×
09.05.2019
219.017.4e87

СПОСОБ МОДИФИКАЦИИ ПОРИСТОЙ СТРУКТУРЫ НЕОРГАНИЧЕСКОЙ МЕМБРАНЫ УГЛЕРОДНЫМ НАНОМАТЕРИАЛОМ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к технологии получения фильтрующих элементов для баромембранных процессов, используемых в различных отраслях промышленности: нефтехимической, фармацевтической, пищевой и других. Способ модификации пористой структуры неорганической мембраны углеродным наноматериалом включает осаждение углерода, полученного при пиролизе углеводородов, на поверхность макропор заготовки. Подготовку подложки осуществляют импрегнированием водного раствора нитратов кобальта, никеля и магния с добавлением лимонной кислоты и этиленгликоля на подложку из керамики и углерода, после чего производят термообработку подложки и при температуре пиролиза пропан-бутановой смеси ведут осаждение углеродного наноматериала до получения слоя углеродного наноматериала. Технический результат заключается в получении анизотропных мембран для ультра- и нанофильтрации газов, парогазовых смесей и жидкостей. 2 з.п. ф-лы.
Реферат Свернуть Развернуть

Изобретение относится к технологии получения фильтрующих элементов для баромембранных процессов методом каталитического пиролиза ароматических и неароматических углеводородов.

Неорганические мембраны, предназначенные для ультра- и нанофильтрации газов, парогазовых смесей и жидкостей, находят широкое применение в различных отраслях промышленности: в нефтехимической, фармацевтической, пищевой и т.д.

В зависимости от размера пор мембраны классифицируются как микрофильтрационные (размер пор 0,1-10 мкм), ультрафильтрационные (размер пор 5-100 нм) и нанофильтрационные (размер пор 0,1-5 нм).

Известен способ получения анизотропных мембран (патент РФ №2096073, МПК B01D 71/02, 1997 г.), включающий осаждение углерода на подложку путем разложения углеводородов в газовой смеси, согласно которому газовую смесь, содержащую углеводороды, пропускают над подложкой из углерода или керамики с линейной скоростью 5·10-4 - 5·10-3 м/с при температуре 800-1000°С.

Недостатком такого способа является его низкая производительность. Из других недостатков следует отметить невозможность контроля пористости и размеров пор, происходящих при осаждении углерода на поверхность мембран. Данный способ позволяет фиксировать лишь различия в проницаемости мембран до и после обработки.

Этот недостаток частично устранен в способе модификации пористой структуры неорганической анизотропной мембраны (патент РФ №2179064, МПК В01D 71/02, 2002 г.), согласно которому осуществляется осаждение углерода, полученного при пиролизе углеводородов, на селективный слой подготовленной заготовки подложки. Подготовку осуществляют заневоливанием мембраны механической нагрузкой 400-900 г в ячейке из углерода, конструкция которой позволяет проводить осаждение пироуглерода только на селективный слой мембраны, не затрагивая ее подложки, при контролируемой скорости подъема температуры - не более 6,2°С/мин.

Этот способ характеризуется необходимостью нанесения селективного слоя на металлическую подложку, что резко усложняет технологический процесс модификации мембран. Другой признак - необходимость заневоливания внешней нагрузкой, неприменим для создания большинства видов мембранных элементов, в том числе трубчатых, рулонных и половолоконных, представляющих собой объемные конструкции. Создание мембранных пластинчатых подложек для получения обратноосмотических и нанофильтрационных мембран малоперспективно из-за сложности создания на основе плоских пластин мембранных элементов. Другим недостатком является низкая скорость процесса осаждения за счет малой скорости подъема температуры.

Данный способ является наиболее близким аналогом. Задачей изобретения является создание разделительных элементов с требуемой селективностью и проницаемостью, которую достигают путем модификации пористой структуры неорганических анизотропных мембран синтезируемыми на поверхности подложки волокнистыми углеродными наноматериалами.

Техническим результатом является получение баромембранных фильтрующих материалов.

