×
09.06.2018
218.016.5cf4

РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОЙ ДОЗИМЕТРИИ РЕНТГЕНОВСКОГО И ГАММА-ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области радиоэкологического мониторинга и дозиметрии рентгеновского и гамма-излучения и может быть использовано в персональных и аварийных дозиметрах для определения дозозатрат персонала рентгеновских кабинетов, мобильных комплексов радиационного контроля, зон с повышенным радиационным фоном, территорий хвостохранилищ отработанных радиоактивных материалов и отходов. Оксинитрид алюминия, активированный трехвалентными ионами церия с концентрацией 0,05-0,2 ат. %, характеризующийся химической формулой AlON:Се, применяют в качестве рабочего вещества для термолюминесцентной дозиметрии. Изобретение обеспечивает повышенный световыход термостимулированной люминесценции (ТСЛ) в диапазоне концентраций церия 0,05-0,2 ат. %, позволяет оперативно получать дозиметрическую информацию, уменьшить время и энергозатраты на ее обработку, исключить сложные процедуры подготовки рабочего вещества к измерениям дозовых нагрузок. 1 з.п. ф-лы, 7 ил., 3 пр.
Реферат Свернуть Развернуть

Изобретение относится к области дозиметрии рентгеновского и гамма-излучения с помощью термолюминесцентных детекторов при решении задач персональной дозиметрии, особо при определении дозозатрат персонала рентгеновских кабинетов и обслуживающего персонала мобильных комплексов радиационного контроля, задач радиоэкологического мониторинга в зонах с повышенным радиационным фоном, особо на территориях хвостохранилищ отработанных урановых руд или других радиоактивных материалов и отходов.

Известно рабочее вещество для термолюминесцентной дозиметрии, имеющее состав LiF:Mg, Ti. (В.И. Иванов. Курс дозиметрии. М., Атомиздат, 1970. 392 с). Однако известное рабочее вещество для термолюминесцентной дозиметрии на основе LiF:Mg, Ti обладает недостаточно высоким световыходом термостимулированной люминесценции (ТСЛ).

Известно давно применяемое в дозиметрической практике рабочее вещество для термолюминесцентного детектора рентгеновского и гамма-излучения на основе сульфата кальция CaSO4:Mn и способ его получения (В.И. Иванов. Курс дозиметрии. М., Атомиздат, 1970. 392 с.). Известное рабочее вещество для ТЛД на основе CaSO4:Mn получают в виде монокристаллов или в виде таблеток, спрессованных из порошка. Рабочее вещество на основе CaSO4:Mn имеет простую кривую термовысвечивания с одним максимумом при 80-100°С и обеспечивает диапазон измеряемых доз рентгеновского и гамма-излучения до 10-2 Гр. Спектр термостимулированной люминесценции (ТСЛ) CaSO4:Mn находится в пределах 400-590 нм с максимумом вблизи 500 нм. Однако известное рабочее вещество для ТЛД на основе CaSO4:Mn обладает недостаточно высоким световыходом ТСЛ.

Известно рабочее вещество для термолюминесцентного детектора (термолюминофора) на основе сульфата калия K2SO4. (Л.М. Ким, Т.Л. Кукетаев, А.X. Орозбаев. Термостимулированная люминесценция сульфата калия. Сборник тезисов докладов международной конференции по радиационной физике. Бишкек-Каракол. Иссыккульский государственный университет, 1999. С. 43). Кристаллы K2SO4 имеют пики ТСЛ при 170-175, 200-205, 218-220, 230-265, 310-340, 345-350 и 400-410 К. Недостатком известного термолюминофора является наличие большого числа пиков ТСЛ, а также невысокий световыход ТСЛ кристаллов K2SO4.

