11.07.2019
219.017.b29f

Устройство для измерения толщины и диэлектрической проницаемости тонких пленок

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области оптического приборостроения и касается устройства для исследования толщины и диэлектрических свойств тонких пленок. Устройство включает в себя два лазера с различной длиной волны, делительный кубик, расширитель светового потока, линзу, два поляризатора, устройство нарушения полного внутреннего отражения, зеркало, фокусирующий объектив и светочувствительную матрицу. Устройство нарушения полного внутреннего отражения выполнено в виде полуцилиндрической линзы с отражающим элементом на ее плоскости в виде тонкой металлической пленки. Оптические оси поляризаторов составляют угол 45° с плоской поверхностью полуцилиндрической линзы, причем второй по ходу луча поляризатор может осуществлять как р-поляризацию, так и s-поляризацию. Элементы устройства размещены на платформе, перпендикулярной плоской поверхности полуцилиндрической линзы, причем платформа имеет возможность поворота вокруг вертикальной оси полуцилиндрической линзы, а зеркало имеет возможность поворота вокруг оси, перпендикулярной платформе. Технический результат заключается в обеспечении возможности одновременного измерения толщины и диэлектрической проницаемости тонких пленок в процессе их изготовления. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к области оптического приборостроения и может быть использовано для создания устройств по контролю толщины и диэлектрических свойств тонких пленок в процессе их нанесения на тонкие подложки.

Известны устройства-эллипсометры для измерения толщины тонких пленок основанные на изучении изменения состояния поляризации света после взаимодействия его с поверхностью пленок: отраженного и преломленного на ней. [Аззам Р., Башара Н., Эллипсометрия и поляризованный свет, пер. с англ., М., 1981].

Недостатком эллипсометров является сложность их применения для измерения толщины пленки в процессе ее нанесения на подложку, т.к. измерения осуществляются со стороны нанесения пленки, а также невозможность измерения диэлектрической проницаемости пленок.

Известны устройства - спектрометры на основе поверхностного плазмонного резонанса, позволяющие исследовать состав тонких пленок на поверхности сенсора спектрометра. [Патент Германии № DE 102007021563 А1, кл. G01J 3/42, 2008, Патент Великобритании № GB 2197065 А, кл. G01N 33/543, 1988.] Такие исследования могут проводиться и в процессе получения этих пленок.

Недостатком таких спектрометров является низкая чувствительность при измерении толщины пленки и ее диэлектрической проницаемости.

Наиболее близким устройством является устройство спектрометра на основе поверхностного плазмонного резонанса, содержащий источник света, поляризатор, линзу, устройство нарушения полного внутреннего отражения с отражающим элементом в виде металлической пленки, фокусирующий объектив и светочувствительную фотоматрицу. [Патент РФ №2500993, кл. G01J 3/42, 2012.]

Недостатком данного устройства также низкая чувствительность при измерении толщины пленки и ее диэлектрической проницаемости.

Задача, на решение которой направлено настоящее изобретение, заключается в создании устройства для измерения толщины и диэлектрической проницаемости тонких пленок.

Техническим результатом является создание устройства позволяющее проводить измерение толщины тонких металлических пленок в процессе их нанесения на тонкие подложки, и в случае нанесения диэлектрических пленок на эти металлические пленки одновременно измерять их диэлектрическую проницаемость. В частности проводить такие измерения при создании системы тонких пленок оптимальной толщины для биохимических сенсоров, работающих на основе плазмонного резонанса по схеме Кречмана.

Технический результат достигается тем, что устройство для измерения толщины и диэлектрических свойств тонких пленок в качестве источника света содержит два лазера с различной длинной волны, при этом лазеры расположены так, чтобы их лучи были направлены на делительный кубик таким образом, чтобы при выходе из него траектории их совпадали и направлялись через расширитель светового потока на линзу, затем через два поляризатора на устройство нарушения полного внутреннего отражения, выполненного в виде полуцилиндрической линзы с отражающим элементом на ее плоскости в виде тонкой металлической пленки, причем фокус линзы совпадает с плоской поверхностью полуцилиндрической линзы, а от нею лучи шли на зеркало, отразившись от которого, проходили через фокусирующий объектив, фокус которого, также совпадает с плоской поверхностью полуцилиндрической линзы, и попадали на светочувствительную фотоматрицу, при этом оптические оси поляризаторов составляют угол 45° с плоской поверхностью полуцилиндрической линзы, причем второй по ходу луча поляризатор может осуществлять как р-поляризацию, так и s-поляризацию, при этом перечисленные элементы устройства размещены на платформе, перпендикулярной плоской поверхности полуцилиндрической линзы, причем платформа имеет возможность поворота вокруг вертикальной оси полуцилиндрической линзы, а зеркало имеет возможность поворота вокруг оси перпендикулярной платформе.

