×
11.03.2019
219.016.d96b

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ШТАМПОВОГО ИНСТРУМЕНТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии и машиностроения. Заготовку получают из стали 4Х5В2ФС, 4X4 ВМФС путем ковки, высокого отпуска, термоциклической обработки в атмосферной среде и закалки, при этом перед термоциклической обработкой проводят предварительную термоциклическую обработку заготовки штампового инструмента со скоростью нагрева и охлаждения 5-20°С/м и с количеством циклов N+1 исходя из условия равенства температур начала фазового превращения материала заготовки Т*(), а также равенства температур конца фазового превращения Т* при нагреве материала заготовки и соответственно равенства температур Т**(), Т**() при охлаждении до стабилизации структуры заготовки штампового инструмента в двух последовательных циклах N и N+1, по результатам предварительной термоциклической обработки выбирают количество циклов термоциклической обработки в атмосферной среде заготовок штампового инструмента, равное N, которую ведут со скоростью нагрева и охлаждения 5-20°С/мин, причем температура нагрева заготовок штампового инструмента в каждом цикле на 10-15°С выше температуры Т*( для материала заготовки в соответствующем цикле при нагреве на стадии предварительной термоциклической обработки, а температура охлаждения заготовок в каждом цикле на 100-200°С ниже температуры Т** начала фазового превращения материала заготовки высокого отпуска заготовок исходя из условия равенства температур начала фазового превращения, а также равенства температур конца для материала заготовки в соответствующем цикле при охлаждении на стадии предварительной термоциклической обработки. Изобретение повышает износостойкость штампового инструмента и ресурс его работы.

Изобретение относится к металлургии, в частности к способам изготовления штампового инструмента, может быть использовано в любых отраслях машиностроения.

Известен способ предварительной термоциклической обработки углеродистых, легированных и инструментальных сталей (см. п. РФ №2072173, кл. МКИ C21D 1/78 от 3.08 94), включающий термоциклическую обработку в среде вакуума без изотермической выдержки. Недостатком способа является высокая скорость нагрева и охлаждения заготовок (V=20…100°С/мин), при которых создаются условия ускоренного режима термообработки, при этом стабилизация фазовых превращений в штамповых сталях не может пройти полностью. Кроме того, отсутствие изотермической выдержки также не позволяет фазовым превращениям пройти полностью.

Известен способ изготовления штампового инструмента, включающий ковку, отжиг заготовок, закалку и отпуск штампов (А.П.Гуляев. Металловедение. Учебник для вузов. 6-е издание, перераб. и доп. М.: Металлургия, 1986 г., стр.377).

Недостаток данного способа заключается в том, что отжиг заготовок не обеспечивает образование пластинчатого перлита, который после закалки и отпуска образует структуру с низкой износостойкостью штампового инструмента (500-800 ударов).

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ изготовления штампового инструмента, включающий ковку, высокий отпуск, термическую циклическую обработку (ТЦО), закалку заготовок (В.К.Федюкин, М.Е.Смагоринский. «Термоциклическая обработка металлов и деталей машин». - Л.: Машиностроение. Ленинградское от-ие, 1989, стр.114-121).

Недостатком данного способа является ускоренный нагрев заготовок (40-60°С/мин), при котором фазовые превращения не успевают пройти полностью, что ведет к росту зерна, структурной неоднородности и недостаточной стойкости штампового инструмента (1000-1200 ударов).

Технический результат выражается в повышении износостойкости и ресурса штампового инструмента. Циклическая термическая обработка основывается на явлении многократного медленного нагрева и охлаждения, обеспечивающем многократное протекание фазового превращения как при нагреве, так и при охлаждении. Фазовой переход влияет на кристаллизационные процессы, протекающие в материалах, а многократность процесса фазового превращения приводит к постепенной его стабилизации и, как следствие, стабилизации температур начала и конца фазовых превращений. Поэтому оптимальное количество термоциклов определяется по результатам фиксирования температур фазовых превращений при нагреве и охлаждении в каждом термоцикле.

При этом циклическая термическая обработка позволяет:

- получить в заготовках структуру зернистого перлита;

- провести дегазацию металла;

- повысить ударную вязкость металла;

- интенсифицировать диффузионные процессы;

- измельчить зерно.

