×
10.07.2019
219.017.ad5e

Результат интеллектуальной деятельности: СОСТАВ ЖАРОПРОЧНОГО НИКЕЛЕВОГО СПЛАВА (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии и может быть использовано для производства монокристаллических рабочих и сопловых лопаток газотурбинных двигателей, длительное время работающих при температурах выше 1000°С. Сплав по первому варианту содержит, мас.%: хром 1,0-4,0, алюминий 4,5-7,0, вольфрам 10,0-14,0, тантал 5,0-10,0, рений 4,0-7,0, кобальт 2,0-5,0, иттрий 0,003-0,1, лантан 0,001-0,1, церий 0,003-0,1, никель - остальное и характеризуется более высоким уровнем жаропрочности и меньшей склонностью к образованию топологически плотноупакованных (ТПУ) фаз, особенно при длительной эксплуатации. Сплав по второму варианту содержит, мас.%: хром 1,0-4,0, алюминий 4,5-7,0, титан ≤ 2,0, молибден ≤ 4,0, вольфрам 8,0-14,0, тантал 5,0-10,0, рений 4,0-7,0, кобальт 2,0-5,0, ниобий ≤ 2,0, иттрий 0,003-0,1, лантан 0,001-0,1, церий 0,003-0,1, углерод ≤ 0,1, никель - остальное и характеризуется повышенной жаропрочностью, улучшенными литейными свойствами, технологической пластичностью и повышенной коррозионной стойкостью. 2 н.п. ф-лы, 2 табл.

Изобретение относится к металлургии сплавов, а именно к производству никелевых жаропрочных сплавов, используемых для изготовления методом монокристального литья деталей газотурбинных двигателей, например, турбинных лопаток, длительно работающих при высоких температурах 1000-1100°С.

Известен жаропрочный сплав CMSX-4, который применяется в качестве материала для монокристальных лопаток и представляет собой безуглеродистый монокристальный ренийсодержащий сплав (патент США №4643782, МПК С22С 19/05, 1987.02.17) - аналог.

Известный сплав имеет следующий химический состав (мас.%):

кобальт - 9,3-10,0

хром - 6,4-6,8.

молибден - 0,5-0,7,

вольфрам - 6,2-6,6,

тантал - 6,3-6,7,

алюминий - 5,45-5,75,

титан - 0,8-1,2,

гафний - 0,02-0,12,

рений - 2,8-3,2,

никель - остальное до 100%.

Известный сплав имеет невысокую жаропрочность (предел сточасовой прочности при температуре 1000°С равен 26 кгс/мм2) и, кроме того, у него проявляется фазовая нестабильность, связанная с выделением топологически плотноупакованных фаз (ТПУ) фаз.

Известен сплав CMSX-10, применяемый для получения отливок лопаток с монокристаллической структурой следующего химического состава (мас.%):

углерод - до 0,04,

хром - 1,8-2,5,

кобальт - 1,5-2,5,

титан - 0,1-0,5,

алюминий - 5,5-6,1,

молибден - 0,25-0,6,

вольфрам - 3,5-6,0,

тантал - 8,0-9,0,

рений - 6,2-6,8,

ниобий - 0,01-0,1,

гафний - до 0,04,

бор - до 0,01,

иттрий - до 0,01,

церий - до 0,01,

лантан - до 0,01,

марганец - до 0,04,

кремний - до 0,05,

цирконий - до 0,01,

сера - до 0,001,

ванадий - до 0,01

никель - остальное до 100% (патент США №5540790, МПК: С22С 19/05, 1996.07.30) - прототип.

Предел длительной (сточасовой) прочности известного сплава при температуре 1000°С составляет 29-30 кгс/мм2. При этом отмечается сравнительно высокая дисперсия долговечности образцов при их испытании на ползучесть, что свидетельствует о недостаточной сбалансированности химического состава сплава, принятого за прототип.

Техническим результатом, на достижение которого направлено заявляемое изобретение, по первому варианту является разработка сплава с более высоким уровнем жаропрочности и меньшей склонностью к образованию топологически плотноупакованных (ТПУ) фаз, особенно при длительной эксплуатации, т.е. повышение долговременных прочностных свойств сплава.