Известно рабочее вещество для термолюминесцентного детектора рентгеновского и гамма-излучения (Патент №2468060 РФ, авторы М. Кидибаев, К. Шаршеев, У.К. Мамытбеков, Г.С. Денисов, И.И. Мильман, Б.В. Шульгин и Д.Г. Лисиенко. Заявл. 26.04.2010. Опубл. 27.11.2012. Бюл. №33), имеющее состав K2-xNaxSO4, где х=0,4-0,6 которое обладает ТСЛ со следующими характеристиками: пик ТСЛ расположен при температуре ~100°С, спектр свечения ТСЛ находится в пределах 410-440 нм. Эффективный атомный номер Zэф полученного K-Na сульфата, рассчитанный для комптон-эффекта и фотоэффекта, достаточно близок к Zэф костной ткани и равен 14,2. Однако световыход ТСЛ известного рабочего вещества для термолюминесцентного детектора невысокий.

Известны люминесцентные керамические материалы/люминофоры на основе сиалона (Yu.F. Kargin, N.S. Akhmadullina, K.A. Solntsev. Inorganic materials, 50, 13, 2014. P. 1325-1342). Однако термолюминесцентные свойства сиалона неизвестны.

Известен прозрачный поликристаллический сцинтиллятор на основе ALON:Ce3+ (Chin-Fong Chen, Pin Yang, G. King, J. Am. Ceram. Society. 99(2), 2016. P. 424-430). Однако термолюминесцентные свойства этого соединения неизвестны.

Наиболее близким к заявляемому по составу и по исполняемым функциям является известное рабочее вещество для термолюминесцентной дозиметрии рентгеновского и гамма-излучения на основе монокристаллов анион-дефектного корунда Al2O3:С (ТЛД-500) (М.S. Akselrod, V.S. Kortov, D.Y. Kravetsky, V.I. Gotlib. Highly sensitive thermoluminescence anion-defect α-Al2O3:С single crystal detectors. Radiation protection dosimetry. Vol. 33, №4, 1990. P. 119-122). Оно имеет эффективный атомный номер, близкий к эффективному атомному номеру костной ткани (что соответствует требованиям персональной дозиметрии), имеет пик ТСЛ с максимумом при 130-190°С (его положение зависит от скорости нагрева и процедур подготовки рабочего вещества к измерениям). Имеющийся у известного состава Al2O3:С низкотемпературный пик ТСЛ при 50-60°С не используется для дозиметрических целей, поскольку имеет очень низкую интенсивность. Спектр свечения Al2O3:С расположен в области 380-480 нм с максимумом при 450 нм. Линейный диапазон измеряемых доз от 10-6 Гр до 10 Гр. Чувствительность известного рабочего вещества на основе Al2O3:С к гамма-излучению примерно в 50 раз выше, чем у LiF:Mg, Ti. Однако известное рабочее вещество на основе Al2O3:С имеет ряд недостатков.

Так, для известного рабочего вещества Al2O3:С, помимо основного рабочего пика ТСЛ при температуре 130-190°С, имеются более высокотемпературные пики ТСЛ при температурах 450, 500 и 650°С. Причем интенсивность пика ТСЛ при 130-190°С оказывается тем выше, чем больше заполняются при облучении более глубокие ловушки, ответственные за высокотемпературные пики ТСЛ. Это обстоятельство усложняет и удлиняет процедуру подготовки к измерениям и проведение самих измерений. За счет влияния неконтролируемой заселенности глубоких ловушек в кристаллах Al2O3:C ТСЛ-информация, получаемая с использованием рабочего пика ТСЛ при 130-190°С, оказывается искаженной.

Недостатком известного рабочего вещества Al2O3:C для термолюминесцентной дозиметрии является также то, что линейный диапазон измеряемых доз (10-6-101 Гр) не превышает 10 Гр, что несколько сужает сферу применения известного рабочего вещества Al2O3:С для персональной термолюминесцентной дозиметрии в рамках ТЛД- метода.

Техническая проблема, решение которой обеспечивается при реализации заявляемого изобретения, связана с разработкой рабочего вещества, близкого по эффективному атомному номеру к эффективному атомному номеру костной ткани, имеющего основной рабочий пик ТСЛ при температуре не выше 100°С, не требующего сложных процедур подготовки к измерениям и поэтому пригодного для персональной оперативной термолюминесцентной дозиметрии рентгеновского и гамма-излучения, включая аварийную дозиметрию с пониженными временными и энергозатратами в более широком линейном диапазоне измеряемых доз радиации, чем у прототипа.