Указанный технический результат достигается тем, что при способе изготовления штампового инструмента, включающем ковку, высокий отпуск, термоциклическую обработку заготовок штампового инструмента в атмосферной среде, изготовление штампов из этих заготовок с последующей их закалкой, перед термоциклической обработкой проводят предварительную термоциклическую обработку одной из заготовок штампового инструмента, взятой в качестве образца, со скоростью нагрева и охлаждения 5-20°С/мин и с количеством циклов N+1 исходя из условия равенства температур начала фазового превращения материала образца Т*(н.ф.п), а также равенства температур конца фазового превращения Т*(к.ф.п) при нагреве материала образца и соответственно равенства Т**(н.ф.п), Т**(к.ф.п) при охлаждении до стабилизации структуры образца штампового инструмента в двух последовательных циклах N и N+1, по результатам предварительной термоциклической обработки выбирают количество циклов термоциклической обработки в атмосферной среде заготовок штампового инструмента, равное N, которую ведут со скоростью нагрева и охлаждения 5-20°С/м, причем температура нагрева заготовок штампового инструмента в каждом цикле на 10-15°С выше температуры Т*(н.ф.п) для материала образца в соответствующем цикле при нагреве на стадии предварительной термоциклической обработки, а температура охлаждения заготовок в каждом цикле на 100-200°С ниже температуры Т**(н.ф.п) начала фазового превращения материала образца в соответствующем цикле при охлаждении на стадии предварительной термоциклической обработки.

Нагрев со скоростью меньше 5°С/мин не целесообразен, так как не обоснованно увеличивает время процесса термоциклирования и ведет к дополнительным энергозатратам. Нагрев со скоростью выше 20°С/мин создает условия ускоренного режима термообработки, при котором температура фазового превращения Т не может быть определена как интервал температур: начала фазового превращения (Т (н.ф.п)) и конца фазового превращения (Т (к.ф.п)), так как процесс фазового превращения проходит во времени и при высоких скоростях нагрева, может быть не точно зафиксирован и, кроме того, является нестабильным, проходит не полностью и ведет к росту зерна, что снижает ударную вязкость и не обеспечивает высокой стойкости штампов.

Нагрев заготовок штампового инструмента в каждом цикле меньше (Т*(н.ф.п)) на 10-15°С приведет к тому, что фазовое превращение при нагреве будет проходить не до конца, и стабилизация процесса от цикла к циклу будет проходить дольше. Нагрев заготовок штампового инструмента в каждом цикле до температуры больше 10-15°С (Т*(н.ф.п)) приведет к тому, что будет наблюдаться перегрев структуры, выделение по границам зерен карбидов, что приведет к росту зерна, структурной неоднородности, повышению твердости, снижению износостойкости и обрабатываемости материала.

Охлаждение заготовок штампового инструмента в каждом цикле до температуры ниже 100°С не может гарантировать в массивных штамповых заготовках протекание процесса фазового превращения до конца во всем его объеме, а охлаждение ниже 200°С экономически нецелесообразно, так как увеличивает время термоцикла и приводит к дополнительным энергозатратам.

Проведение циклической термообработки с количеством циклов меньше N приведет к появлению нестабильной, неравновесной структуры со структурной неоднородностью. Проведение циклической термообработки с количеством циклов больше N значительно снизит производительность процесса, приведет к дополнительным энергозатратам.

Предлагаемая циклическая термообработка позволяет получить мелкодисперсную, равномерную однородную структуру со стабилизированными фазами.

Микроструктура заготовок штампов из стали ЭИ958 после термоциклирования имела равномерное распределение мелких зерен, твердость составила порядка HRC равно 51-52, износостойкость штампов на выдавливание составила порядка 5000-5200 ударов.

Циклический нагрев заготовок с регламентированной скоростью регламентированным количеством циклов до регламентированной температуры и охлаждение соответствуют каждой конкретной марки стали.

Пример осуществления способа

На заготовках из стали ЭИ958 размером 110×110×65 мм провели 3-кратный уков по трем осям, высокий отпуск по стандартной технологии, затем взяли одну из заготовок штампового инструмента, выполненную из стали ЭИ958, в качестве образца, предварительно термоциклировали в атмосферной среде со скоростью 6°С/мин. Во время предварительного термоциклирования фиксировали показания термопары на пишущем приборе КСП-24.

