×
09.05.2019
219.017.4e5b

Результат интеллектуальной деятельности: ТЕПЛОНАСОСНАЯ УСТАНОВКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплотехнике, а более конкретно к теплонасосным установкам. Теплонасосная установка содержит выполненный в виде замкнутой емкости испаритель, снабженный патрубками подвода и отвода воды, компрессор с приводом, сообщенный с паровым каналом испарителя, а также выполненный в виде замкнутой емкости и снабженный патрубком отвода конденсатор, сообщенный с компрессором. Вход компрессора размещен непосредственно в паровом канале испарителя, его выход - в полости конденсатора. Корпус компрессора герметично установлен в стенках емкостей испарителя и конденсатора или в общей для емкостей испарителя и конденсатора стенке. В испарителе паровой канал отделен от остального пространства испарителя кольцевым жалюзийным водоотделителем, уплотненным относительно корпуса компрессора и емкости испарителя. В качестве привода компрессора использована паровая турбина, размещенная в полости конденсатора и снабженная каналами подвода и отвода пара. Вход паровой турбины обращен к выходной ступени компрессора. Канал отвода пара от паровой турбины размещен внутри канала подвода пара к турбине. Корпус компрессора на его выходе выполнен в виде диффузора. Техническим результатом является повышение надежности установки и увеличение коэффициента преобразования тепла. 5 з.п. ф-лы, 1 ил.

Изобретение относится к теплотехнике, а более конкретно к теплонасосным установкам.

Известна теплонасосная установка, содержащая испаритель, паровой компрессор с приводом, сообщенный с испарителем и конденсатор, сообщенный с компрессором (а.с. СССР №1478000, кл. F25B 29/00, оп. 1989 г.).

В известной установке испаритель, компрессор и конденсатор пространственно располагаются отдельно друг от друга и соединены между собой трубопроводами. Поэтому коэффициент преобразования тепла такой установки оказывается невысоким за счет больших потерь тепла через стенки соединительных трубопроводов и развитую поверхность стенок испарителя, компрессора и конденсатора, что является показателем низкой эффективности установки. Одновременно, недостаточно высока и надежность такой установки, вследствие наличия большого количества стыков трубопроводов с элементами установки.

Наиболее близкой к заявленной является теплонасосная установка, содержащая размещенный в замкнутой емкости испаритель, паровой компрессор с приводом, сообщенный с паровым каналом паросборника испарителя и выполненный в виде замкнутой емкости конденсатор, сообщенный с компрессором (а.с. СССР №2116586, кл. F25B 30/02, оп. 1998 г.).

В этой установке испаритель, компрессор и конденсатор пространственно располагаются отдельно друг от друга и соединены между собой трубопроводами. Поэтому коэффициент преобразования тепла такой установки оказывается невысоким за счет больших потерь тепла через стенки соединительных трубопроводов и развитую поверхность стенок испарителя, компрессора и конденсатора, что является показателем низкой эффективности установки. Одновременно, недостаточно высока и надежность такой установки, вследствие наличия большого количества стыков трубопроводов с элементами установки.

Изобретение направлено на решение задачи создания более надежной и более эффективной установки.

Технический результат заключается в повышении надежности установки и увеличении коэффициента преобразования тепла.

Указанный технический результат достигается тем, что в теплонасосной установке, содержащей выполненный в виде замкнутой емкости испаритель, снабженный патрубками подвода и отвода воды, компрессор с приводом, сообщенный с паровым каналом испарителя, а также выполненный в виде замкнутой емкости и снабженный патрубком отвода конденсатор, сообщенный с компрессором, вход компрессора размещен непосредственно в паровом канале испарителя, его выход - в полости конденсатора, а корпус компрессора герметично установлен в стенках емкостей испарителя и конденсатора или в общей для емкостей испарителя и конденсатора стенке.

Указанный результат достигается также тем, что в испарителе паровой канал отделен от остального пространства испарителя кольцевым жалюзийным водоотделителем, уплотненным относительно корпуса компрессора и емкости испарителя.

Указанный результат достигается также тем, что в качестве привода компрессора использована паровая турбина, размещенная в полости конденсатора и снабженная каналами подвода и отвода пара.

Указанный результат достигается также тем, что вход паровой турбины обращен к выходной ступени компрессора.

Указанный результат достигается также тем, что канал отвода пара от паровой турбины размещен внутри канала подвода пара к турбине.

Указанный результат достигается также тем, что корпус компрессора на его выходе выполнен в виде диффузора.

На чертеже показан вариант конструктивного выполнения теплонасосной установки.