Достигаемый технический результат заключается, таким образом, в реализации назначения заявляемого вещества, то есть в возможности использовать его для персональной оперативной термолюминесцентной дозиметрии рентгеновского и гамма-излучения без использования при этом сложных процедур подготовки к измерениям с пониженными временными и энергозатратами в расширенном линейном диапазоне измеряемых доз радиации.

Технический результат достигается за счет того, что предложено рабочее вещество для термолюминесцентной дозиметрии рентгеновского и гамма-излучения на основе оксинитрида алюминия, активированного трехвалентными ионами церия с концентрацией 0,05-0,2 ат. %, - Al5O6N:Ce3+, которое, имея Zэфф, равный 11,23, близкий к Zэфф костной ткани, пригодно для оперативной персональной термолюминесцентной дозиметрии рентгеновского и гамма-излучения. Предложенное рабочее вещество обладает простой кривой высвечивания ТСЛ, содержащей один основной пик ТСЛ при температуре вблизи 80°С (пик ТСЛ с максимумом в синей области (λ=430 нм), обладает линейной зависимостью световыхода ТСЛ от дозы облучения в расширенном диапазоне доз (до 60-80 Гр), не требует при подготовке к измерениям сложных процедур дополнительного облучения высокими дозами радиации, а из-за низкой температуры рабочего пика ТСЛ снижает время и энергозатраты на получение и обработку дозиметрической информации.

Таким образом, при реализации изобретения решается проблема разработки нового состава рабочего вещества для термолюминесцентной дозиметрии на основе оксинитрида алюминия, активированного трехвалентными ионами церия с концентрацией 0,05-0,2 ат. %, - Al5O6N:Се3+, обладающего Zэфф, равным 11,23, близким к Zэфф костной ткани, и с кривой высвечивания ТСЛ, содержащей один основной пик ТСЛ вблизи 80°С, обладающего линейной дозовой зависимостью световыхода ТСЛ в диапазоне доз до 60-80 Гр. Последнее делает его пригодным для персональной аварийной дозиметрии. Показано, что на этапе синтеза, осуществляемого методами твердофазных реакций путем комбинации карботермического восстановления-азотирования с золь-гель технологией, наиболее эффективно внедрение допанта в виде оксида (СеО2), а не в виде ацетилацетоната церия (N.S. Akhmadullina, A.S. Lysenkov, A.A. Ashmarin et. al. Effect of dopant concentration on the phase composition and luminescence properties of Eu2+ - and Ce3+-doped AlONs. Inorganic materials. Vol. 51, issue 5, 2015. P. 473-481). Предложенное рабочее вещество может быть использовано и использовалось в виде порошкообразных образцов или в виде керамических образцов-таблеток диаметром 10 мм, толщиной (0,5-1,0) мм, получаемых твердофазовым спеканием в атмосфере азота без давления. Повышенный световыход ТСЛ предлагаемого рабочего вещества наблюдается в диапазоне концентраций церия 0,05-0,2 ат. %. Наибольший световыход ТСЛ предлагаемого рабочего вещества достигается при оптимальной концентрации активатора 0,1 ат. %.

То есть суть изобретения заключается в том, что в качестве рабочего вещества для ТЛД применяется оксинитрид алюминия, активированный трехвалентными ионами церия Al5O6N:Ce3+ с концентрацией активатора от 0,05 до 0,2 ат. %, для которого наличие только одного рабочего низкотемпературного пика ТСЛ при 80°С обеспечивает оперативный съем дозиметрической информации и не требует, как в случае прототипа, сложных процедур дополнительного облучения рабочих веществ высокими дозами радиации; при этом для предлагаемого рабочего вещества зафиксирован повышенный линейный диапазон измеряемых доз радиации до 60-80 Гр, что почти на порядок выше, чем у известного рабочего вещества.