Анализ термограмм показал, что:

в первом цикле:

скорость нагрева - 6°С/мин;

температура начала фазового превращения (Т*(н.ф.п)) при нагреве равна 862°С;

температура конца фазового превращения (Т*(к.ф.п)) при нагреве равна 863°С;

скорость охлаждения - 6°С/мин;

температура начала фазового превращения (Т**(н.ф.п)) при охлаждении равна 728°С;

температура конца фазового превращения (Т**(к.ф.п)) при охлаждении равна 695°С;

во втором цикле:

скорость охлаждения - 6°С/мин;

температура начала фазового превращения (Т*(н.ф.п)) при нагреве равна 843°С;

температура конца фазового превращения (Т*(к.ф.п)) при нагреве равна 850°С;

температура начала фазового превращения (Т**(н.ф.п)) при охлаждении равна 718°С;

температура конца фазового превращения (Т**(к.ф.п)) при охлаждении равна 710°С;

в третьем цикле:

скорость охлаждения - 6°С/мин;

температура начала фазового превращения (Т*(н.ф.п)) при нагреве равна 840°С;

температура конца фазового превращения (Т*(к.ф.п)) при нагреве равна 850°С;

температура начала фазового превращения (Т**(н.ф.п)) при охлаждении равна 705°С;

температура конца фазового превращения (Т**(к.ф.п)) при охлаждении равна 696°С;

в четвертом цикле:

скорость охлаждения - 6°С/мин;

температура начала фазового превращения (Т*(н.ф.п)) при нагреве равна 840°С;

температура конца фазового превращения (Т*(к.ф.п)) при нагреве равна 850°С;

температура начала фазового превращения (Т**(н.ф.п)) при охлаждении равна 705°С;

температура конца фазового превращения (Т**(к.ф.п)) при охлаждении равна 696°С.

По результатам предварительного термоциклирования образца было определено количество термоциклов равным 3, так как температуры начала и конца фазового превращения третьего цикла равны температурам начала и конца фазового превращения четвертого цикла. После чего провели термоциклирование заготовок штампового инструмента по трем циклам.

Исходя из технологических возможностей оборудования, находящегося в серийном производстве, скорость нагрева и охлаждения была выбрана 6°С/мин и температурный интервал с точностью 5°С.

Температура нагрева заготовок штампового инструмента в каждом цикле на 10-15°С выше температуры Т*(н.ф.п) для материала образца в соответствующем цикле при нагреве на стадии предварительной термоциклической обработки, а охлаждение в пределах 100-200 С° ниже Т**(н.ф.п) начала фазового превращения материала образца в соответствующем цикле при охлаждении на стадии предварительной термоциклической обработки:

1 цикл - Т нагрева - 875°С, для стабилизации процесса температуру нагрева заготовки увеличили на 13°С, по сравнению с Т*(н.ф.п) образца (862+13)

время выдержки - 12 мин,

Т охлаждения - 550°С, для стабилизации процесса температуру охлаждения заготовки уменьшили на 178°С, по сравнению с Т**(н.ф.п) образца (728-178),

2 цикл - Т нагрева - 855°С, для стабилизации процесса температуру нагрева заготовки увеличили на 12°С, по сравнению с Т*(н.ф.п) образца (843+12)

время выдержки - 12 мин,

Т охлаждения - 550°С, для стабилизации процесса температуру охлаждения заготовки уменьшили на 168°С, по сравнению с Т**(н.ф.п) образца (718-168),

3 цикл - Т нагрева - 850°С, для стабилизации процесса температуру нагрева заготовки увеличили на 10°С, по сравнению с Т*(н.ф.п) образца (840+10)

время выдержки - 12 мин,

Т охлаждения - 550°С, для стабилизации процесса температуру охлаждения заготовки уменьшили на 155°С, по сравнению с Т**(н.ф.п) образца (705-155).

После термоциклирования провели металлографический анализ заготовок, который показал, что микроструктура материала представляет собой зернистый перлит.

Затем из заготовок были изготовлены разъемные штампы на выдавливание, используемые при производстве лопаток компрессора высокого давления (КВД). Затем была проведена закалка штампов по серийной технологии и после этого проведена окончательная механическая обработка штампов до чертежных размеров. Микроструктура штампов после закалки представляет собой среднеигольчатый мартенсит с незначительными участками мелкоигольчатого мартенсита.

Гравюры кузнечных штампов на выдавливание в процесс эксплуатации подвергаются ударному воздействию. Износостойкость штампа с твердостью HRC=51-52 составила 5200 ударов (т.е. изготовлено 5200 лопаток) до начала зарождения усталостной трещины, по сравнению с 500-800 ударами прототипа.

Таким образом, предлагаемый способ изготовления штампового инструмента повышает износостойкость штампового инструмента и ресурс его работы.