Теплонасосная установка (показана в рабочем пространственном положении) содержит испаритель 1, конденсатор 2 и компрессор 3 с приводом в виде паровой турбины 4. Испаритель 1 выполнен в виде цилиндрической замкнутой емкости, образованной верхней стенкой 5, боковой стенкой 6 и нижней стенкой 7. Испаритель 1 снабжен патрубком 8 подвода воды, подсоединенным к распылителю 9 воды, размещенному в полости испарителя 1, и патрубком 10 отвода воды из испарителя. Конденсатор 2 также выполнен в виде замкнутой цилиндрической емкости, образованной нижней стенкой 11, боковой стенкой 12 и верхней стенкой 7, являющейся одновременно (как было указано выше) нижней стенкой для испарителя 1. Таким образом, стенка 7 является общей для емкости испарителя 1 и емкости конденсатора 2. При этом испаритель 1 и конденсатор 2 расположены ярусами, т.е. один над другим. Вместе с тем, ярусное расположение испарителя 1 и конденсатора 2 не является единственно возможным для описываемого варианта выполнения теплонасосной установки. Конденсатор 2 снабжен патрубком 13 отвода конденсата. В общей стенке 7 герметично установлен (в частном случае, герметично закреплен) корпус 14 компрессора 3, выполненного, например, в виде осевой лопаточной машины. Корпус 14 компрессора установлен таким образом, что он пронизывает общую для испарителя и конденсатора стенку 7, выступая в полость испарителя 1 и в полость конденсатора 2. В кольцевом пространстве между корпусом 14 компрессора 3 и боковой стенкой 6 испарителя, над оросителем 9, размещен жалюзийный водоотделитель 15, своим входом (т.е. входным сечением) 16 обращенный к оросителю 9. Пространство испарителя 1, расположенное за выходом (т.е. за кольцевым выходным сечением) 17 водоотделителя 15, представляет собой паровой канал 18 испарителя 1. В паровом канале 18 находится (размещается) вход (т.е. плоскость входного сечения) 19 компрессора 3, выход (т.е. плоскость выходного сечения) 20 которого находится (размещается) в полости конденсатора 2. Жалюзийный водоотделитель 15 имеет кольцевую форму, уплотнен относительно корпуса 14 (его наружной поверхности) компрессора 3, а также относительно боковой стенки 6 испарителя 1, и отделяет паровой канал 18 испарителя 1 от остального пространства испарителя 1. В полости конденсатора 2 размещен теплообменник 21, снабженный трубопроводами подвода и отвода охлаждающей среды, а также паровая турбина 4, снабженная каналом 22 подвода пара и каналом 23 отвода пара. При этом канал 23 отвода пара от паровой турбины 4 размещен внутри канала 22 подвода пара к ней. Оптимальным является коаксиальное расположение каналов 22 и 23. Сама паровая турбина 4 размещена таким образом, что ее вход 24 обращен к выходной ступени 25 компрессора 3. Корпус 14 компрессора 3 в его выходной части выполнен в виде диффузора 26.

Возможен другой вариант выполнения теплонасосной установки (не требующий отдельного графического пояснения), при котором емкости испарителя 1 и конденсатора 2 не имеют стенок, общих для обеих емкостей. При таком варианте выполнения корпус 14 компрессора герметично установлен как в стенке испарителя 1 (пронизывая ее), так и в стенке конденсатора 2 (также пронизывая ее). При ярусном расположении емкостей (испаритель над конденсатором) упомянутыми стенками будут, соответственно, нижняя стенка испарителя и верхняя стенка конденсатора. При этом указанные стенки могут как соприкасаться (емкость испарителя может быть поставлена непосредственно на емкость конденсатора и в этом случае конвективные теплопотери будут минимальны), так и могут находиться на некотором расстоянии друг от друга (между емкостями испарителя 1 и конденсатора может существовать зазор).

Цилиндрическая и одинаковая (или подобная) форма емкостей испарителя 1 и конденсатора 2 не является единственно возможной. В более общем виде емкости испарителя 1 и конденсатора 2 могут иметь произвольную и, при этом различающуюся форму.

Необходимыми для достижения заявленного результата в первом из описанных вариантов выполнения теплонасосной установки (с общей для испарителя и конденсатора стенкой 7) являются герметичная установка в упомянутой общей стенке корпуса компрессора 3, а также непосредственное размещение входа 19 компрессора 3 в паровом канале испарителя, а выхода 20 компрессора 3 в полости конденсатора 2.

Для второго из описанных вариантов теплонасосной установки необходимыми являются герметичная установка корпуса компрессора 3 в стенке испарителя 1 и в стенке конденсатора 2, а также непосредственное размещение входа 19 компрессора 3 в паровом канале испарителя, а выхода 20 компрессора 3 в полости конденсатора 2. В том случае, если емкости испарителя и конденсатора установлены с зазором друг от друга, целесообразно принять дополнительные меры по снижению утечек тепла из зазора (по меньшей мере, конвективных), например, разместив в зазоре теплоизоляцию.