Технический результат достигается тем, что в способе модификации пористой структуры неорганической мембраны углеродным наноматериалом, включающем осаждение углерода, полученного при пиролизе углеводородов, на поверхность макропор заготовки, согласно изобретению подготовку подложки осуществляют импрегнированием водного раствора нитратов кобальта, никеля и магния с добавлением лимонной кислоты и этиленгликоля на подложку из керамики и углерода, после чего производят термообработку подложки и при температуре пиролиза пропан-бутановой смеси ведут осаждение углеродного наноматериала до получения слоя углеродного наноматериала.

Проведение процесса пиролиза пропан-бутановой смеси при температуре 600-1000°С обеспечивает исключение термического разложения углеродного наноматериала и исключает его термическую деструкцию.

Использование водных растворов нитратов кобальта, никеля и магния с добавлением лимонной кислоты и этиленгликоля следующего состава:

Со(NO3)2 - 0,465 г;

Ni(NO3)2 - 4,186 г;

Mg(NO3)2 - 5,0896 г;

Лимонная кислота - 13,8015 г;

Этиленгликоль - 4,45 мл;

Вода - 3,45 мл,

обеспечивает проведение каталитического синтеза наноуглерода на селективной стороне мембраны.

При этом обеспечивается:

- возможность контроля за нанесением катализатора (равномерное количество на единицу площади подложки при одинаковой толщине слоя);

- широкий спектр средств для нанесения растворов, таких как традиционная пропитка, использование контактного ролика, контактирующего с пропиточным раствором, протягивание непрерывной ленты капиллярно-пористого материала через жидкую ванну, использование центробежного способа, окунания, прокачка пропитывающего раствора через волокнистую структуру под действием вакуума или нагнетания, пульверизация, каландрование и ряд комбинированных способов с использованием воздействия ультразвука и электромагнитных колебаний;

- возможность создания тонких пленок, которые можно будет использовать в качестве активного слоя фильтрующих элементов с использованием гель-золь методов, позволяющих получать высокодисперсные порошки сложного состава, без чего невозможно осуществлять модификацию пористой структуры методом каталитического пиролиза;

- уменьшение продолжительности процесса каталитического синтеза при модификации пористой структуры;

- уменьшение расхода катализатора за счет избирательного нанесения его только на рабочие поверхности.

Способ модификации пористой структуры неорганической мембраны углеродным наноматериалом заключается в проведении синтеза наноматериалов на подготовленной поверхности подложки. Подготовку осуществляют импрегнированием водных растворов нитратов кобальта, никеля и магния с добавлением лимонной кислоты и этиленгликоля в подложку из пористого материала. В качестве подложки используют керамические и углеродные изделия со следующими характеристиками: открытая пористость не ниже 50%, размер пор 0,2-5,0 мкм. В качестве углеродсодержащего газа чаще используется пропан-бутановая смесь либо углеводороды, тем или иным способом приведенные в газообразное состояние.

В состав водного раствора входят:

Со(NO3)2 - 0,465 г;

Ni(NO3)2 - 4,186 г;

Mg(NO3)2 - 5,0896 г;

Лимонная кислота - 13,8015 г;

Этиленгликоль - 4,45 мл;

Вода - 3,45 мл.

Нанесение водного раствора осуществляют одним из описанных выше способов, однако предпочтителен способ пропитки под воздействием электромагнитного поля.

Окончательная обработка пропитанного образца заключается в отжиге при температуре 550-600°С, после чего производят выращивание углеродных наноматериалов на поверхности пор керамического образца при температуре пиролиза углеродсодержащего газа до получения слоя углеродного материала заданной толщины.

Пример 1. На поверхность керамической подложки с пористостью 52% и размером пор 0,4 мкм наносили слой водного раствора нитратов кобальта, никеля и магния с добавлением лимонной кислоты и этиленгликоля в электромагнитном поле с частотой 40,67 МГц при его напряженности 1,2-3 кВ/см в течение 3-5 мин следующего состава:

Со(NO3)2 - 0,465 г;

Ni(NO3)2 - 4,186 г;

Mg(NO3)2 - 5,0896 г;

Лимонная кислота - 13,8015 г;

Этиленгликоль - 4,45 мл;

Вода - 3,45 мл.

