×
24.05.2019
219.017.5e3d

СПОСОБ ПОЛУЧЕНИЯ БЕСПРИМЕСНЫХ ВОДНЫХ КОЛЛОИДНЫХ РАСТВОРОВ КРИСТАЛЛИЧЕСКИХ НАНОЧАСТИЦ ТРИОКСИДА ВОЛЬФРАМА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области химической технологии, а именно к способам получения водных коллоидных растворов золей наночастиц соединений переходных металлов, а именно коллоидных растворов триоксида вольфрама, которые могут быть использованы для получения защитных покрытий, катализаторов, красителей, композитов и применяться в других областях, где есть потребность в таких растворах. Предложен cпособ получения беспримесных водных коллоидных растворов кристаллических наночастиц триоксида вольфрама, включающий отжиг паравольфрамата аммония при температурах 550÷800°С в течение 10÷120 мин в открытой емкости, охлаждение продукта отжига до 20÷25°С, приготовление водной суспензии продукта отжига в дистиллированной воде, ультразвуковую обработку полученной водной суспензии в течение 1÷3 ч. Технический результат состоит в получение водных коллоидных растворов кристаллических наночастиц WOвысокой степени чистоты. 4 ил., 3 пр.
Реферат Свернуть Развернуть

Изобретение относится к области химической технологии, а именно к способам получения водных коллоидных растворов (золей) наночастиц соединений переходных металлов, а именно коллоидных растворов триоксида вольфрама, которые могут быть использованы для получения защитных покрытий, катализаторов, красителей, композитов и применяться в других областях, где есть потребность в таких растворах.

Нанодисперсный триоксид вольфрама - перспективный материал для химической промышленности. При переходе в нанокристаллическое состояние у этого оксида появляются необычные для крупнокристаллического состояния свойства, например, газохромные, электрохромные, фотохромные, сверхпроводниковые [С. Santato, М. Odziemkowski, М. Ulmann, and J. Augustynski. Crystallographically Oriented Mesoporous WO3 Films: Synthesis, Characterization, and Applications // J. Am. Chem. Soc. 2001, 123, 10639-10649].

В настоящее время известны методы получения триоксида вольфрама в порошкообразном состоянии, например, в [P.J. Hwan, K.Y. Jin, P.S. Min, L.J. Won, K.R. Kwon. Manufacturing method of high purity tungsten trioxide powder using waste hard metal and tungsten trioxide manufactured by the method. KR 20100024032, Publication Date: 05.03.2010] описывается способ получения триоксида вольфрама путем обезуглероживания карбида вольфрама, в [Chang-Hoon Shin, et. al. A Study on the Preparation of Tungsten Oxide powders Using Emulsion Evaporation Methods // J. of the Korean Cer. Soc., 1998, V. 35, №.6, 543] раскрывается способ изготовления триоксида вольфрама методом испарения эмульсии. Также используют золь-гель метод, гидротермальный, электрохимическое анодирование, электрохимическое осаждение [Н. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, and K. Kalantar-zadeh. Nanostructured Tungsten Oxide - Properties, Synthesis, and Applications Adv. Fund. Mater. 2011, 21, 2175-2196].

Недостатками предлагаемых методов является низкая чистота получаемого продукта, гидратированность поверхности, присутствие аморфной фазы, а также необходимость использования специального оборудования.

Таким образом, существует много методов получения триоксида вольфрама в порошкообразном виде, но практически отсутствуют данные о методах синтеза коллоидных растворов кристаллических наночастиц WO3, которые востребованы в химической технологии, в частности, необходимы для нанесения на поверхность разнообразных носителей для применения в газовых сенсорах, электрохромных устройствах, катализаторах [А.В. Александров, Н.Н. Гаврилова. Влияние условий синтеза на коллоидно-химические свойства гидрозолей триоксида вольфрама // Успехи в химии и химической технологии. 2013, Т. XXVII, №2, 47-55].