В общем случае, как при одинаковых, так и при различающихся по форме и поперечным размерам испарителе 1 и конденсаторе 2, их технологически наиболее удобно выполнять как единую емкость с герметичной внутренней перегородкой, которая и будет являться общей стенкой 7, разделяющей указанную общую емкость на испаритель и конденсатор.

Под термином «корпус компрессора» в заявке понимается не только непосредственно оболочка, внутренняя поверхность которой формирует проточную часть компрессора, но в это понятие заявитель включает также и любые другие элементы, обеспечивающие герметичную установку корпуса в общей для емкостей испарителя и конденсатора стенке (для первого варианта выполнения установки) или его герметичную установку как в стенке испарителя, так и в стенке конденсатора (для второго варианта выполнения установки). В качестве таких элементов могут быть использованы любые известные в технике элементы, например элементы фланцевых соединений.

Теплонасосная установка работает следующим образом.

Теплая вода от низкопотенциального источника тепла (не показан) через патрубок 8 подвода воды напрямую или через распылитель 9 поступает во внутреннее пространство испарителя 1, в котором, благодаря работе компрессора 3, создается вакуум с величиной давления, соответствующей точке кипения воды при данной температуре. Так, например, в диапазоне температур 35...60°С давление поддерживают в пределах 0,04...0,1 кг/см2. В вакууме вода вскипает и образовавшийся пар вместе с каплями воды поступает на вход 16 жалюзийного водоотделителя 15, на котором осаждается вода в виде капельной влаги. Капли воды стекают вниз и скапливаются в донной части емкости испарителя 1 над нижней его стенкой 7. По патрубку 10 избыток охлажденной воды отводится из испарителя 1. С выхода 17 жалюзийного водоотделителя 15 сухой пар движется по паровому каналу 18 испарителя и поступает непосредственно на вход 19 компрессора 3. Компрессор 3 приводится во вращение паровой турбиной 4, подвод пара к которой осуществляется по каналу 22, а отвод по каналу 23. При сжатии пара в компрессоре 3 его давление и температура повышаются. Сжатый «горячий» пар по кольцевому каналу, образованному наружной стенкой канала 22 подвода пара и стенкой диффузора 26, поступает во внутреннюю полость конденсатора 2. Там происходит конденсация «горячего» пара на поверхности теплообменника 21, размещенного в полости конденсатора 2. При этом тепло от «горячего» пара передается прокачиваемой через теплообменник 21 охлаждающей среде, которая является теплоносителем в системе теплоснабжения (не показана). Выход 20 компрессора 3 должен всегда находиться выше уровня конденсата, скапливающегося в нижней части емкости конденсатора 2. Избыток конденсата отводится его потребителю (не показан) по патрубку 13 отвода.

Описанная конструкция теплонасосной установки, благодаря отсутствию трубопроводов, связывающих компрессор 3 с испарителем 1 и конденсатором 2 имеет меньшее, чем в известных конструкциях количество стыков, по которым при потере их герметичности возможны утечки рабочих сред, неизбежно сопровождающиеся теплопотерями. Этим одновременно достигается и более высокая надежность установки и ее более высокая тепловая эффективность (более высокий коэффициент преобразования тепла). Наряду с этим, тепловая эффективность установки повышается и благодаря уменьшению площадей теплообмена элементов установки с окружающей средой. Это объясняется отсутствием тепловых потерь с поверхностей уже упомянутых трубопроводов, связывающих компрессор 3 с испарителем 1 и конденсатором 2, отсутствием тепловых потерь с поверхности корпуса компрессора 3 (при первом варианте выполнения теплонасосной установки), а также тем, что стенка 7, являющаяся общей для испарителя 1 и конденсатора 2, практически не имеет теплового контакта с окружающей средой (торцевыми теплопотерями можно пренебречь). При втором варианте выполнения теплонасосной установки также происходит существенное уменьшение тепловых потерь с поверхности корпуса 14 и они тем меньше, чем большая часть корпуса 14 компрессора 3 размещается в полостях испарителя 1 и конденсатора 2 и не контактирует (в смысле конвективного теплообмена) с окружающей средой.

Использование тепловой машины - паровой турбины 4 в качестве привода компрессора 3, а также пространственное размещение паровой турбины 3 в полости конденсатора дополнительно обеспечивают повышение тепловой эффективности установки за счет исключения потерь тепла приводного пара (т.е. пара, используемого для привода паровой турбины 4).

Ориентация входа паровой турбины в сторону выходной ступени 25 компрессора 3 дополнительно обеспечивает разгрузку ротора компрессора 3 от осевой силы.