На фиг. 1 представлена схема предложенного устройства.

Устройство содержит платформу 1, на которой закреплены: лазеры 2, 3, делительный кубик 4, расширитель светового потока 5, линза 6, поляризаторы 7,8, зеркало 9, фокусирующий объектив 10, светочувствительная фотоматрица 11, полуцилиндрическая линза 12.

Устройство работает следующим образом. На плоскую поверхность полуцилиндрической линзы 12 наносится, например напылением, металлическая пленка, толщину которой необходимо измерить для отработки технологии нанесения покрытия. На нее же может быть с той же целью нанесена пленка диэлектрика.

Из лазеров 2 и 3, имеющие разные длины волн X, например, один с А~630 нм (красный) и с А~530 нм (зеленый) второй, попеременно подается излучение на делительный кубик 4. По выходу из делительного кубика излучение проходит через расширитель света 5, состоящего, например из двух линз. Размер пучка излучения при этом увеличивается, например, в 10 раз.

Затем излучение проходит через линзу 6, расположенную так, что излучение, прошедшее через нее фокусируется на плоскую поверхность полуцилиндрической линзы 12. После линзы 6 излучение попадает на поляризатор 7, ось которого составляет угол 45° с плоскостью падения излучения на полуцилиндрическую линзу 12. Угол в 45° является оптимальным углом падения. Он обеспечивает одинаковые амплитуды, как в плоскости падения луча, так и в плоскости перпендикулярной к плоскости падения. После поляризатора 7 излучение попадает на поляризатор 8, ось которого поворачивается так, чтобы составлять угол либо 0° (р-поляризация), либо 90° (s-поляризация) с плоскостью падения.

Отражаясь от плоской поверхности полуцилиндрической линзы 12, отражаясь от зеркала 9, допускающее вращение для точной ориентировки отраженного луча, попадает на фокусирующий объектив 10, фокус которого совпадает с точкой отражения излучения от поверхности полуцилиндрической линзы 12.

После фокусирующего объектива 10 излучение попадает на светочувствительную фотоматрицу 11, информация, с которой передается на компьютер (на фиг. 1 не показан).

Для изменения угла падения на плоскую поверхность полуцилиндрической линзы 12 вся платформа 1 может поворачиваться вокруг вертикальной оси полуцилиндрической линзы 12, проходящей через точку падения луча на эту поверхность.

Для расчета толщины и диэлектрических свойств тонких пленок необходимо знать коэффициент отражения R излучения от тонких пленок, угол θ падения излучения на пленку и W(θ) - полуширина функции R(θ). Для того чтобы получить полное решение необходимо составить уравнение при двух разных длинах волн излучения.

Для получения необходимого значения вида функции R(θ) нужно использовать излучения р- и s-поляризации. Плазмонные волны создает только р-поляризованное излучение, a s-поляризованное излучение нет. Поэтому для расчетов берется отношение интенсивности этих двух поляризаций. При этом требуется нормировка амплитуд линий поглощения, что обеспечивает поляризатор 7.

Ip нормируется к Is, при этом отношение Ip/Is показывает долю энергии луча идущую на возбуждение плазмонов.

Методика одновременного определения ε1 (ω) и d1 проводящего слоя с помощью ПЭВ описана в работе: W. P. Chen and J.M. Chea Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films. J. Opt. Soc. Am. 1981., V. 71, №2. P.p.189-191.

В области углов падающей волны, близких к резонансному углу θATR (это такой угол при котором тангенцальная составляющая волнового вектора излучения совпадает с волновым вектором поверхностных электромагнитных волн (SPW)) возбуждения SPW, коэффициент отражения R(θ) можно вычислить по приближенной формуле

где проекция волнового вектора К вдоль границы раздела призмы и металлической пленки

K=K0+KR,

где Здесь:

K - комплексный волновой вектор SPW;

K0 - комплексный волновой вектор SPW на границе раздела металл-вакуум в отсутствие призмы; KR - возмущение K0 при наличии призмы. Мнимые части K0 и KR являются собственными и радиационными затуханиями соответственно. Первая представляет Джоулевые потери в металле, а вторая представляет потерю утечки SPW обратно в призму.

