25.04.2019
219.017.3b97

СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМОСТАБИЛЬНЫХ РЕДКОЗЕМЕЛЬНЫХ МАГНИТОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к порошковой металлургии, в частности к получению термостабильных редкоземельных магнитов. Магниты могут использоваться в системах автоматики, промышленном оборудовании, автомобилях. Осуществляют выплавку базового сплава на основе интерметаллического соединения NdFeB и сплава-добавки. В качестве сплава-добавки используют сплав следующего химического состава: P3M(CoCu), где РЗМ - один или несколько элементов из группы: Tb, Dy, Но, z=1-4; y=0.2-0.8. Оба сплава подвергают гидридному диспергированию. Гидридное диспергирование сплава-добавки осуществляют в интервале температур 500-700°С. Далее порошки обоих сплавов смешивают и подвергают тонкому помолу с последующим прессованием в магнитном поле. Прессовки спекают и термически обрабатывают, причем при нагреве перед спеканием в вакууме осуществляют выдержку при температуре 900-1000°С в течение 1-2 ч. Полученные магниты обладают высокими магнитными свойствами. 4 табл., 1 пр.
Реферат Свернуть Развернуть

Изобретение относится к области электротехники, в частности к изготовлению редкоземельных постоянных магнитов.

Известен способ изготовления редкоземельных магнитов, включающий операции выплавки сплава с последующим его измельчением, прессования полученного порошка в магнитном поле, спекания и термическую обработку, включающую в себя выдержку при температуре 900°С (2 ч), с последующим медленным охлаждением со скоростью (1-2)°С/мин до температуры 500°С, выдержку при этой температуре в течение 1 часа с последующей закалкой (Глебов В.А., Лукин А.А. Нанокристаллические редкоземельные магнитотвердые материалы. М., ФГУП ВНИИНМ. 2007. С. 179).

Известен способ изготовления редкоземельных магнитов, включающий операции выплавки сплава с последующим его измельчением путем гидридного диспергирования, прессования полученного порошка в магнитном поле, спекания и термическую обработку (Патент РФ 1457277 B22F 1/00, 3/02, 3/12, H01F 1/08. 04.06.86.).

Известен способ изготовления термостабильных редкоземельных магнитов, включающий операции выплавки сплава с последующим его измельчением, прессования полученного порошка в магнитном поле, спекания и термическую обработку, включающую в себя выдержку при температуре 900°С (2 ч) с последующей закалкой (Патент РФ №2368969 Н01F 1/057).

Наиболее близким по технической сущности является способ изготовления термостабильных редкоземельных магнитов, включающий операции выплавки сплава, получения порошка, с последующим его прессованием в магнитном поле, спекания прессовок и термическую обработку, при этом перед операцией прессования порошка в магнитном поле, дополнительно проводят операции предварительного компактирования, предспекания при температуре на 30-100°С ниже температуры спекания, с последующим помолом заготовки после предспекания совместно с гидридом РЗМ (РЗМ редкоземельный элемент или их смесь) в количестве (0.5-2) масс.%. (Патент РФ №2493628 H01F 1/057). Недостатком способа являются относительно невысокие свойства при заданном обратимом температурном коэффициенте магнитной индукции.

Техническим результатом изобретения является увеличение магнитных свойств (индукции Br, коэрцитивной силы по намагниченности jHc и параметра прямоугольности петли гистерезиса Hk - поле, которое на кривой размагничивания соответствует 0.9 Br) при сохранении обратимого температурного коэффициенте магнитной индукции (ТКИ) (α (Br)), в интервале температур -60 -+100°С.

Технический результат достигается за счет того, что в известном способе изготовления термостабильных редкоземельных магнитов, включающем операции выплавки базового сплава и сплава-добавки, получения порошков обоих сплавов с использованием гидридного диспергирования, с последующим их смешением и прессованием в магнитном поле, спекания прессовок и термическую обработку, гидридное диспергирование сплава-добавки осуществляют при температуре 500-700°С, при нагреве в вакууме пресс-заготовок перед спеканием осуществляют выдержку при температуре 900-1000°С в течение 1-2 ч, при этом в качестве сплава-добавки используют сплав следующего химического состава (ат. %): P3Mz(Co1-yCuy), где РЗМ - один или несколько элементов из группы: Tb, Dy, Но, z=1-4; y=0.2-0.8.