На данный момент известно несколько методов получения коллоидных растворов, включающих триоксид вольфрама и другие оксиды металлов. Например, в патенте [С. Wen, Z. Quanrao, Y. Ying, Z. Jing, J. Aiping, V. Volkove, G. Zahanawa. Method for preparing stable sol of composite oxides of vanadium and tungsten. CN 101049970, Publication Date: 10.10.2007] описывается технология получения золей V2O5-WO3 в гидротермальной установке, а в патенте [I. Hiroyuki. Tungsten oxide-containing titanium oxide sol, method of manufacturing the same, coating material and optical functional body. JP 4507066, Publication Date: 21.07.2010] раскрывается способ получения золя триоксида вольфрама, содержащего диоксид титана, путем термической обработки раствора, состоящего из геля титановой кислоты, аммиака и соединения вольфрама.

Основным недостатком предложенных методов является то, что в системе присутствуют посторонние элементы и примеси.

В качестве еще одного способа получения коллоидных растворов триоксида вольфрама используют метод пептизации. Так, известен способ получения коллоидного раствора нанокристаллического триоксида вольфрама [А.И. Недоступ, А.В. Александров, Н.Н. Гаврилова. Синтез золей триоксида вольфрама, стабилизированных неионогенным ПАВ SURFYNOL 465 // Успехи в химии и химической технологии. Т. XXVIII. 2014, №2, 120-122], в котором в качестве прекурсоров используют паравольфрамат аммония (NH4)10W12O41⋅xH2O, соляную кислоту HCl, неионогенный ПАВ Surfynol 465 (этоксилат). Сущность синтеза заключается в том, что триоксид вольфрама осаждали из раствора паравольфрамата аммония (ПВА) (VПBA=50 мл) раствором соляной кислоты при мольном соотношении [H+]/[W6+], равном 24,5. Концентрацию ПВА поддерживали в пределах от 0,26 до 7,00 ммоль/л. Осаждение проводили при интенсивном перемешивании. Температуру синтеза варьировали от 20 до 80°С. Полученный осадок отфильтровывали и промывали на воронке Бюхнера дистиллированной водой с целью удаления электролита. Согласно данным рентгенофазового анализа, при температурах ниже 70°С получаемый осадок являлся рентгеноаморфным, а при температурах 70-80°С - кристаллическим. Фазовый состав частиц получаемого в этих условиях осадка соответствовал WO3⋅2H2O. Отмытый осадок диспергировали ультразвуком в растворах стабилизатора - неионногенного ПАВ Surfynol 465 с концентрацией от 1 до 5 (в единицах ККМ), при величинах рН от 1 до 8. Величину рН регулировали добавлением растворов HCl или NaOH. Ультразвуковую обработку проводили на приборе УЗДН-А, время обработки составляло 2 минуты. Образование устойчивых золей триоксида вольфрама наблюдалось лишь при pH=3 и концентрациях стабилизатора в диапазоне 1-2 ККМ.

Данный способ был выбран в качестве прототипа.

Недостатком прототипа является то, что в результате осаждения при невысоких температурах образуется незакристаллизованный продукт, а при температурах 70-80°С - гидратированная форма триоксида вольфрама.

Еще одним недостатком является то, что золи триоксида вольфрама получают только в кислой среде, при этом в системе присутствуют посторонние хлорид-анионы.

Изобретение направлено на изыскание способа получения беспримесных водных коллоидных растворов кристаллических наночастиц WO3, что позволяет использовать их в различных областях химии, в частности, электрохимии.

Технический результат достигается тем, что предложен способ получения беспримесных водных коллоидных растворов кристаллических наночастиц триоксида вольфрама, включающий отжиг паравольфрамата аммония при температурах 550÷800°С в течение 10÷120 мин в открытой емкости, охлаждение продукта отжига до 20÷25°С, приготовление водной суспензии продукта отжига в дистиллированной воде, ультразвуковую обработку полученной водной суспензии в течение 1÷3 ч.