ε1, ε2, и ε3 - диэлектрические проницаемости металлической пленки, воздуха и призмы соответственно;

ε'1 и ε''1 - действительная и мнимая часть ε1;

Kz - проекция волновых векторов в направлении перпендикулярном границы раздела призмы и металла.

Отражательная способность R(θ) имеет форму лорентцовской кривой при θATR с полушириной Wθ=(Rmax+Rmin)/2 [когда |Im(K)|<|Re(K)|] и минимальный коэффициент отражения Rmin, определяемый как

где

С помощью формул (1)-(6) можно, используя экспериментальные значения θATR, Wθ и зависимость Rmin от θ определить ε1 (ω) и d проводящего слоя. Для этого:

1) подставим измеренное θATR в уравнение рассчитаем Re(K);

2) установите Re(K0)=Re(K), потому что Re(KR)<<Re(K0);

3) определить ε'1, используя действительную часть уравнения (2);

4) определить [Im(K0)+Im(KR)]=Im(K), подставив измеренные θATR и W0 в уравнение. (4);

5) определим η=Im(K0)/Im(KR), подставив измеренное Rmin в уравнение (5);

6) из результатов, полученных на этапах 4) и 5), решая систему двух уравнений, вычислим значения Im(K0) и Im(KR);

7) определяем ε'1, подставив ε'1 и Im(K0) в мнимую часть уравнения (2);

8) определим d, подставив θATR, ε'1, ε''1 и Im(KR) в мнимую часть уравнения (3).

Таким образом, получают два набора решений для ε1 и d. Проведя аналогичные измерения и вычисления для другой частоты и сравнивая полученные результаты с предыдущими, находят истинное значение d не зависящее от длины волны излучения. Используя найденное значение d, определяют ε1 на обеих частотах.

Толщину диэлектрической пленки d2 можно определить из следующих соотношений.

ε3≈1, ε1 - диэлектрическая проницаемость металлической пленки, ε2 - диэлектрическая проницаемость диэлектрической пленки

Устройство может быть использовано, например, для определения оптимальной толщины пленок для биохимических сенсоров, работающих на основе плазменного резонанса по схеме Кречмана. Для нанесения металлической пленки критерий оптимальности есть достижение функции R(θ) близкое к нулю. Близким к нулю должно быть значение самой функции R(θ). График функции R(θ) является резонансной кривой. При резонансе R(θ) близка к нулю.

Устройство для исследования толщины и диэлектрических свойств тонких пленок, содержащее последовательно расположенные на одной оптической оси источник света, поляризатор, линзу, устройство нарушения полного внутреннего отражения, фокусирующий объектив, светочувствительную матрицу, отличающееся тем, что в качестве источника света содержит два лазера с различной длиной волны, при этом лазеры расположены так, чтобы их лучи были направлены на делительный кубик таким образом, чтобы при выходе из него траектории их совпадали и направлялись через расширитель светового потока на линзу, затем через два поляризатора на устройство нарушения полного внутреннего отражения, выполненного в виде полуцилиндрической линзы с отражающим элементом на ее плоскости в виде тонкой металлической пленки, причем фокус линзы совпадает с плоской поверхностью полуцилиндрической линзы, а от нее лучи шли на зеркало, отразившись от которого, проходили через фокусирующий объектив, фокус которого также совпадает с плоской поверхностью полуцилиндрической линзы, и попадали на светочувствительную фотоматрицу, при этом оптические оси поляризаторов составляют угол 45° с плоской поверхностью полуцилиндрической линзы, причем второй по ходу луча поляризатор может осуществлять как р-поляризацию, так и s-поляризацию, при этом перечисленные элементы устройства размещены на платформе, перпендикулярной плоской поверхности полуцилиндрической линзы, причем платформа имеет возможность поворота вокруг вертикальной оси полуцилиндрической линзы, а зеркало имеет возможность поворота вокруг оси, перпендикулярной платформе.
Устройство для измерения толщины и диэлектрической проницаемости тонких пленок
Устройство для измерения толщины и диэлектрической проницаемости тонких пленок
Источник поступления информации: Роспатент

Showing 1-10 of 90 items.
20.06.2013
№216.012.4b44

Композиционный материал на основе кальцийфосфатного цемента для заполнения костных дефектов

Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. Композиционный материал выполнен на основе реакционно-твердеющей смеси порошков: трикальцийфосфата, содержащих частицы гидроксиапатита размером от 38 до 220 мкм....
Тип: Изобретение
Номер охранного документа: 0002484850
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4fa1

Пористый кальций-фосфатный цемент

Изобретение относится к медицине. Описан пористый кальций-фосфатный гидравлический цемент для восстановления костных тканей, содержащий порошок β-трикальцийфосфата, монокальцийфосфата моногидрата, затворяющую жидкость, представляющую собой 7-9%-ный водный раствор лимонной кислоты, а также...
Тип: Изобретение
Номер охранного документа: 0002485978
Дата охранного документа: 27.06.2013
10.10.2013
№216.012.732b

Способ термической обработки деформируемых магнитотвердых сплавов на основе системы железо-хром-кобальт

Изобретение относится к области металлургии, в частности к обработке магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности и т.д. Для повышения коэрцитивной силы изделий из...
Тип: Изобретение
Номер охранного документа: 0002495140
Дата охранного документа: 10.10.2013
27.12.2013
№216.012.8fe0

Брушитовый гидравлический цемент (варианты)

Изобретение относится к медицине. Описан брушитовый гидравлический цемент для восстановления костных тканей, содержащий порошок α-трикальцийфосфата и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, где цементный порошок содержит гранулы карбоната кальция...
Тип: Изобретение
Номер охранного документа: 0002502525
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.8fe1

Покрытие на имплант из титана и его сплавов и способ его приготовления

Изобретение относится к области медицины. Описано покрытие на имплант из титана и его сплавов, состоящее из двух слоев. Первый слой состоит из оксидов титана, в основном TiO, второй слой состоит из оксида алюминия гамма-модификации, общая толщина двухслойного покрытия составляет от 40 до 180...
Тип: Изобретение
Номер охранного документа: 0002502526
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9004

Способ приготовления катализатора для очистки отработавших газов двигателей внутреннего сгорания и катализатор, полученный этим способом

Изобретение относится к способам получения блочных катализаторов, катализаторам очистки отработавших газов (ОГ) двигателей внутреннего сгорания (ДВС). Описан способ приготовления катализатора для очистки ОГ ДВС, в котором для нанесения промежуточного покрытия и активной фазы используют водную...
Тип: Изобретение
Номер охранного документа: 0002502561
Дата охранного документа: 27.12.2013
10.02.2014
№216.012.9e48

Способ получения мезопористого наноразмерного порошка диоксида церия (варианты)

Изобретение относится к химической промышленности, к производству наноразмерных порошков оксидов металлов для мелкозернистой керамики широкого спектра. Способ получения порошка диоксида церия включает стадии: получение водного 0,05М раствора нитрата церия или ацетата церия, используя Се(NО)·6НO...
Тип: Изобретение
Номер охранного документа: 0002506228
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b16d

Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт

Изобретение относится к области металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности. Для повышения остаточной индукции сплав...
Тип: Изобретение
Номер охранного документа: 0002511136
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.b9ef

Способ переработки лопаритового концентрата

Изобретение относится к переработке лопаритового концентрата. Заявляемый способ пирометаллургической переработки лопаритового концентрата включает три этапа: восстановительный, плавильный и окислительный. Восстановительный этап включает углетермическое восстановление концентрата при...
Тип: Изобретение
Номер охранного документа: 0002513327
Дата охранного документа: 20.04.2014
20.05.2014
№216.012.c4fc

Высокоазотистая мартенситная никелевая сталь

Изобретение относится к области металлургии, а именно к высокопрочной мартенситной стали, используемой для изготовления высоконагруженных изделий криогенной техники. Сталь содержит следующие компоненты, в мас.%: углерод 0,02-0,06, хром 1,5-2,0, никель 8,5-10,5, азот 0,08-0,22, марганец 0,3-0,6,...
Тип: Изобретение
Номер охранного документа: 0002516187
Дата охранного документа: 20.05.2014
Showing 1-10 of 13 items.
20.09.2013
№216.012.6d49

Способ изготовления термостабильных редкоземельных магнитов

Изобретение относится к порошковой металлургии, в частности к получению термостабильных редкоземельных магнитов. Магниты могут использоваться в системах автоматики, промышленном оборудовании, автомобилях. Осуществляют выплавку сплава и получение из него порошка. После чего порошок подвергают...
Тип: Изобретение
Номер охранного документа: 0002493628
Дата охранного документа: 20.09.2013
27.11.2013
№216.012.8643