Установлено с помощью растровой (РЭМ) и просвечивающей (ПРЭМ) электронной микроскопии, локального (разрешение 1 мкм) рентгеноспектрального анализа и локального (разрешение 1 нм) томографического зонда (LEAP), что магниты, полученные в соответствии с предложенным способом, имеют наногетерогенное (дисперность составляла 5-50 нм) распределение редкоземельных элементов в основной магнитной фазе типа PЗM2Fe14B. Немагнитные граничные фазы толщиной несколько нанометров, обогащенные РЗМ, содержащие также кобальт и медь, хорошо разделяют зерна основной магнитной фазе типа PЗM2Fe14B. Такая структура магнитов на основе сплавов типа РЗМ-Fe-B обусловливает высокие магнитные свойства ((ВН)max, Br, jHc, Hk) при сохранении обратимого температурного коэффициента магнитной индукции {α (Br)} на уровне -0.04%/°С.

Примеры реализации способа

Базовые сплавы и сплавы-добавки получают из исходных компонентов (РЗМ: Tb, Dy, Но, Nd, Pr; Fe, Со, Cu, Al, В) или их лигатур путем плавления в вакуумной индукционной печи в среде инертного газа (особо чистого аргона) с последующей закалкой в водоохлаждаемую изложницу. Контроль химического состава осуществляют с помощью эмиссионно-спектрального метода. Гидридное диспергирование (ГД) базовых сплавов и сплавов-добавок осуществляют в протоке сухого водорода в течение нескольких часов при температуре 200-400°С для базовых сплавов и 480-720°С с последующей пассивацией в среде газообразного азота. После охлаждения до комнатной температуры полученные порошки базового сплава и сплава-добавки подвергают тонкому помолу в вибрационной мельнице в среде изопропилового спирта в течение 50 мин до среднего размера частиц 3-4 мкм. После прессования и предварительного спекания базового сплава в интервале температур 1000-1040°С спеченные заготовки базового сплава подвергают ГД, смешивают с порошками сплава-добавки после ГД (на 95.0-98.5 массовых долей базового сплава приходилось 1.5-5.0 масс. % сплава-добавки) и подвергают совместному тонкому помолу в вибрационной мельнице в среде изопропилового спирта в течение 50 минут кс до среднего размера частиц 3-4 мкм. После повторного прессования в магнитном поле и окончательного спекания при Т = 1100°С (2 ч) с последующей обработкой по режиму: 900°С (2 ч) охлаждение со скоростью (0.01-0.03)°С/с + 500°С (2 ч)+закалка (в протоке газообразного азота). После механической шлифовки алмазным инструментом и намагничивания до насыщения образцы измеряют на гистериографе в замкнутой магнитной цепи в полях до 30 кЭ при комнатной температуре. После магнитных измерений для проведения структурных исследований образцы термически размагничивают в вакууме при 500°С, для восстановления исходного состояния.

В таблице 1 приведены свойства магнитов с выдержкой перед спеканием при температуре 950°С (1 ч) при различных режимах ГД сплава-добавки (Tb3Co0.6Cu0.4, 3 масс. %). Как следует из таблицы 1, оптимальным является интервал температур 500-700°С. При более низких температурах не происходит полное разложение сплава-добавки, что приводит затруднению процесса тонкого помола и снижению магнитных свойств. При температурах выше 700°С происходит подплавление сплава добавки, что также негативно сказывается на уровне магнитных свойств магнитов.

В таблице 2 приведены свойства магнитов при ГД при Т = 600°С при содержании сплава-добавки Tb3Co0.6Cu0.4 3 масс. % при различных параметрах выдержки перед спеканием. Как видно из таблицы 2, оптимальными являются интервал температур 900-1000°С в течение 1-2 ч. При температурах и времени выдержки ниже, соответственно, 900°С и 1 ч не успевают пройти процессы выделения водорода из сплава-добавки и диффузии редкоземельных элементов в основную магнитотвердую фазу типа PЗM2Fe14B. При температурах и времени выдержки выше, соответственно, 1000°С и 2 ч, отмеченные выше процессы проходят слишком интенсивно, что может приводить к неоднородности магнитов и разрушению прессовок в процессе последующего спекания.