Изобретение проиллюстрировано следующими фигурами.

Фиг. 1. Результаты дифференциально-термического (красная кривая) и термогравиметрического анализа для исходного паравольфрамата аммония.

Фиг. 2. Рентгенограмма продукта отжига паравольфрамата аммония при температуре 700°С и продолжительности 60 мин.

Фиг. 3. Микрофотография продукта отжига паравольфрамата аммония при температуре 700°С и продолжительности 60 мин после ультразвуковой обработки в течение 3 ч.

Фиг. 4. Данные динамического светорассеяния для водного коллоидного раствора триоксида вольфрама, полученного ультразвуковой обработкой в течение 3 ч водной суспензии продукта отжига паравольфрамата аммония при температуре 700°С и продолжительности 60 мин.

Температура отжига выбрана из тех соображений, что при температуре менее 550°С кристаллизация триоксида вольфрама происходит не в полной мере и разложение исходного паравольфрамата аммония происходит не полностью, что показано на Фиг. 1, а при температуре свыше 800°С наблюдается формирование частиц с большим размером.

Продолжительность отжига при заданной температуре обусловлена тем, что продолжительности менее 10 мин недостаточно для образования беспримесного триоксида вольфрама, а увеличение продолжительности отжига свыше 120 мин не оказывает существенного влияния на достижение технического результата.

Охлаждение продукта отжига проводят до температур 20÷25°С, поскольку это стандартный диапазон комнатной температуры.

Продолжительность ультразвуковой обработки обусловлена тем, что при времени обработки менее 1 ч не образуется водный коллоидный раствор наночастиц WO3, а увеличение времени обработки более 3 ч не оказывает существенного влияния на достижение технического результата.

Ультразвуковую обработку проводили на приборе Bandelin Sonoplus 3200, частотой 21±1 кГц.

Сущность изобретения заключается в том, что на первом этапе синтеза использовано термическое разложение паравольфрамата аммония в результате которого образуются беспримесные кристаллические агрегаты частиц WO3, а на последнем этапе использована ультразвуковая обработка водной суспензии продукта отжига, что приводит к разрушению агрегатов триоксида вольфрама и образованию водного коллоидного раствора беспримесных кристаллических наночастиц триоксида вольфрама.

Ниже приведены примеры иллюстрирующие, но не ограничивающие предложенный способ.

Пример. 1.

Отжигали навеску паравольфрамата аммония в муфельной печи в открытом алундовом тигле при температуре 700°С и продолжительности 60 мин. Полученный продукт представлял собой беспримесный однофазный кристаллический продукт WO3 [PDF2 №43-1035], что проиллюстрировано Фиг. 2., со средним размером частиц в агрегатах около 90 нм. Далее отожженный образец остужали до комнатной температуры и готовили его водную суспензию, которую затем подвергали ультразвуковой обработке в течение 3 ч и в результате получали беспримесный водный коллоидный раствор кристаллических наночастиц WO3, преимущественно с размером 85 нм, что показано на Фиг. 3 и Фиг. 4.

Пример 2.

По примеру 1, отличающийся тем, что температура отжига составляла 800°С, продолжительность отжига составляла 10 мин. Полученный продукт представлял собой беспримесный однофазный кристаллический продукт WO3 [PDF2 №43-1035] со средним размером частиц в агрегатах около 95 нм. Далее отожженный образец остужали до комнатной температуры и готовили его водную суспензию, которую затем подвергали ультразвуковой обработке в течение 2 ч и в результате получали беспримесный водный коллоидный раствор кристаллических наночастиц WO3, преимущественно с размером 90 нм.

Пример 3.

По примеру 1, отличающийся тем, что температура отжига составляла 550°С, продолжительность отжига составляла 120 мин. Полученный продукт представлял собой беспримесный однофазный кристаллический продукт WO3 [PDF2 №43-1035] со средним размером частиц в агрегатах около 80 нм. Далее отожженный образец остужали до комнатной температуры и готовили его водную суспензию, которую затем подвергали ультразвуковой обработке в течение 1 ч и в результате получали беспримесный водный коллоидный раствор кристаллических наночастиц WO3, преимущественно с размером 80 нм.