После подсушивания в течение 2 ч подложку с нанесенным водным раствором нитратов кобальта, никеля и магния с добавлением лимонной кислоты и этиленгликоля подвергали отжигу при температуре 550°С, процесс синтеза вели в среде пропан-бутановой смеси при температуре 600°С. Последующий анализ показал, что получаемый углеродный наноматериал не содержит аморфный углерод. Сканирующая электронная микроскопия образца показала, что выращенный углеродный наноматериал представляет собой переплетенные нанотрубки, и позволила оценить порядок размера пор, который составил 1,8 нм, что соответствует нанофильтрационным мембранам.

Пример 2. На поверхность керамической подложки с пористостью 51% и размером пор 0,38 мкм наносили слой водного раствора нитратов кобальта, никеля и магния с добавлением лимонной кислоты и этиленгликоля в ультразвуковом поле с частотой 35 кГц при интенсивности 15 Вт/см2 в течение 15 мин следующего состава:

Со(NO3)2 - 0,465 г;

Ni(NO3)2 - 4,186 г;

Mg(NO3)2 - 5,0896 г;

Лимонная кислота - 13,8015 г;

Этиленгликоль - 4,45 мл;

Вода - 3,45 мл.

После подсушивания в течение 2 ч подложку с нанесенным водным раствором нитратов кобальта, никеля и магния с добавлением лимонной кислоты и этиленгликоля подвергали отжигу при температуре 550°С, процесс синтеза вели в среде пропан-бутановой смеси при температуре 620°С. Последующий анализ показал, что получаемый углеродный наноматериал не содержит аморфный углерод. Сканирующая электронная микроскопия образца показала, что выращенный углеродный наноматериал представляет собой переплетенные нанотрубки и позволила оценить порядок размера пор, который составил 4,8 нм, что соответствует нанофильтрационным мембранам.

Отсюда можно сделать вывод о большей эффективности пропитки в электромагнитном поле в сравнении с ультразвуковым.

Источник поступления информации: Роспатент

Showing 1-10 of 26 items.
10.03.2013
№216.012.2dd8

Водорастворимые арилированные производные фуллерена с и способ их получения

Изобретение относится к химической промышленности и касается химической функционализации фуллерена С, в частности метода синтеза органических производных [70] фуллерена, в том числе растворимых в воде и физиологических средах. Изобретение может найти применение в биомедицинских исследованиях и...
Тип: Изобретение
Номер охранного документа: 0002477267
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2dde

Серосодержащие производные фуллеренов и способ их получения

Изобретение относится к серосодержащим производным фуллеренов общей формулы 1, где Х означает: - отрицательный заряд («-»), локализованный на фуллереновом каркасе, или - атом водорода (-Н), или - атом хлора (-Сl), где в общей формуле 1 фрагмент S-R определяется как: -остаток тиокислоты или ее...
Тип: Изобретение
Номер охранного документа: 0002477273
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2dee

Способ получения сополимеров мономеров олефинового ряда с циклическими или линейными диенами

Изобретение относится к способу получения олефин/диеновых сополимеров на гомогенной металлоценовой каталитической системе. Описан способ получения сополимеров мономеров полимеризацией олефинов или смеси олефинов и линейных или циклических диенов в присутствии гомогенной каталитической системы....
Тип: Изобретение
Номер охранного документа: 0002477289
Дата охранного документа: 10.03.2013
27.09.2013
№216.012.6f25

Моноядерные динитрозильные комплексы железа, способ получения моноядерных динитрозильных комплексов железа, донор монооксида азота, применение моноядерного динитрозильного комплекса железа в качестве противоопухолевого лекарственного средства

Настоящее изобретение относится к моноядерному динитрозильному комплексу железа с общей формулы (NH)[Fe(SR)(NO)], где R представляет собой 5-нитропиридинил, а также 2-нитро-, 3-нитро- и 4-нитрофенилы и пиридинил. Также предложены способ получения моноядерного нитрозильного комплекса железа,...
Тип: Изобретение
Номер охранного документа: 0002494104
Дата охранного документа: 27.09.2013
10.03.2014
№216.012.a968