В таблице 3 приведены свойства магнитов с различным химическим составом и количеством (масс. %) сплава-добавки при ее ГД при Т = 600°С и при выдержке прессовок перед спеканием по режимам: 950°С, 1.5 ч: {Tb3(Со1-yCuy), y=0.0, 0.1, 0.2*, 0.5*, 0.8*, 1.0; Tbz(Co0.6Cu0.4), z=0.5, 1.0*, 2.0*, 3.0*, 4.0*, 4.5}. Как видно из таблицы 3, экспериментальные данные подтверждают правильность заявленного выбора количества и химического состава сплава-добавки.

В таблице 4 приведены свойства магнитов с одинаковым результирующим химическим составом {(Nd0.2Pr0.5Tb0.3}15(Fe0.75Co0.25)77Al0.7Cu0.3B7, ат. %} при использовании (или отсутствии) различных по химическому составу сплавов-добавок при их ГД при Т = 600°С и при выдержке прессовок перед спеканием по режимам: 950°С, 1.5 ч (Tb3(Со0.6Cu0.4) - предложено в данной заявке, TbH2 - предложено в прототипе, а также при отсутствии сплава-добавки). При этом результирующий химический состав магнитов был одинаковым. Как видно из таблицы 4, магниты с использованием предложенного сплава-добавки обладают более высокими магнитными свойствами.

Предложенный способ изготовления термостабильных редкоземельных магнитов позволяет реализовать более высокие магнитные свойства, такие как (ВН)max, Br, jHc, Hk при сохранении обратимого температурного коэффициента магнитной индукции α (Br), обусловливающего повышенную температурную стабильность.

Применение предложенного способа позволяет повысить точность и стабильность работы навигационного оборудования и систем авиационной автоматики.

Примечание. В таблицах 1-4 примеры, помеченные звездочкой (*), соответствуют параметрам, изложенным в формуле изобретения.

Способ изготовления термостабильных редкоземельных магнитов, включающий операции выплавки базового сплава и сплава-добавки, получения порошков обоих сплавов с использованием гидридного диспергирования с последующим их смешением и прессованием в магнитном поле, спекания прессовок и термическую обработку, отличающийся тем, что гидридное диспергирование сплава-добавки осуществляют при температуре 500-700°С, при нагреве в вакууме пресс-заготовок перед спеканием осуществляют выдержку при температуре 900-1000°С в течение 1-2 ч, при этом в качестве сплава-добавки используют сплав следующего химического состава: PЗM(CoCu), где РЗМ - один или несколько элементов из группы: Tb, Dy, Но, z=1-4; y=0.2-0.8.
Источник поступления информации: Роспатент

Showing 51-60 of 90 items.
29.12.2017
№217.015.f11f

Высокопрочная низколегированная азотосодержащая мартенситная сталь

Изобретение относится к области металлургии, а именно к высокопрочной низколегированной азотосодержащей мартенситной стали, используемой для изготовления высоконагруженных деталей и конструкций в машиностроении и железнодорожном транспорте. Сталь содержит, мас.%: углерод 0,05-0,10, кремний...
Тип: Изобретение
Номер охранного документа: 0002638873
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.fd6a

Способ получения порошка карбонитрида титана

Изобретение относится к получению порошка карбонитрида титана. Способ включает генерирование потока термической плазмы в плазменном реакторе с ограниченным струйным течением, подачу в поток термической плазмы паров тетрахлорида титана, газообразного углеводорода и азота с обеспечением их...
Тип: Изобретение
Номер охранного документа: 0002638471
Дата охранного документа: 13.12.2017
19.01.2018
№218.015.ff1d

Листопрокатная клеть

Изобретение относится к прокатному производству, конкретно к конструкциям прокатных валков в клетях листопрокатных станов дуо, в том числе одноклетьевых. Комплект прокатных валков содержит пару валков с бочками цилиндрической формы, на которых выполнены геликоидальные выступы, имеющие форму...
Тип: Изобретение
Номер охранного документа: 0002629579
Дата охранного документа: 30.08.2017
20.01.2018
№218.016.184f

Способ получения композиционного металломатричного материала, армированного сверхупругими сверхтвердыми углеродными частицами

Изобретение относится к получению композиционного металломатричного материала, армированного сверхупругими сверхтвердыми углеродными частицами. Способ включает приготовление смеси порошков металла и фуллеритов и ее прессование при давлении 5-8 ГПа и температурах 800-1000°С с обеспечением...
Тип: Изобретение
Номер охранного документа: 0002635488
Дата охранного документа: 13.11.2017
20.01.2018
№218.016.1b8b