Предложенный способ позволяет получать беспримесные водные коллоидные растворы кристаллических наночастиц WO3, что дает возможность их использования в различных областях химии, например в электрохимии.

Способ получения беспримесных водных коллоидных растворов кристаллических наночастиц триоксида вольфрама, включающий отжиг паравольфрамата аммония при температурах 550÷800°С в течение 10÷120 мин в открытой емкости, охлаждение продукта отжига до 20÷25°С, приготовление водной суспензии продукта отжига в дистиллированной воде, ультразвуковую обработку полученной водной суспензии в течение 1÷3 ч.
СПОСОБ ПОЛУЧЕНИЯ БЕСПРИМЕСНЫХ ВОДНЫХ КОЛЛОИДНЫХ РАСТВОРОВ КРИСТАЛЛИЧЕСКИХ НАНОЧАСТИЦ ТРИОКСИДА ВОЛЬФРАМА
СПОСОБ ПОЛУЧЕНИЯ БЕСПРИМЕСНЫХ ВОДНЫХ КОЛЛОИДНЫХ РАСТВОРОВ КРИСТАЛЛИЧЕСКИХ НАНОЧАСТИЦ ТРИОКСИДА ВОЛЬФРАМА
СПОСОБ ПОЛУЧЕНИЯ БЕСПРИМЕСНЫХ ВОДНЫХ КОЛЛОИДНЫХ РАСТВОРОВ КРИСТАЛЛИЧЕСКИХ НАНОЧАСТИЦ ТРИОКСИДА ВОЛЬФРАМА
СПОСОБ ПОЛУЧЕНИЯ БЕСПРИМЕСНЫХ ВОДНЫХ КОЛЛОИДНЫХ РАСТВОРОВ КРИСТАЛЛИЧЕСКИХ НАНОЧАСТИЦ ТРИОКСИДА ВОЛЬФРАМА
Источник поступления информации: Роспатент

Showing 11-20 of 50 items.
10.07.2015
№216.013.6066

Каталитически активные перфторкарбоксилатные соединения четырехвалентной платины

Изобретение относится к перфторкарбоксилатным соединениям четырехвалентной платины, характеризующимся устойчивостью при хранении без доступа воздуха. Соединения получают реакцией гидроксосоединения четырехвалентной платины K[Pt(OH)] или свежеприготовленного гидрата двуокиси платины РtO·4НO с...
Тип: Изобретение
Номер охранного документа: 0002556219
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.61e1

Способ получения наноструктурированной карбидокремниевой керамики

Изобретение относится к неорганической химии, а именно к получению карбидокремниевых материалов и изделий, и может быть применено в качестве теплозащитных, химически и эрозионностойких материалов, используемых при создании авиационной и ракетной техники, носителей с развитой поверхностью...
Тип: Изобретение
Номер охранного документа: 0002556599
Дата охранного документа: 10.07.2015
20.10.2015
№216.013.841c

Оксоацетатные соединения платины для изготовления гетерогенных катализаторов

Изобретение относится к получению ранее неизвестных оксоацетатных соединений трехвалентной платины MPtO(CHCOO), где М=Li, K, Na, Rb, Cs. Они могут быть использованы для синтеза других соединений платины, в гомогенном и гетерогенном катализе в качестве предшественников катализаторов, а также в...
Тип: Изобретение
Номер охранного документа: 0002565423
Дата охранного документа: 20.10.2015
20.11.2015
№216.013.9003

Противоточно-циклический способ многоступенчатого экстракционного разделения смеси компонентов