Способ изготовления штампового инструмента, включающий ковку, высокий отпуск, термоциклическую обработку заготовок штампового инструмента в атмосферной среде, получение штампового инструмента из заготовок и его закалку, отличающийся тем, что перед термоциклической обработкой проводят предварительную термоциклическую обработку заготовки штампового инструмента со скоростью нагрева и охлаждения 5-20°С/м и с количеством циклов N+1 исходя из условия равенства температур начала фазового превращения материала заготовки Т*, а также равенства температур конца фазового превращения Т* при нагреве материала заготовки и, соответственно равенства температур Т**, Т** при охлаждении до стабилизации структуры заготовки штампового инструмента в двух последовательных циклах N и N+1 и, по результатам предварительной термоциклической обработки выбирают количество циклов термоциклической обработки в атмосферной среде заготовок штампового инструмента, равное N, которую ведут со скоростью нагрева и охлаждения 5-20°С/мин, причем температура нагрева заготовок штампового инструмента в каждом цикле на 10-15°С выше температуры Т* для материала заготовки в соответствующем цикле при нагреве на стадии предварительной термоциклической обработки, а температура охлаждения заготовок в каждом цикле на 100-200°С ниже температуры Т** начала фазового превращения материала заготовки высокого отпуска заготовок исходя из условия равенства температур начала фазового превращения, а также равенства температур конца для материала заготовки в соответствующем цикле при охлаждении на стадии предварительной термоциклической обработки.
Источник поступления информации: Роспатент

Showing 51-60 of 86 items.
29.04.2019
№219.017.42f2

Топливный коллектор с форсунками газотурбинного двигателя

Изобретение относится к камерам сгорания газотурбинных двигателей, в частности к защите топливного коллектора и форсунок от коксования, и может быть использовано в авиадвигателестроении, энергетическом машиностроении и других областях техники, где используются газотурбинные агрегаты. Топливный...
Тип: Изобретение
Номер охранного документа: 0002362030
Дата охранного документа: 20.07.2009
09.05.2019
№219.017.4e5b

Теплонасосная установка

Изобретение относится к теплотехнике, а более конкретно к теплонасосным установкам. Теплонасосная установка содержит выполненный в виде замкнутой емкости испаритель, снабженный патрубками подвода и отвода воды, компрессор с приводом, сообщенный с паровым каналом испарителя, а также выполненный...
Тип: Изобретение
Номер охранного документа: 0002327934
Дата охранного документа: 27.06.2008
18.05.2019
№219.017.53f3

Способ диффузионного хромоалитирования поверхности детали

Изобретение относится к химико-термической обработке деталей в циркулирующей газовой среде. Способ включает нагрев и насыщение поверхности детали несколькими диффундирующими элементами одновременно в циркулирующей галогенидной среде, образующимися при контакте исходной газовой среды с...
Тип: Изобретение
Номер охранного документа: 0002270880
Дата охранного документа: 27.02.2006
18.05.2019
№219.017.546b

Устройство для сигнализации помпажа компрессора газотурбинного двигателя

Изобретение относится к области регулирования компрессоров с вращательным движением рабочих органов, в частности к системам устранения помпажа компрессора газотурбинного двигателя. Устройство для сигнализации помпажа компрессора газотурбинного двигателя содержит амортизатор и датчик с...
Тип: Изобретение
Номер охранного документа: 0002285156
Дата охранного документа: 10.10.2006
18.05.2019
№219.017.5750

Способ ремонта гребешков лабиринтных уплотнений рабочих лопаток турбины газотурбинного двигателя

Изобретение относится к турбомашиностроению и может быть использовано при восстановлении изношенных поверхностей гребешков лабиринтных уплотнений рабочих лопаток турбины газотурбинного двигателя. Способ ремонта гребешков лабиринтных уплотнений рабочих лопаток турбины газотурбинного двигателя...
Тип: Изобретение
Номер охранного документа: 0002354523
Дата охранного документа: 10.05.2009
18.05.2019
№219.017.588a

Охлаждаемая лопатка турбомашины

Охлаждаемая лопатка турбомашины содержит перо с полостью и каналом охлаждения входной кромки пера, сообщенным чередующимися по его длине входными и выходными каналами соответственно с полостью пера и с окружающим пространством со стороны спинки профиля пера. Выходные каналы выполнены...
Тип: Изобретение
Номер охранного документа: 0002362020
Дата охранного документа: 20.07.2009
18.05.2019
№219.017.58ae