Фосфорсодержащие производные фуллерена c и способ их получения

Изобретение относится к фуллеренам формулы 1 и способам их получения, которые могут использоваться в химической промышленности и солнечной энергетике, где Х означает: атом водорода или алкильный (CH; n=1-20) радикал, где R означает: атом водорода, алкильный (CH; n=1-20), алкенильный (CH;...
Тип: Изобретение
Номер охранного документа: 0002509083
Дата охранного документа: 10.03.2014
20.06.2014
№216.012.d2fb

Способ получения циклопропановых производных фуллеренов, применение органических производных фуллеренов в качестве материалов для электронных полупроводниковых устройств, органического полевого транзистора, органической фотовольтаической ячейки, органический полевой транзистор и органическая фотовольтаическая ячейка

Изобретение относится к способу получения циклопропановых производных фуллеренов общей формулы 2 путем нагревания немодифицированного фуллерена с тозилгидразоном в присутствии растворителя и основания. При этом процесс ведут с тозилгидразоном эфира α-кетоуксусной кислоты общей формулы 1 где в...
Тип: Изобретение
Номер охранного документа: 0002519782
Дата охранного документа: 20.06.2014
20.02.2019
№219.016.c179

Катализатор для окисления монооксида углерода и способ его получения

Изобретение относится к области химии, в частности к катализаторам и их получению. Описан катализатор для окисления монооксида углерода, содержащий пористый оксидный носитель, один или несколько каталитически активных металлов платиновой группы и наноалмаз, на котором закреплены кластеры...
Тип: Изобретение
Номер охранного документа: 0002411993
Дата охранного документа: 20.02.2011
20.02.2019
№219.016.c3be

Упорядоченные массивы нанопроволок фотохромных ферромагнетиков, способ их получения, мембрана для сохранения магнитной информации и применение упорядоченных массивов нанопроволок фотохромных ферромагнетиков в качестве светочувствительных магнитных сред

Изобретение относится к упорядоченным фотохромным ферромагнитным массивам нанопроволок на основе (трис)оксалатов переходных металлов и катионов спироциклического ряда и может быть использовано в качестве светочувствительных магнитных наносред со сверхъемкой магнитооптической памятью. Задачей...
Тип: Изобретение
Номер охранного документа: 0002445256
Дата охранного документа: 20.03.2012
11.03.2019
№219.016.d84a

1-замещенные-3-[(1е)-1-алкенил]-4-(5-алкокси-1,2-диметил-1н-индол-3-ил)-1н-пиррол-2,5-дионы и их применение в качестве флуоресцирующих фотохромов

Изобретение относится к новым 1-Замещенным-3-[1(Е)-1-алкенил]-4-(5-алкокси-1,2-диметил-1Н-индол-3-ил)-1Н-пиррол-2,5-дионам общей формулы где R=C-Салкил, R=C-Салкил, R=CHCH, СН, которые применяют в качестве флуоресцирующих фотохромов. 2 н. и 2 з.п. п.ф-лы, 1 табл.
Тип: Изобретение
Номер охранного документа: 0002397979
Дата охранного документа: 27.08.2010
11.03.2019
№219.016.dcf1

Применение биядерного сера-нитрозильного комплекса железа анионного типа в качестве вазодилататорного лекарственного средства

Изобретение относится к применению биядерного сера-нитрозильного комплекса железа анионного типа формулы Na[Fe(SO)(NO]·4HO в качестве вазодилататорного средства и для получения лекарственного средства для лечения ишемических заболеваний. Изобретение обеспечивает расширение арсенала...
Тип: Изобретение
Номер охранного документа: 0002437667
Дата охранного документа: 27.12.2011
Showing 1-10 of 57 items.
20.02.2013
№216.012.26c5