Сущность изобретения поясняется чертежами, где изображено:

- на фиг. 1 - кривые ТСЛ Al5O6N:Се3+ (0,1 ат. %) и Al2O3,

- на фиг. 2 - кривые ТСЛ Al5O6N:Се3+ (0,1 ат. %) при разных дозах облучения,

- на фиг. 3 - дозовая зависимость ТСЛ Al5O6N:Ce3+ (0,1 ат. %),

- на фиг. 4 - кривые ТСЛ Al5O6N:Ce3+ (0,05 ат. %) при разных дозах облучения,

- на фиг. 5 - дозовая зависимость ТСЛ Al5O6N:Ce3+ (0,05 ат. %),

- на фиг. 6 - кривые ТСЛ Al5O6N:Ce3+ (0,2 ат. %) при разных дозах облучения,

- на фиг. 7 - дозовая зависимость ТСЛ Al5O6N:Се3+ (0,2 ат. %).

Пример 1. Рабочее вещество для термолюминесцентной дозиметрии рентгеновского и гамма-излучения включает в свой состав оксинитрид алюминия Al5O6N, допированный ионами Се3+ с концентрацией 0,1 ат. % относительно алюминия.

Рабочее вещество Al5O6N:Ce3+ получено обжигом смеси оксида алюминия Al2O3, нитрида алюминия AlN и оксида церия CeO2 в соотношении, соответствующем стехиометрии получаемого материала, в токе азота при температуре 1600°С. Оксид алюминия для синтеза получали золь-гель методом: раствор изопропоксида алюминия в изопропаноле концентрацией 0.8 моль/л подвергали гидролизу посредством добавления равного объема дистиллированной воды с последующей стабилизацией лимонной кислотой (соотношение алюминий : кислота = 2:1). Полученный гель сушили при температуре 60°С в течение 8 часов, после чего отжигали при температуре 750°С в течение 3 часов. Полученный ксерогель измельчался, смешивался и перетирался с нитридом алюминия и оксидом церия и отжигался, как указано выше.

Измерение интенсивности термостимулированной люминесценции (ТСЛ) проводилось при помощи люминесцентного спектрометра Perkin Elmer LS55 в режиме Time Drive (измерение интенсивности от времени). Измерение проводилось в полосе максимума люминесценции образцов, λ=430 нм. Специальный держатель для образца снабжен нагревательным элементом с возможностью линейного нагрева до температуры 600°С и термопарой. Управление нагревом, измерение температуры и контроль линейности нагрева осуществлялись при помощи системы National Instruments PXI 1042Q и программой в среде LabView. После измерения зависимости интенсивности ТСЛ от времени и температуры от времени строилась кривая термостимулированной люминесценции I(T). Измерения кривых ТСЛ для новых разработанных рабочих веществ проводились в научно-образовательном центре «Наноматериалы и нанотехнологии» Уральского Федерального Университета по методу А.С. Вохминцева и др. (Vokhmintsev A.S., Minin М.G., Chaykin D.V., Weinshtein I.A. A High-Temperature Accessory for Measurements of the Spectral Characteristics of Thermoluminescence. Instruments and Experimental Techniques, 2014. P. 369-373).

Кривая ТСЛ на примере состава Al5O6N:Се3+ (0,1%) приведена на фиг. 1 в сравнении с кривой ТСЛ для прототипа Al2O3:С (ТЛД-500К). Кривые ТСЛ для Al5O6N:Ce3+ (0,1%) для доз 20, 40, 60 Гр рентгеновского излучения (U=48 кВ, I=50 μА) приведены на фиг. 2, а дозовая зависимость световыхода рабочего вещества приведена на фиг. 3. Аналогичные кривые наблюдаются для случая облучения рабочих веществ гамма-излучением от изотопного источника 137Cs. Предлагаемое рабочее вещество для ТЛД по интенсивности основного пика ТСЛ (фиг. 1) уступает прототипу в 1,6 раза, однако по величине интегральной запасенной светосуммы не уступает таковой для прототипа. Наличие основного рабочего низкотемпературного (80°С) пика ТСЛ у предлагаемого рабочего вещества позволяет более оперативно получать дозиметрическую информацию и снизить энергозатраты на обработку информации, не требует при подготовке к измерениям сложных процедур дополнительного облучения дозиметрических датчиков высокими дозами радиации. Преимуществом предлагаемого рабочего вещества перед прототипом является повышенный диапазон линейности дозовой зависимости световыхода ТСЛ. Если для ТЛД-500К реализуется диапазон линейной зависимости с верхней границей в 10 Гр, то для предлагаемого рабочего вещества верхняя граница линейного диапазона увеличивается до 60-80 Гр.