Указанный технический результат достигается тем, что состав никелевого жаропрочного сплава содержит никель, хром, кобальт, вольфрам, рений, тантал, иттрий, лантан и церий при следующем соотношении компонентов (мас.%):

хром - 1,0-4,0,

алюминий - 4,5-7,0,

вольфрам - 10,0-14,0,

тантал - 5,0-10,0,

рений - 4,0-7,0,

кобальт - 2,0-5,0,

иттрий - 0,003-0,1.

лантан - 0,001-0,1,

церий - 0,003-0,1

никель - остальное до 100%.

Известен жаропрочный сплав ЖС-32-ВИ химический состав которого включает (мас.%):

хром 4,3-5,6,

кобальт - 8,0-10,0,

вольфрам - 7,7-9,5,

алюминий - 5,6-6,3,

рений - 3,5-4,5,

тантал 3,5-4,5,

ниобий 0 1,4-1,8,

углерод - 0,12-0,18,

молибден - 0,8-1,4,

бор - 0,02,

церий - 0,025,

никель - остальное до 100%.

Недостатком известного сплава является низкий предел длительной прочности, а также возможность фазовых превращений с образованием ТПУ фаз (σ, µ) или карбидов Ме6С.

Известен сплав CMSX-10 применяемый для получения отливок лопаток с монокристаллической структурой следующего химического состава (мас.%):

углерод - до 0,04,

хром - 1,8-2,5,

кобальт - 1,5.2,5,

титан - 0,1-0,5,

алюминий - 5,5-6,1,

молибден - 0,25-0,6,

вольфрам - 3,5-6,0,

тантал - 8,0-9,0,

рений - 6,2-6,8,

ниобий - 0,01-0,1,

гафний - до 0,04,

бор - до 0,01,

иттрий - до 0,01,

церий - до 0,01,

лантан - до 0,01,

марганец - до 0,04,

кремний - до 0,05,

цирконий - до 0,01,

сера - до 0,001,

ванадий - до 0,01

никель - остальное до 100%, (патент США №5540790, МПК: С22С 19/05, 1996.07.30) - прототип.

Предел длительной (сточасовой) прочности известного сплава при температуре 1000°С составляет 29-30 кгс/мм2. При этом отмечается сравнительно высокая дисперсия долговечности образцов при их испытании на ползучесть, что свидетельствует о недостаточной сбалансированности химического состава сплава, принятого за прототип.

Техническим результатом, на достижение которого направлено заявляемое изобретение по второму варианту, является повышение жаропрочности никелевых сплавов для монокристального литья, например, лопаток газотурбинных двигателей, улучшение литейных свойств сплава, его технологической пластичности и повышение коррозионной стойкости заявляемого сплава.

Указанный технический результат достигается тем, что состав жаропрочного никелевого сплава, содержащий никель, хром, кобальт, вольфрам, алюминий, тантал, рений, молибден, иттрий, лантан и церий дополнительно содержит титан и ниобий при следующем соотношении компонентов (мас.%):

хром - 1,0-4,0,

алюминий 4,5-7,0,

титан ≤ 2,0,

молибден ≤ 4,0,

вольфрам - 8,0-14,0,

тантал - 5,0-10,0,

рений - 4,0-7,0,

кобальт - 2,0-5,0,

ниобий ≤ 2,0,

иттрий - 0,003-0,1,

лантан - 0,001-0,1,

церий - 0,003-0,1

углерод ≤ 0,1

никель - остальное до 100%.

Развитие современных жаропрочных никелевых сплавов (ЖС) последних поколений связано главным образом с применением двух основных подходов в области материаловедения и технологии:

- введением в систему легирования новых тугоплавких металлов, например, тантала и рения;

- использованием технологии направленной кристаллизации для получения монокристаллов.