Двигатель для летательного аппарата

Двигатель для летательного аппарата, содержащий выполненный в виде кольцевого канала внешний контур и внутренний контур с компрессором, подсоединенным к устройству для его привода, и с камерой сгорания и форсажную камеру. Двигатель дополнительно содержит расположенный за компрессором...
Тип: Изобретение
Номер охранного документа: 0002323362
Дата охранного документа: 27.04.2008
18.05.2019
№219.017.590f

Устройство для электроэрозионной обработки глубоких отверстий малого диаметра

Изобретение относится к устройствам для электроэрозионного и электрохимического прошивания отверстий малых диаметров в электропроводящих материалах и изделиях, например в лопатках газотурбинных двигателей. Устройство содержит стойку, выполненную с опорой, кондукторной втулкой и направляющими, в...
Тип: Изобретение
Номер охранного документа: 0002413598
Дата охранного документа: 10.03.2011
18.05.2019
№219.017.5973

Способ изготовления заготовки пустотелой лопатки для газотурбинного двигателя

Изобретение относится к турбостроению и может быть использовано при изготовлении пустотелой лопатки для газотурбинного двигателя. Способ изготовления заготовки пустотелой лопатки газотурбинного двигателя включает выполнение выборки под крышку в боковине лопатки, установку в нее крышки и сварку....
Тип: Изобретение
Номер охранного документа: 0002423216
Дата охранного документа: 10.07.2011
09.06.2019
№219.017.769b

Масляная система газотурбинного двигателя

Изобретение относится к масляным системам, в частности, к масляным системам газотурбинных двигателей, и может найти применение в авиадвигателестроении и других областях техники. В масляной системе газотурбинного двигателя, содержащей подключенную к магистралям нагнетания, откачки и суфлирования...
Тип: Изобретение
Номер охранного документа: 0002273745
Дата охранного документа: 10.04.2006
Showing 21-29 of 29 items.
19.06.2019
№219.017.8812

Способ ремонта лопаток турбины газотурбинного двигателя

Изобретение относится к области ремонта, в частности к ремонту лопаток турбин газотурбинных двигателей химико-термическими методами, и может быть использовано в областях техники, где используются газотурбинные двигатели. Способ включает очистку пера и замка лопаток от эксплуатационных...
Тип: Изобретение
Номер охранного документа: 0002367554
Дата охранного документа: 20.09.2009
10.07.2019
№219.017.ac0d

Состав жаропрочного никелевого сплава для монокристального литья (варианты)

Изобретение относится к металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для деталей с монокристаллической структурой, например лопаток турбин, работающих при высоких температурах. Сплав по первому варианту содержит, мас.%: хром - 0,5-4,0, алюминий - 4,0-7,0,...
Тип: Изобретение
Номер охранного документа: 0002348724
Дата охранного документа: 10.03.2009
10.07.2019
№219.017.ac11

Состав жаропрочного никелевого сплава для монокристального литья (варианты)

Изобретение относится к металлургии, а именно к литейным жаропрочным никелевым сплавам, предназначенным для производства монокристальных рабочих и сопловых лопаток газотурбинных двигателей, длительное время работающих при температурах, превышающих 1000°С. Согласно первому варианту сплав имеет...
Тип: Изобретение
Номер охранного документа: 0002348725
Дата охранного документа: 10.03.2009
10.07.2019
№219.017.ad5e

Состав жаропрочного никелевого сплава (варианты)

Изобретение относится к металлургии и может быть использовано для производства монокристаллических рабочих и сопловых лопаток газотурбинных двигателей, длительное время работающих при температурах выше 1000°С. Сплав по первому варианту содержит, мас.%: хром 1,0-4,0, алюминий 4,5-7,0, вольфрам...
Тип: Изобретение
Номер охранного документа: 0002353691
Дата охранного документа: 27.04.2009
15.05.2023
№223.018.57be

Сплав на основе кобальта

Изобретение относится к области порошковой металлургии, а именно к сплавам на основе кобальта, предназначенным для изготовления деталей ГТД с рабочими температурами не менее 1100°С методом аддитивного производства из металлического порошка. Сплав на основе кобальта для изготовления деталей...
Тип: Изобретение
Номер охранного документа: 0002767961
Дата охранного документа: 22.03.2022
15.05.2023
№223.018.57e7

Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной...
Тип: Изобретение
Номер охранного документа: 0002767968
Дата охранного документа: 22.03.2022
16.05.2023
№223.018.607b

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607c

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607d

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
+ добавить свой РИД