Пример 2. Рабочее вещество для термолюминесцентной дозиметрии рентгеновского и гамма-излучения представляет собой оксинитрид алюминия Al5O6N, дотированный ионами Се3+ с концентрацией 0,05 ат. % относительно алюминия.

Рабочее вещество для ТЛД получено таким же способом, как и в примере 1. Кривые ТСЛ при дозах радиационного воздействия 20, 40, 60 Гр приведены для этого вещества на фиг. 4, а дозовая зависимость световыхода для рабочего вещества Al5O6N:Ce3+ (0,05%) приведена на фиг. 5. Наличие низкотемпературного пика ТСЛ у предлагаемого рабочего вещества позволяет более оперативно получать дозиметрическую информацию и снизить энергозатраты на обработку информации. Дозовая зависимость световыхода ТСЛ отличается высокой степенью линейности в повышенном по сравнению с прототипом диапазоне доз. Если для ТЛД-500К реализуется диапазон линейной зависимости с верхней границей в 10 Гр, то для предлагаемого рабочего вещества верхняя граница линейного диапазона увеличится до 60-80 Гр.

Пример 3. Рабочее вещество для термолюминесцентной дозиметрии рентгеновского и гамма-излучения представляет собой оксинитрид алюминия Al5O6N, допированный ионами Се3+ с концентрацией 0,2 ат. % относительно алюминия.

Рабочее вещество для ТЛД получено таким же способом, как и в примерах 1 и 2. Кривые ТСЛ для материала Al5O6N:Ce3+ (0,2%) при дозах радиационного воздействия 20, 40, 60 Гр приведены на фиг. 6, а дозовая зависимость световыхода этого вещества приведена на фиг. 7. Наличие рабочего пика ТСЛ у предлагаемого рабочего вещества при более низкой температуре, чем у прототипа, позволяет более оперативно получать дозиметрическую информацию и снизить время и энергозатраты на обработку информации. Дополнительным преимуществом предлагаемого рабочего вещества перед прототипом является повышенный диапазон линейности дозовой зависимости световыхода ТСЛ. Если для ТЛД-500К реализуется диапазон линейной зависимости с верхней границей в 10 Гр, то для предлагаемого рабочего вещества верхняя граница линейного диапазона достигает 60-80 Гр.


РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОЙ ДОЗИМЕТРИИ РЕНТГЕНОВСКОГО И ГАММА-ИЗЛУЧЕНИЯ
РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОЙ ДОЗИМЕТРИИ РЕНТГЕНОВСКОГО И ГАММА-ИЗЛУЧЕНИЯ
РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОЙ ДОЗИМЕТРИИ РЕНТГЕНОВСКОГО И ГАММА-ИЗЛУЧЕНИЯ
РАБОЧЕЕ ВЕЩЕСТВО ДЛЯ ТЕРМОЛЮМИНЕСЦЕНТНОЙ ДОЗИМЕТРИИ РЕНТГЕНОВСКОГО И ГАММА-ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Showing 1-10 of 315 items.
20.06.2013
№216.012.4b44

Композиционный материал на основе кальцийфосфатного цемента для заполнения костных дефектов

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Композиционный материал выполнен на основе реакционно-твердеющей смеси порошков: трикальцийфосфата, содержащих частицы гидроксиапатита размером от 38 до 220 мкм....
Тип: Изобретение
Номер охранного документа: 0002484850
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4fa1