Магнитный материал и изделие, выполненное из него

Изобретение относится к области порошковой металлургии, в частности к магнитным материалам для постоянных магнитов на основе редкоземельных элементов с металлами группы железа. Заявленный магнитный материал содержит железо (Fe), кобальт (Co), бор (B), по меньшей мере один элемент, выбранный из...
Тип: Изобретение
Номер охранного документа: 0002500049
Дата охранного документа: 27.11.2013
20.03.2014
№216.012.ad0b

Способ определения малых концентраций молекул летучих веществ в газовой среде

Изобретение относится к оптике и аналитической технике и может быть использовано для определения наличия следовых количеств летучих веществ, вызывающих поверхностную оптическую сенсибилизацию галоидного серебра. Способ основан на измерении параметров поверхностного плазмонного резонанса и...
Тип: Изобретение
Номер охранного документа: 0002510014
Дата охранного документа: 20.03.2014
10.04.2016
№216.015.2e44

Способ диффузионной сварки

Изобретение относится к способу диффузионной сварки. Очищают детали из нержавеющей стали и мембраны из фольги палладия или палладиевого сплава электрополировкой. Собирают в пакет. В качестве промежуточного слоя применяют фольгу из никеля. Размещают в вакуумной камере. Нагревают. Прикладывают...
Тип: Изобретение
Номер охранного документа: 0002579413
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.8ffd

Способ частичного размагничивания наногетерогенных высококоэрцитивных магнитов типа sm-co-fe-cu-zr

Изобретение относится к электротехнике и может быть использовано для стабилизации магнитных свойств магнитов типа Sm-Co-Fe-Cu-Zr путем их частичного размагничивания. Технический результат состоит в повышении точности и стабильности работы навигационного оборудования и систем авиационной...
Тип: Изобретение
Номер охранного документа: 0002605544
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.a236

Способ получения структуры высокотемпературный сверхпроводник - диэлектрик - высокотемпературный сверхпроводник

Использование: для создания структур высокотемпературный сверхпроводник – диэлектрик – высокотемпературный сверхпроводник. Сущность изобретения заключается в том, что на слой высокотемпературного сверхпроводника 123-типа направляют поток атомных частиц, в качестве высокотемпературного...
Тип: Изобретение
Номер охранного документа: 0002606940
Дата охранного документа: 10.01.2017
04.04.2018
№218.016.2f36

Способ изготовления композиционных мембран на основе тонких пленок металлов

Изобретение относится к технологии создания селективных мембран, функционирующих за счет избирательной диффузии водорода сквозь тонкую пленку палладия или его сплава, и может быть использовано в устройствах глубокой очистки водорода от сопутствующих примесей, сепарации водорода из...
Тип: Изобретение
Номер охранного документа: 0002644640
Дата охранного документа: 13.02.2018
12.07.2018
№218.016.700b

Способ повышения критической температуры сверхпроводящего перехода в поверхностном слое высокотемпературного сверхпроводника

Изобретение относится к способам повышения критической температуры сверхпроводящего перехода (Тс) в высокотемпературных сверхпроводниках (ВТСП) и может быть использовано для создания различного рода датчиков и счетчиков в сверхбыстродействующих электронных устройствах, криоэлектронных приборах,...
Тип: Изобретение
Номер охранного документа: 0002660806
Дата охранного документа: 10.07.2018
29.03.2019
№219.016.f71b

Способ получения монокристалла нитрида тугоплавкого металла и изделия из него, получаемого этим способом

Изобретение предназначено для химической, электротехнической, радиоэлектронной промышленности, материаловедения и может быть использовано для получения различных изделий: проволоки, проволочной спирали, лент, тонкостенных трубок, лодочек для работы в агрессивных средах и/или для работы при...
Тип: Изобретение
Номер охранного документа: 0002431002
Дата охранного документа: 10.10.2011
29.03.2019
№219.016.f827

Способ обнаружения взрывчатых веществ

Изобретение может быть использовано при создании приборов обнаружения следовых количеств взрывчатых веществ (ВВ), применяемых для обеспечения безопасности воздушного, автомобильного, водного железнодорожного транспорта, производственных, офисных, жилых и иных помещений. Способ обнаружения ВВ...
Тип: Изобретение
Номер охранного документа: 0002460067
Дата охранного документа: 27.08.2012

Похожие РИД в системе