирования металлических нанокластеров в стекле

Формирование металлических нанокластеров в стекле применяется в интегральной оптике для создания матриц микролинз, плазменных волноводов, оптических переключателей, химических и биосенсоров на основе плазменных наноструктур и метаматериалов. Способ позволяет получать композитные слои с...
Тип: Изобретение
Номер охранного документа: 0002394001
Дата охранного документа: 10.07.2010
09.05.2019
№219.017.4eab

Способ измерения поляризационной чувствительности приемника оптического излучения (варианты)

Изобретение относится к оптике и может быть использовано для определения систематических погрешностей измерений в поляриметрической и эллипсометрической аппаратуре. Способ включает воздействие излучением, прошедшим через поляризатор и анализатор, на испытуемый приемник, при этом анализатор...
Тип: Изобретение
Номер охранного документа: 0002426078
Дата охранного документа: 10.08.2011
09.05.2019
№219.017.4faa

Волоконно-оптический датчик тока

Изобретение относится к области волоконно-оптических измерительных устройств и может быть использовано в интерференционных волоконно-оптических датчиках тока. Волоконно-оптический датчик тока содержит оптически соединенные источник светового излучения, разветвитель, ко второму входу которого...
Тип: Изобретение
Номер охранного документа: 0002433414
Дата охранного документа: 10.11.2011
Showing 1-10 of 34 items.
10.11.2013
№216.012.7d7f

Способ каталитической конверсии целлюлозы в гекситолы

Изобретение относится к области переработки возобновляемого сырья (в частности, целлюлозы) в сырье для химического синтеза и биотопливо. В способе каталитической конверсии целлюлозы в гекситолы, включающем проведения процесса гидролитического гидрирования целлюлозы в течение 3-7 минут при...
Тип: Изобретение
Номер охранного документа: 0002497800
Дата охранного документа: 10.11.2013
10.03.2014
№216.012.a953

Способ формирования серебряных наночастиц в стекле

Способ формирования серебряных наночастиц в стекле относится к технологии оптических материалов и может быть использован в интегральной оптике и биосенсорных технологиях. Способ включает нанесение серебряной пленки на поверхность силикатного стекла, допированного церием, выдерживание полученной...
Тип: Изобретение
Номер охранного документа: 0002509062
Дата охранного документа: 10.03.2014
27.03.2014
№216.012.ae13

Способ получения сапонинсодержащих экстрактов (вариант)

Изобретение относится к фармацевтической промышленности, а именно к способу получения сапонинсодержащего экстракта. Способ получения сапонинсодержащего экстракта, включающий предварительное замачивание корней Saponaria officialis L. в дистиллированной воде, экстракцию под воздействием...
Тип: Изобретение
Номер охранного документа: 0002510278
Дата охранного документа: 27.03.2014
10.03.2015
№216.013.2faa

Способ записи оптической информации в стекле

Изобретение относится к области оптики и может быть использовано для записи и хранения оптической информации в виде текста, изображений, штрих-кодов и цифровой битовой информации. Целью изобретения является увеличение скорости записи оптической информации в стекле и упрощение состава стекла....
Тип: Изобретение
Номер охранного документа: 0002543670
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.38fa

Преобразователь напряжения в частоту импульсов

Изобретение относится к области автоматики и может использоваться при автоматизации технологических процессов. Достигаемый технический результат - повышение надежности преобразования напряжения в частоту импульсов путем диагностирования полярности подключения его выходных клемм к...
Тип: Изобретение
Номер охранного документа: 0002546074
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3904

Многозонный интегрирующий регулятор

Изобретение относится к области преобразовательной техники и может использоваться при автоматизации технологических процессов, например, в регуляторах температуры. Техническим результатом является стабилизация частоты несущих колебаний при отказах релейных элементов и тем самым сохранение...
Тип: Изобретение
Номер охранного документа: 0002546084
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.42b6

Волноводный концентратор солнечного элемента

Волноводный концентратор солнечного элемента относится к волноводной и волоконной оптике и может быть использован в солнечных элементах и солнечных батареях с монокристаллическими полупроводниковыми фотоэлектрическими преобразователями. Концентратор солнечного элемента состоит из трех...
Тип: Изобретение
Номер охранного документа: 0002548576
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.4707

Способ биоконверсии отходов промышленного производства сапонинов из корня saponaria officinalis

Изобретение относится к области получения удобрений на основе отходов переработки растительного сырья. Предложен способ биоконверсии отходов промышленного производства сапонинов из корня Saponaria Officinalis. Способ включает приготовление исходной смеси, загрузку смеси в биореактор и...
Тип: Изобретение
Номер охранного документа: 0002549687
Дата охранного документа: 27.04.2015
10.07.2015
№216.013.60a2

Чувствительный элемент волоконно-оптического датчика температуры

Изобретение относится к волоконно-оптическим датчикам температуры. Чувствительный элемент выполнен в виде волокна из люминесцентного стекла, которое содержит нейтральные молекулярные кластеры серебра и ионы редкоземельного металла. Технический результат - увеличение температурной...
Тип: Изобретение
Номер охранного документа: 0002556279
Дата охранного документа: 10.07.2015
10.01.2016
№216.013.9f76

Дозиметр ультрафиолетового излучения

Изобретение относится к радиационным измерениям, в частности к измерениям дозы ультрафиолетового (УФ) излучения, и может быть использовано в медицине, сельском хозяйстве, биотехнологии, обеззараживании объектов, материаловедении, экологии, дефектоскопии, криминалистике, искусствоведении....
Тип: Изобретение
Номер охранного документа: 0002572459
Дата охранного документа: 10.01.2016
+ добавить свой РИД