Реактор со стабилизированной высокотемпературной приосевой струей

Изобретение относится к области высокотемпературных аппаратов, используемых в химических и металлургических производствах, в частности к реактору со стабилизированной высокотемпературной приосевой струей периферийным вихревым потоком. Реактор включает корпус с рубашкой охлаждения,...
Тип: Изобретение
Номер охранного документа: 0002636704
Дата охранного документа: 27.11.2017
10.05.2018
№218.016.3971

Способ получения нанопорошка оксинитрида алюминия

Изобретение относится к получению нанопорошка оксинитрида алюминия. Тонкодисперсный порошок алюминия вводят в поток термической плазмы, в котором осуществляют взаимодействие паров алюминия с аммиаком в присутствии кислорода в количестве, отвечающем атомному соотношению элементов 1,16
Тип: Изобретение
Номер охранного документа: 0002647075
Дата охранного документа: 13.03.2018
09.06.2018
№218.016.5cf4

Рабочее вещество для термолюминесцентной дозиметрии рентгеновского и гамма-излучения

Изобретение относится к области радиоэкологического мониторинга и дозиметрии рентгеновского и гамма-излучения и может быть использовано в персональных и аварийных дозиметрах для определения дозозатрат персонала рентгеновских кабинетов, мобильных комплексов радиационного контроля, зон с...
Тип: Изобретение
Номер охранного документа: 0002656022
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5f85

Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы

Изобретение относится к области металлургии, а именно к деформационно-термической обработке сплавов титан-ниобий-тантал-цирконий с эффектом памяти формы и может быть использовано в металлургии, машиностроении и медицине, в частности при изготовлении медицинских устройств типа «стент»,...
Тип: Изобретение
Номер охранного документа: 0002656626
Дата охранного документа: 06.06.2018
16.06.2018
№218.016.62ea

Способ получения биоцемента на основе карбоната кальция для заполнения костных дефектов

Изобретение относится к области медицины, а именно к керамическим и цементным материалам, и раскрывает способ получения биоцемента на основе карбоната кальция для заполнения костных дефектов. Способ характеризуется тем, что цементный раствор получают в результате последовательного добавления в...
Тип: Изобретение
Номер охранного документа: 0002657568
Дата охранного документа: 14.06.2018
12.07.2018
№218.016.700b

Способ повышения критической температуры сверхпроводящего перехода в поверхностном слое высокотемпературного сверхпроводника

Изобретение относится к способам повышения критической температуры сверхпроводящего перехода (Тс) в высокотемпературных сверхпроводниках (ВТСП) и может быть использовано для создания различного рода датчиков и счетчиков в сверхбыстродействующих электронных устройствах, криоэлектронных приборах,...
Тип: Изобретение
Номер охранного документа: 0002660806
Дата охранного документа: 10.07.2018
Showing 11-13 of 13 items.
29.04.2019
№219.017.42af

Способ получения металлов

Изобретение относится к области электрохимии, в частности к электролитическому получению металлов из их сульфидов. Электролиз ведут с использованием раствора электролита и положительного электрода, содержащего сульфид получаемого металла, порошок вещества, являющегося акцептором атомов серы, и...
Тип: Изобретение
Номер охранного документа: 0002307202
Дата охранного документа: 27.09.2007
11.07.2019
№219.017.b29f

Устройство для измерения толщины и диэлектрической проницаемости тонких пленок

Изобретение относится к области оптического приборостроения и касается устройства для исследования толщины и диэлектрических свойств тонких пленок. Устройство включает в себя два лазера с различной длиной волны, делительный кубик, расширитель светового потока, линзу, два поляризатора,...
Тип: Изобретение
Номер охранного документа: 0002694167
Дата охранного документа: 09.07.2019
16.08.2019
№219.017.c0a8

Способ регистрации следовых количеств веществ в газовой среде

Изобретение относится к оптике и аналитической технике и может быть применено для определения наличия следовых количеств летучих веществ. Способ регистрации следовых количеств веществ в газовой среде, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра под действием света в...
Тип: Изобретение
Номер охранного документа: 0002697477
Дата охранного документа: 14.08.2019

Похожие РИД в системе