Способ получения объемного наноструктурированного материала

Изобретение относится к нанотехнологии. Сущность изобретения: в способе получения объемного наноструктурированного материала на подложке электроосаждением металла из электролита на подложку из электропроводного материала, индифферентного по отношению к осаждаемому металлу, на катоде образуют...
Тип: Изобретение
Номер охранного документа: 0002475445
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.27da

Способ идентификации материала в насыпном виде и устройство для его осуществления

Изобретение относится к нанотехнологическому оборудованию и предназначено для идентификации материалов в насыпном виде и экспресс-контроля микромеханических, реологических и микро-электромеханических характеристик продукции, их стабильности на разных стадиях производства продукта и отклонений...
Тип: Изобретение
Номер охранного документа: 0002475722
Дата охранного документа: 20.02.2013
27.09.2013
№216.012.6f48

Многофункциональная добавка к автомобильному бензину и содержащая ее топливная композиция

Изобретение относится к многофункциональной добавке к автомобильному бензину, содержащей антидетонационные и другие компоненты, а также модифицирующую добавку. В качестве модифицирующей добавки используются углеродные наноматериалы (УНМ), предпочтительно в виде многослойных нанотрубок (УНТ) в...
Тип: Изобретение
Номер охранного документа: 0002494139
Дата охранного документа: 27.09.2013
10.12.2013
№216.012.88d0

Способ диспергирования наночастиц в эпоксидной смоле

Изобретение относится к области нанотехнологии и может применяться в отраслях машиностроения, транспорта, строительства, энергетики для повышения прочности и ресурса конструкций из металлических, композиционных полимерных и металлополимерных материалов. Способ диспергирования заключается в...
Тип: Изобретение
Номер охранного документа: 0002500706
Дата охранного документа: 10.12.2013
10.06.2014
№216.012.cf9d

Электротеплоаккумулирующий нагреватель

Изобретение относится к энергетике и может быть использовано для отопления и терморегулирования. Изобретение позволит снизить энергетические потери и повысить эффективность регулирования мощности нагрева. Электротеплоаккумулирующий нагреватель содержит корпус, теплоаккумулирующее вещество и...
Тип: Изобретение
Номер охранного документа: 0002518920
Дата охранного документа: 10.06.2014
27.09.2014
№216.012.f794

Способ функционализации углеродных наноматериалов

Изобретение направлено на получение функционализированных углеродных нанотрубок, обладающих хорошей совместимостью с полимерными матрицами. Углеродные нанотрубки подвергают обработке в парах перекиси водорода при температуре от 80°С до 160°С в течение 1-100 ч. Обработку можно проводить в...
Тип: Изобретение
Номер охранного документа: 0002529217
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.ff23

Дисперсия углеродных нанотрубок

Изобретение может быть использовано при изготовлении композитов, содержащих органические полимеры. Дисперсия углеродных нанотрубок содержит 1 мас.ч. окисленных углеродных нанотрубок и 0,25-10 мас.ч. продукта взаимодействия органического амина, содержащего в молекуле по крайней мере одну...
Тип: Изобретение
Номер охранного документа: 0002531171
Дата охранного документа: 20.10.2014
10.01.2015
№216.013.1d6b

Способ получения платинусодержащих катализаторов на наноуглеродных носителях

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на...
Тип: Изобретение
Номер охранного документа: 0002538959
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.40d3

Способ модифицирования углеродных наноматериалов

Изобретение относится к химической промышленности и может быть использовано при получении стабильных дисперсий в органических растворителях и изготовлении полимерных композитов. Углеродные наноматериалы - нанотрубки или графен, частицы которых содержат на поверхности гидроксильные и/или...
Тип: Изобретение
Номер охранного документа: 0002548083
Дата охранного документа: 10.04.2015
10.07.2015
№216.013.5e06

Солнечный водонагреватель

Изобретение относится к гелиотехнике и предназначено для нагрева воды за счет преобразования солнечной энергии в тепловую и может быть использовано в биотехнологической, пищевой, сельскохозяйственной и других отраслях промышленности, а также в быту. Солнечный водонагреватель содержит корпус,...
Тип: Изобретение
Номер охранного документа: 0002555611
Дата охранного документа: 10.07.2015
+ добавить свой РИД