Изобретение относится к области процессов разделения веществ методами жидкостной экстракции и хроматографии и может быть использовано в гидрометаллургии, а также в химической, микробиологической, фармацевтической и других отраслях промышленности для извлечения, разделения, очистки и...
Тип: Изобретение
Номер охранного документа: 0002568483
Дата охранного документа: 20.11.2015
10.01.2016
№216.013.9f9e

Оптически прозрачная гетероструктура

Изобретение относится к области наноматериалов для оптоэлектроники и магнитооптики и может использоваться при создании оптически прозрачных контактных слоев или защитных слоев от агрессивного воздействия внешней атмосферы на основе гетероструктур, содержащих наноразмерные пленки золота....
Тип: Изобретение
Номер охранного документа: 0002572499
Дата охранного документа: 10.01.2016
20.06.2016
№217.015.0398

Способ получения наностержней диоксида марганца

Изобретение может быть использовано в неорганической химии и нанотехнологии. Для получения наностержней диоксида марганца смешивают водные растворы перманганата калия и нитрита натрия в мольном соотношении , равном 2:(1-5), до образования однородной дисперсной фазы в сильнощелочном растворе....
Тип: Изобретение
Номер охранного документа: 0002587439
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.310d

Способ утилизации и переработки вторсырья из целлюлозосодержащих отходов

Изобретение относится к области утилизации вторсырья, в частности к способу утилизации и переработки вторсырья из целлюлозосодержащих отходов. Предложен способ утилизации и переработки вторсырья из целлюлозосодержащих отходов, заключающийся в том, что целлюлозосодержащие отходы вымачивают в...
Тип: Изобретение
Номер охранного документа: 0002580497
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.455c

Гибридный многослойный фотоэлектрический преобразователь

Изобретение относится к устройствам преобразования энергии электромагнитного излучения в электричество, в частности фотопреобразователям солнечного излучения на основе органических полупроводников. Согласно изобретению формируют гибридный фотоэлектрический преобразователь, содержащий пять слоев...
Тип: Изобретение
Номер охранного документа: 0002586263
Дата охранного документа: 10.06.2016
12.01.2017
№217.015.612a

Способ получения литированного двойного оксида лития и марганца со структурой шпинели

Изобретение относится к технологии получения материала на основе смешанного оксида лития и марганца со структурой шпинели для использования его во вторичных батареях. Предложен способ получения литированного двойного оксида лития и марганца состава LiMnO, где 0,20
Тип: Изобретение
Номер охранного документа: 0002591154
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.725a

Способ получения фторидных стекол с расширенным диапазоном оптического пропускания

Изобретение относится к области получения фторидных стекол с широким диапазоном пропускания. Технический результат изобретения заключается в получении оптически прозрачных стекол без кислородсодержащих примесей с расширенным диапазоном пропускания от 0,21 мкм до 7,5 мкм для фторцирконатного...
Тип: Изобретение
Номер охранного документа: 0002598271
Дата охранного документа: 20.09.2016
Showing 11-20 of 27 items.
18.05.2018
№218.016.51da

Композиция для стимуляции регенерации при дефектах костной ткани челюстей

Изобретение относится к области медицины, в частности к композиции для стимуляции регенерации костной ткани челюстей, содержащей гидроксид кальция, сульфат бария и нанокристаллический диоксид церия в изотоническом растворе. Соотношение компонентов в композиции составляет 40-42 мас.% гидроксида...
Тип: Изобретение
Номер охранного документа: 0002653480
Дата охранного документа: 08.05.2018
01.07.2018
№218.016.6979

Способ получения поликристаллического ортогерманата висмута

Изобретение относится к материалам для сцинтилляционной техники, к эффективным быстродействующим сцинтилляционным детекторам гамма- и альфа-излучений в приборах для экспресс-диагностики в медицине, промышленности, космической технике и ядерной физике. Предложен способ получения...
Тип: Изобретение
Номер охранного документа: 0002659268
Дата охранного документа: 29.06.2018
01.09.2018
№218.016.81bd

Способ получения биологически активного композита на основе нанокристаллического диоксида церия и куркумина