Заявителем и авторами проведены теоретические и экспериментальные исследования, касающиеся влияния рения на структуру и свойства современных монокристальных жаропрочных сплавов, отличающихся высоким уровнем структурной стабильности. На основании полученных результатов был сделан вывод о том, что содержание рения должно быть ограничено сверху и это предельное содержание рения не должно превышать 7,0% от массового состава. Указанное ограничение связано со следующими особенностями физико-химических свойств рения:

- рений в отличие от тантала, вольфрама и ряда других тугоплавких металлов, практически не растворяется в γ'-фазе, количество которой в современных сплавах достигает 60-70 об.%. Это означает, что даже при полном отсутствии ликвации содержание рения в матрице более чем в вдвое превышает его номинальное значение в сплаве, что увеличивает склонность матрицы сплавов к выделению из нее рений содержащих фаз;

- рений не относится к числу сильных карбидообразующих элементов, но может активно стремиться к образованию промежуточных ТПУ фаз;

- рений является одним из наиболее сильно ликвирующих элементов жаропрочных сплавов. При этом выравнивание его концентрации происходит очень медленно;

- в сплаве даже с небольшим количеством рения (в зависимости от наличия в составе и количества других компонентов сплава) возможно выделение из матрицы хрупких пластин σ-фазы.

В заявляемых сплавах по первому и второму вариантах количество рения и система легирования сбалансированы таким образом, чтобы минимизировать возможность образования ТПУ фаз и, следовательно, охрупчивания сплавов.

Особенностью заявляемого сплава по первому варианту (КС-3) является высокое содержание вольфрама в заявленных пределах. Верхний предел содержания вольфрама ограничивает область концентраций, при выходе за которую возрастает вероятность выделения вольфрама из твердого раствора в виде α-фазы, которая не является таким эффективным упрочнителем как γ'-фаза на основе Ni3Al, а при содержании вольфрама ниже нижнего предела, его стабилизирующее воздействие на структуру ослабляется.

Заявляемое количество тантала вводится в состав никелевого жаропрочного сплава на фоне высокого содержания вольфрама. Система легирования заявляемого сплава (КС-3) сбалансирована таким образом, чтобы в сплаве не происходило выделения α-фазы несмотря на то, что тантал так же, как и вольфрам имеет ОЦК решетку.

Влияние тантала на свойства заявляемого сплава во многом сходно с влиянием вольфрама, тантал также характеризуется высокой когезивной прочностью, что характерно и для заявляемого, в заданном соотношении компонентов, сплава. Тантал распределяется между γ-матрицей и упрочняющей γ'-фазой, стабилизируя и упрочняя обе основные фазы жаропрочного сплава. При содержании тантала больше 10,0 мас.% возрастает вероятность его выпадения из твердого раствора в виде интерметаллидов Ni-Ta, а при содержании - меньше 5,0 мас.% его воздействие на свойства практически отсутствует.

Введение в заявляемый состав жаропрочного сплава указанного количества хрома, обусловлено необходимостью повышения его жаростойкости. При увеличении содержания хрома выше 4,0 мас.% возрастает вероятность образования топологически-плотноупакованной (ТПУ) фазы на основе хрома, которая охрупчивает сплав, кроме того, в сплавах с довольно высоким содержанием рения содержание хрома может быть снижено до 4,0 мас.%, так как рений относится к элементам, повышающим сопротивление сплава газовой коррозии.

Легирование сплава кобальтом в заявляемых количествах обусловлено необходимостью улучшения технологических характеристик сплава - технологической пластичности и литейных свойств, а также стойкости к коррозиии.

Система микролегирующих добавок, а именно совместное использование лантана, иттрия и церия в заявляемых количествах обеспечивает стабилизацию структурных дефектов в монокристаллах заявляемого сплава, а совместно с остальными компонентами состава сплава обеспечивает повышение жаропрочности по сравнению с прототипом.

Особенностью заявляемого сплава по второму варианту является аналогичность влияния рения, вольфрама, тантала, кобальта и системы микролегирующих добавок (иттрий, лантан и церий), но кроме этого, на свойства заявляемого сплава по второму варианту влияет наличие в его составе титана, молибдена, ниобия и возможно углерода.

Титан - это один из основных γ' образующих элементов, количество которого, с одной стороны, обеспечивает образование необходимого содержания упрочняющей γ'-фазы, а с другой стороны, ограничивает объем избыточной эвтектики (γ'+γ).

Ниобий и молибден - обеспечивают повышение долговечности материала в области температур ≈1000°С. Молибден является упрочнителем твердого раствора, однако наиболее существенно его вклад проявляется в изменении параметра γ - твердого раствора и, как следствие, морфологии упрочняющей вторичной γ'-фазы, делая ее кубической и тем самым, обеспечивая высокое сопротивление ползучести жаропрочных сплавов.