Пористый кальций-фосфатный цемент

Изобретение относится к медицине. Описан пористый кальций-фосфатный гидравлический цемент для восстановления костных тканей, содержащий порошок β-трикальцийфосфата, монокальцийфосфата моногидрата, затворяющую жидкость, представляющую собой 7-9%-ный водный раствор лимонной кислоты, а также...
Тип: Изобретение
Номер охранного документа: 0002485978
Дата охранного документа: 27.06.2013
10.10.2013
№216.012.732b

Способ термической обработки деформируемых магнитотвердых сплавов на основе системы железо-хром-кобальт

Изобретение относится к области металлургии, в частности к обработке магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности и т.д. Для повышения коэрцитивной силы изделий из...
Тип: Изобретение
Номер охранного документа: 0002495140
Дата охранного документа: 10.10.2013
27.12.2013
№216.012.8fe0

Брушитовый гидравлический цемент (варианты)

Изобретение относится к медицине. Описан брушитовый гидравлический цемент для восстановления костных тканей, содержащий порошок α-трикальцийфосфата и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, где цементный порошок содержит гранулы карбоната кальция...
Тип: Изобретение
Номер охранного документа: 0002502525
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.8fe1

Покрытие на имплант из титана и его сплавов и способ его приготовления

Изобретение относится к области медицины. Описано покрытие на имплант из титана и его сплавов, состоящее из двух слоев. Первый слой состоит из оксидов титана, в основном TiO, второй слой состоит из оксида алюминия гамма-модификации, общая толщина двухслойного покрытия составляет от 40 до 180...
Тип: Изобретение
Номер охранного документа: 0002502526
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9004

Способ приготовления катализатора для очистки отработавших газов двигателей внутреннего сгорания и катализатор, полученный этим способом

Изобретение относится к способам получения блочных катализаторов, катализаторам очистки отработавших газов (ОГ) двигателей внутреннего сгорания (ДВС). Описан способ приготовления катализатора для очистки ОГ ДВС, в котором для нанесения промежуточного покрытия и активной фазы используют водную...
Тип: Изобретение
Номер охранного документа: 0002502561
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9e48

Способ получения мезопористого наноразмерного порошка диоксида церия (варианты)

Изобретение относится к химической промышленности, к производству наноразмерных порошков оксидов металлов для мелкозернистой керамики широкого спектра. Способ получения порошка диоксида церия включает стадии: получение водного 0,05М раствора нитрата церия или ацетата церия, используя Се(NО)·6НO...
Тип: Изобретение
Номер охранного документа: 0002506228
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b16d

Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт

Изобретение относится к области металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности. Для повышения остаточной индукции сплав...
Тип: Изобретение
Номер охранного документа: 0002511136
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.b9ef

Способ переработки лопаритового концентрата

Изобретение относится к переработке лопаритового концентрата. Заявляемый способ пирометаллургической переработки лопаритового концентрата включает три этапа: восстановительный, плавильный и окислительный. Восстановительный этап включает углетермическое восстановление концентрата при...
Тип: Изобретение
Номер охранного документа: 0002513327
Дата охранного документа: 20.04.2014
20.05.2014
№216.012.c4fc

Высокоазотистая мартенситная никелевая сталь

Изобретение относится к области металлургии, а именно к высокопрочной мартенситной стали, используемой для изготовления высоконагруженных изделий криогенной техники. Сталь содержит следующие компоненты, в мас.%: углерод 0,02-0,06, хром 1,5-2,0, никель 8,5-10,5, азот 0,08-0,22, марганец 0,3-0,6,...
Тип: Изобретение
Номер охранного документа: 0002516187
Дата охранного документа: 20.05.2014
Showing 1-10 of 38 items.
27.12.2013
№216.012.8fe1

Покрытие на имплант из титана и его сплавов и способ его приготовления

Изобретение относится к области медицины. Описано покрытие на имплант из титана и его сплавов, состоящее из двух слоев. Первый слой состоит из оксидов титана, в основном TiO, второй слой состоит из оксида алюминия гамма-модификации, общая толщина двухслойного покрытия составляет от 40 до 180...
Тип: Изобретение
Номер охранного документа: 0002502526
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9004