Изобретение относится к фармацевтике, а именно к способу получения биологически активного композита на основе нанокристаллического диоксида церия и куркумина, который может быть использован в качестве или входить в состав препаратов для раневой терапии, антиоксидантных, противовоспалительных и...
Тип: Изобретение
Номер охранного документа: 0002665378
Дата охранного документа: 29.08.2018
10.01.2019
№219.016.ade8

Способ иммобилизации тория(iv) из водных растворов сорбентом на основе гидроортофосфата церия(iv)

Изобретение относится к способам сорбции Th(IV) из водных растворов. Иммобилизацию тория(IV) осуществляют на сорбенте на основе гидроортофосфата церия(IV). Церийсодержащий фосфорнокислый раствор с концентрацией церия(IV) 0,01÷0,8 М смешивают с водным раствором, содержащим ионы тория,...
Тип: Изобретение
Номер охранного документа: 0002676624
Дата охранного документа: 09.01.2019
29.05.2019
№219.017.6a1d

Способ получения высокопористого наноразмерного покрытия

Изобретение относится к технологии получения тонкопленочных материалов на основе систем двойных оксидов, применяемых в быстроразвивающихся областях электронной техники и светотехнической промышленности, производстве материалов катализаторов, в качестве функционально-чувствительных,...
Тип: Изобретение
Номер охранного документа: 0002464106
Дата охранного документа: 20.10.2012
19.06.2019
№219.017.8a07

Способ получения фотокатализатора на основе нанокристаллического диоксида титана

Изобретение относится к способам получения фотокатализаторов. Описан способ получения фотокатализатора на основе нанокристаллического диоксида титана, заключающийся в приготовлении водного раствора сульфата титанила с концентрацией 0,1-1,0 моль/л, добавлении в раствор кислоты до получения...
Тип: Изобретение
Номер охранного документа: 0002408428
Дата охранного документа: 10.01.2011
19.06.2019
№219.017.8a0a

Способ получения фотокатализатора на основе диоксида титана

Изобретение относится к способам получения фотокатализаторов. Описан способ получения фотокатализатора на основе диоксида титана, заключающийся в приготовлении водного раствора сульфата титанила с концентрацией 0,1-1,0 моль/л, добавлении в раствор кислоты до получения концентрации 0,15-1 моль/л...
Тип: Изобретение
Номер охранного документа: 0002408427
Дата охранного документа: 10.01.2011
07.09.2019
№219.017.c86f

Композиция на основе наночастиц диоксида церия и полисахаридов бурых водорослей для лечения ран

Группа изобретений относится к области медицины и предназначена для лечения ран, ожогов, воспалительных состояний кожи и слизистых оболочек. Композиция наружного применения для лечения ран и деструктивных поражений слизистой и кожи млекопитающих содержит эффективное количество наночастиц оксида...
Тип: Изобретение
Номер охранного документа: 0002699362
Дата охранного документа: 05.09.2019
02.10.2019
№219.017.ce5f

Смесительная головка камеры жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям. Смесительная головка камеры ЖРД, содержащая наружное днище, корпус, огневое днище, двухкомпонентные форсунки, закрепленные в корпусе и огневом днище, кольцевую периферийную часть, магистрали подачи жидкого и газообразного компонента,...
Тип: Изобретение
Номер охранного документа: 0002700482
Дата охранного документа: 17.09.2019
02.10.2019
№219.017.cfa9

Щелевая смесительная головка камеры жидкостного ракетного двигателя

Изобретение относится к жидкостным ракетным двигателям. Щелевая смесительная головка камеры жидкостного ракетного двигателя, содержащая наружное днище, корпус с установленными в нем кольцами с трактом охлаждения и отверстиями для подачи жидкого компонента, зазоры между которыми образуют...
Тип: Изобретение
Номер охранного документа: 0002700801
Дата охранного документа: 23.09.2019
+ добавить свой РИД