В состав сплава может вводиться углерод для образования второй упрочняющей фазы жаропрочных сплавов - карбидов. Суммарное содержание в заявляемом сплаве углерода и карбидообразующих элементов обеспечивает отсутствие охрупчивающих ТПУ фаз.

Заявляемый состав жаропрочного никелевого сплава по второму варианту в количественном и качественном составе обеспечивает наряду с повышением жаропрочности, улучшением литейных свойств сплава и его технологической пластичности, повышение коррозионной стойкости.

Примеры конкретного выполнения.

Для апробации результатов были отлиты сплавы по первому и второму вариантам. Отливка сплавов осуществлялась в вакуумно-индукционной печи «Кристалл» емкостью 5-10 кг. Порядок введения компонентов заявляемых составов сплавов является стандартным: никель, хром, кобальт, вольфрам, молибден, тантал, углерод, плавление, раскисление углеродом, последующее введение титана, алюминия и микролегирующих добавок (элементы с высокой активностью к кислороду) и разливка.

Для апробации сплава по первому варианту были выплавлены два состава сплава (один заявляемый и один сплав прототип - CMSX-10), содержащие компоненты (в мас.%), приведенные в Таблице 1.

Таблица 1
Монокристальная структура, ориентация оси роста [100].
№ п/п Компоненты состава сплавов
Cr Al W Та Со Re Y La Се Ni
Заявляемый сплав 2,0 5,5 10,1 8,3 2,0 6,0 0,02 0,02 0,02 Ост.
CMSX-10 2,0 6,0 5,5 8,5 2,0 6,5 0,01 0,01 0,01 Ост.

После чего литые образцы подвергались высокотемпературному газостатическому уплотнению (заявляемый сплав), термической обработке и испытывались.

Результаты испытаний:

Сплав CMSX-10 (прототип):

Т=1000°С, σ100=290 МПа,

Заявляемый сплав.

Т=1000°С, σ100=330 МПа,

Для апробации сплава по второму варианту были выплавлены два состава сплава (один заявляемый и один сплав прототип - CMSX-10), содержащие компоненты (в мас.%) приведенные в Таблице 2.

№ п/п Компоненты состава сплавов
Cr Al W Та Со Y La С Се Ti MO Nb Re Ni
КС-3 1,9 5,2 10,1 7,5 2,2 0,015 0,015 0,004 0,015 0,3 0,1 0,3 5,5 Ост.
CMSX-10 2,0 5,6 4,5 8,5 2,0 0,01 0,01 0,02 0,01 0,4 0,4 0,05 5,5 Ост.

После чего литые образцы без последующей механической обработки испытывались.

Результаты испытаний:

Сплав CMSX-10 (прототип):

Т=1000°С, σ100=300 МПа,

Заявляемый сплав.

При температуре Т=1000°С и σ=300 МПа долговечность τ=174,2 час.

При температуре Т=1000°С и σ=250 МПа долговечность τ=648 час.

При температуре Т=800°С и σ=750 МПа долговечность τ=более 680 час.

Введение дополнительных легирующих элементов в заявляемый сплав по второму варианту приводит к улучшению литейной дендритной структуры - количество литейных микропор уменьшается на 20-30%, что может оказать положительное влияние на характеристики усталости сплава и долговечность на больших ресурсах.

Приведенные результаты испытаний показывают, что по сравнению с прототипом заявляемые сплавы по первому и второму вариантам обеспечивают достижение технического результата.

Источник поступления информации: Роспатент

Showing 1-10 of 52 items.
20.02.2019
№219.016.c0e3

Турбореактивный двухконтурный двигатель с форсажной камерой

Изобретение относится к авиастроению, в частности к турбореактивным двухконтурным двигателям с форсажной камерой. Турбореактивный двухконтурный двигатель с форсажной камерой включает компрессор высокого давления, турбину высокого давления и турбину низкого давления. Двигатель выполнен со...
Тип: Изобретение
Номер охранного документа: 0002369765
Дата охранного документа: 10.10.2009
01.03.2019
№219.016.ca2d