Способ приготовления катализатора для очистки отработавших газов двигателей внутреннего сгорания и катализатор, полученный этим способом

Изобретение относится к способам получения блочных катализаторов, катализаторам очистки отработавших газов (ОГ) двигателей внутреннего сгорания (ДВС). Описан способ приготовления катализатора для очистки ОГ ДВС, в котором для нанесения промежуточного покрытия и активной фазы используют водную...
Тип: Изобретение
Номер охранного документа: 0002502561
Дата охранного документа: 27.12.2013
10.12.2014
№216.013.0ce6

Способ диагностики реальной структуры кристаллов

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого...
Тип: Изобретение
Номер охранного документа: 0002534719
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1144

Способ формирования тонкой фольги твердого раствора pd-cu с кристаллической решеткой типа csci

Изобретение относится к технологии создания селективных газовых мембран, функционирующих за счет избирательной диффузии атомов газа (водорода) сквозь тонкую металлическую пленку (из палладия или сплавов на его основе), которые используются в устройствах глубокой очистки водорода от...
Тип: Изобретение
Номер охранного документа: 0002535843
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.1bed

Способ создания композиционной мембраны для очистки водорода

Изобретение относится к созданию селективных мембран, функционирующих за счет избирательной диффузии газов сквозь тонкую пленку металлов или их сплавов. Способ включает нанесение на двухслойную керамическую подложку со сквозной пористостью селективной пленки металла или его сплава методом...
Тип: Изобретение
Номер охранного документа: 0002538577
Дата охранного документа: 10.01.2015
10.12.2015
№216.013.9656

Способ визуализации ротационного искривления решетки нанотонких кристаллов

Способ визуализации ротационного искривления решетки нанотонких кристаллов включает получение электронно-микроскопического изображения нанотонкого кристалла в светлом и темном поле, получение электронограммы от кристалла, микродифракционное исследование, анализ картины изгибных экстинкционных...
Тип: Изобретение
Номер охранного документа: 0002570106
Дата охранного документа: 10.12.2015
10.04.2016
№216.015.2e44

Способ диффузионной сварки

Изобретение относится к способу диффузионной сварки. Очищают детали из нержавеющей стали и мембраны из фольги палладия или палладиевого сплава электрополировкой. Собирают в пакет. В качестве промежуточного слоя применяют фольгу из никеля. Размещают в вакуумной камере. Нагревают. Прикладывают...
Тип: Изобретение
Номер охранного документа: 0002579413
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.728e

Способ повышения радиационной стойкости и стабилизации светопропускания германо-силикатных стекловолокон

Изобретение относится к германо-силикатным стекловолокнам. Технический результат изобретения заключается в снижении уровня радиационно-наведенного поглощения, повышении трансмиссионных свойств и надежности Ge-SiO стекловолокон, работающих в радиационных полях. Германо-силикатные стекловолокна...
Тип: Изобретение
Номер охранного документа: 0002598093
Дата охранного документа: 20.09.2016
25.08.2017
№217.015.9c6a

Способ получения плотной мелкозернистой керамики из композитного нанопорошка на основе оксидов алюминия, церия и циркония, синтезированного модифицированным золь-гель методом

Изобретение относится к способу получения плотной мелкозернистой керамики из композитного порошка на основе оксидов алюминия, магния, церия и циркония и может быть использовано в производстве медицинской керамики для эндопротезирования, катализаторов и других изделий. Синтез порошкового...
Тип: Изобретение
Номер охранного документа: 0002610483
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9cd4

Способ получения пористой алюмооксидной керамики

Изобретение относится к технологии пористых керамических материалов и может быть использовано для изготовления изделий, эксплуатируемых в качестве высокотемпературной теплоизоляции (или теплозащиты), термостойкого огнеприпаса, носителей катализаторов, фильтров для очистки жидких и газовых сред....
Тип: Изобретение
Номер охранного документа: 0002610482
Дата охранного документа: 13.02.2017
+ добавить свой РИД