Способ обработки металлического сплава давлением

Изобретение относится к обработке давлением металлических сплавов, преимущественно, в виде слитков и может быть использовано при изготовлении изделий, в том числе ответственного назначения, в различных областях техники, например, в авиации, машиностроении. Сплав нагревают и деформируют за...
Тип: Изобретение
Номер охранного документа: 0002255122
Дата охранного документа: 27.06.2005
11.03.2019
№219.016.d67e

Способ изготовления колец

Изобретение относится к обработке металлов давлением и может быть использовано в металлургической и авиационной промышленности при изготовлении деталей ответственного назначения, преимущественно деталей газотурбинных двигателей. Производят поперечную осадку заготовки с получением пластины....
Тип: Изобретение
Номер охранного документа: 0002286862
Дата охранного документа: 10.11.2006
11.03.2019
№219.016.d6fa

Щеточное уплотнение

Изобретение относится к области машиностроения, в частности к устройствам для уплотнения зазора между подвижными относительно одна другой деталями, а именно к щеточным уплотнениям. Щеточное уплотнение зазора между выполненными с возможностью перемещения одна относительно другой деталями...
Тип: Изобретение
Номер охранного документа: 0002293894
Дата охранного документа: 20.02.2007
11.03.2019
№219.016.d6fc

Узел опоры газотурбинного двигателя

Изобретение относится к энергетическому и транспортному машиностроению, в частности к системам смазки подшипниковых опор газотурбинных двигателей, и может быть использовано для подачи масла в подшипники, например межроторные подшипники высокотемпературных авиационных газотурбинных двигателей....
Тип: Изобретение
Номер охранного документа: 0002293193
Дата охранного документа: 10.02.2007
11.03.2019
№219.016.d716

Способ безоблойной штамповки детали

Изобретение относится к обработке металлов давлением и может быть использовано при штамповке деталей типа корпусов арматуры газотурбинных двигателей. Деталь, имеющую внутреннюю полость, уступы и отростки с приливами, штампуют безоблойным методом по меньшей мере за два перехода. При этом...
Тип: Изобретение
Номер охранного документа: 0002292979
Дата охранного документа: 10.02.2007
11.03.2019
№219.016.d7c8

Обтекаемая конструкция

Изобретение относится к области прикладной гидрогазодинамики, в частности к системам для управления пограничным слоем, и может быть использовано, например, на летательных аппаратах, а также на судах и в трубопроводах. Техническим результатом изобретения является снижение гидравлического...
Тип: Изобретение
Номер охранного документа: 02218490
Дата охранного документа: 10.12.2003
11.03.2019
№219.016.d985

Способ изготовления крупногабаритной полимерной оснастки

Изобретение относится к способам изготовления крупногабаритной и другой оснастки из неметаллических материалов для производства на ней лемнискатных входов, коков обтекателей, обшивок, мотогондолл и т.д. Техническим результатом заявленного изобретения является снижение металлоемкости,...
Тип: Изобретение
Номер охранного документа: 0002375185
Дата охранного документа: 10.12.2009
11.03.2019
№219.016.da8f

Способ изготовления теплоизолирующего покрытия и композиционный материал для его осуществления

Изобретение относится к теплоизолирующим покрытиям. Описан способ изготовления теплоизолирующего покрытия элемента изделия, заключающийся в нанесении на поверхность элемента композиционного материала в виде суспензии фрагментов холста базальтового в водном геле и термообработке нанесенного...
Тип: Изобретение
Номер охранного документа: 0002364612
Дата охранного документа: 20.08.2009
10.04.2019
№219.017.0191

Смазка для заготовок при горячей или полугорячей обработке металлов давлением

Сущность: смазка содержит, мас. %: графит 12,5-25,0, оксид металла 7,5-12,0, натриевая соль фосфорной кислоты 3-7, силикат щелочного металла 2-5, карбонат щелочного металла 0,5-3, лигносульфонат 0,2-0,5, водорастворимый целлюлозный полимер 0,3-1,5, оксиэтилированный алкилфенол 0,5-2,0, вода...
Тип: Изобретение
Номер охранного документа: 02224011
Дата охранного документа: 20.02.2004
Showing 1-10 of 87 items.
10.06.2013
№216.012.489b

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству сплавов на основе интерметаллида NiАl и изделиям, получаемым из них методом направленной кристаллизации, с монокристаллической или столбчатой структурами, например лопаток газовых турбин, работающих при температурах до 1200°С....
Тип: Изобретение
Номер охранного документа: 0002484167
Дата охранного документа: 10.06.2013
27.06.2013
№216.012.50cc

Способ формирования покрытия на рабочей охлаждаемой лопатке газовой турбины из никелевого сплава

Изобретение относится к технологии нанесения покрытий на лопатки газовых турбин из никелевых сплавов и может быть использовано в авиационной промышленности, машиностроении, энергетике и других отраслях промышленности. Предварительно обезжиренную лопатку размещают в камере промышленной...
Тип: Изобретение
Номер охранного документа: 0002486277
Дата охранного документа: 27.06.2013
10.11.2013
№216.012.7ce4

Способ изготовления щеточного уплотнения роторов

Изобретение может быть использовано в процессах изготовления щеточных уплотнений методами пайки с помощью электронного луча. Кольцевое основание и кольцевые опорные пластины собирают в кольцевую оправку, на которую наматывают проволоку и прижимают ее к оправке прижимными кольцевыми пластинами....
Тип: Изобретение
Номер охранного документа: 0002497645
Дата охранного документа: 10.11.2013
20.02.2014
№216.012.a174

Способ изготовления сварной тонкостенной конической обечайки с продольными гофрами

Изобретение относится к области сварочного производства и может быть использовано в процессах изготовления методами сварки тонкостенных обечаек с элементами жесткости в виде продольных гофр, используемых, например, в качестве теплового экрана сопла ГТД. Способ заключается в том, что производят...
Тип: Изобретение
Номер охранного документа: 0002507047
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.afab

Способ изготовления сварных тонкостенных конических обечаек с ребрами жесткости

Способ предназначен для изготовления тонкостенных конических обечаек с ребрами жесткости методом сварки. Производят формирование сегментов обечайки. Отгибают продольные кромки сегментов для получения ребер жесткости, размещают сегменты на съемных опорных пластинах, установленных на основании...
Тип: Изобретение
Номер охранного документа: 0002510686
Дата охранного документа: 10.04.2014
10.06.2014
№216.012.ceca

Щеточное уплотнение роторов, способ и устройство для его изготовления

Группа изобретений относится к уплотнительной технике. Щеточное уплотнение роторов выполнено в виде прижимной щеки и последовательно состыкованных с ней элементов - кольцевой проволочной щетки и опорной щеки. Устройство снабжено технологическим кольцом. Прижимная щека выполнена с торцевым...
Тип: Изобретение
Номер охранного документа: 0002518709
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d774

Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью

Изобретение относится к области металлургии, в частности к никелевым сплавам, и может быть использовано при производстве сопловых и рабочих охлаждаемых лопаток газотурбинных двигателей и установок. Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании...
Тип: Изобретение
Номер охранного документа: 0002520934
Дата охранного документа: 27.06.2014
20.10.2014
№216.012.fe34

Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на никелевой основе. Сплав, мас.%: хром - 4,0-6,0; кобальт - 8,0-11,0; молибден - 2,5-3,5; вольфрам - 6,0-8,0; алюминий - 5,4-6,2; углерод 0,05-0,16; бор - 0,008-0,04; цирконий - 0,01-0,05; титан -...
Тип: Изобретение
Номер охранного документа: 0002530932
Дата охранного документа: 20.10.2014
20.07.2015
№216.013.63e2

Композиционный материал на основе ниобия, упрочненный силицидами ниобия, и изделие, выполненное из него

Изобретение относится к области металлургии, в частности к эвтектическим композиционным материалам на основе ниобия, упрочненным силицидами ниобия, предназначенным для изготовления теплонагруженных изделий, и может быть использовано в авиационной и энергетической промышленности. Композиционный...
Тип: Изобретение
Номер охранного документа: 0002557117
Дата охранного документа: 20.07.2015
10.09.2015
№216.013.75d6

Способ работы и устройство газотурбинной установки

Группа изобретений относится к энергетике Способ работы газотурбинной установки предусматривает подачу в камеру сгорания сжатого воздуха и паро-метановодородной смеси, расширение продуктов ее сгорания в газовой турбине, охлаждение путем испарения или перегрева водяного пара, направляемого в...
Тип: Изобретение
Номер охранного документа: 0002561755
Дата охранного документа: 10.09.2015
+ добавить свой РИД