Размещение канала 23 отвода пара от паровой турбины внутри канала 22 подвода пара к паровой турбине 4 дополнительно обеспечивает минимизацию утечек приводного пара в окружающую среду.

Выполнение корпуса 14 компрессора 3 на его выходе в виде диффузора 26 обеспечивает снижение гидравлических потерь за компрессором 3, что также повышает коэффициент преобразования тепла в установке.

1.Теплонасоснаяустановка,содержащаявыполненныйввидезамкнутойемкостииспаритель,снабженныйпатрубкамиподводаиотводаводы,компрессорсприводом,сообщенныйспаровымканаломиспарителя,атакжевыполненныйввидезамкнутойемкостииснабженныйпатрубкомотводаконденсатор,сообщенныйскомпрессором,отличающаясятем,чтовходкомпрессораразмещеннепосредственновпаровомканалеиспарителя,еговыход-вполостиконденсатора,акорпускомпрессорагерметичноустановленвстенкахемкостейиспарителяиконденсатораиливобщейдляемкостейиспарителяиконденсаторастенке.12.Теплонасоснаяустановкапоп.1,отличающаясятем,чтовиспарителепаровойканалотделенотостальногопространстваиспарителякольцевымжалюзийнымводоотделителем,уплотненнымотносительнокорпусакомпрессораиемкостииспарителя.23.Теплонасоснаяустановкапоп.1,отличающаясятем,чтовкачествеприводакомпрессораиспользованапароваятурбина,размещеннаявполостиконденсатораиснабженнаяканаламиподводаиотводапара.34.Теплонасоснаяустановкапоп.2,отличающаясятем,чтовходпаровойтурбиныобращенквыходнойступеникомпрессора.45.Теплонасоснаяустановкапоп.2или3,отличающаясятем,чтоканалотводапараотпаровойтурбиныразмещенвнутриканалаподводапарактурбине.56.Теплонасоснаяустановкапоп.1,отличающаясятем,чтокорпускомпрессоранаеговыходевыполненввидедиффузора.6
Источник поступления информации: Роспатент

Showing 1-10 of 86 items.
20.02.2019
№219.016.bcc0

Способ изготовления щеточного уплотнения

Изобретение относится к уплотнительной технике, в частности к способам изготовления щеточных уплотнений, и может быть использовано в машиностроении, авиадвигателестроении и других областях техники. Способ изготовления щеточного уплотнения, включающий намотку материала щетины на оправку из двух...
Тип: Изобретение
Номер охранного документа: 0002289742
Дата охранного документа: 20.12.2006
20.02.2019
№219.016.bcd7

Способ изготовления многослойного изделия из полимерных композиционных материалов

Изобретение относится к технологии изготовления многослойных изделий, в частности к способам изготовления многослойного изделия из полимерных композиционных материалов, и может быть использовано в машиностроении, энергетике, авиационной промышленности и других областях техники. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002285613
Дата охранного документа: 20.10.2006
20.02.2019
№219.016.bee6

Способ регулирования сопла с управляемым вектором тяги авиационного газотурбинного двигателя

Изобретение относится к технологиям регулирования авиационных газотурбинных двигателей (ГТД), в частности к способам регулирования сопла с управляемым вектором тяги. Такие сопла, как правило, оснащены приводным кольцом, управляющим сверхзвуковыми створками сопла, и гидроприводами управления со...
Тип: Изобретение
Номер охранного документа: 0002312244
Дата охранного документа: 10.12.2007
20.02.2019
№219.016.c081

Воздушно-реактивный двигатель

Воздушно-реактивный двигатель содержит турбокомпрессорную часть с компрессором, камерой сгорания и турбиной, размещенную перед выходным соплом камеру, имеющую, по меньшей мере, одно окно и заслонки, установленные с возможностью перемещения относительно окна с образованием канала, сообщенного с...
Тип: Изобретение
Номер охранного документа: 0002305200
Дата охранного документа: 27.08.2007
11.03.2019
№219.016.d675

Способ суфлирования масляной полости опоры ротора газотурбинного двигателя

Изобретение относится к смазке опор ротора газотурбинного двигателя, в частности к способам суфлирования масляных полостей опор ротора газотурбинных двигателей, и может найти применение в авиадвигателестроении, машиностроении и других областях техники. В способе суфлирования масляной полости...
Тип: Изобретение
Номер охранного документа: 0002267625
Дата охранного документа: 10.01.2006
11.03.2019
№219.016.d681

Способ монтажа двигателя летательного аппарата

Изобретение относится к авиационной технике и может быть использовано для монтажа авиационных двигателей на летательных аппаратах. Способ монтажа двигателя 5 летательного аппарата включает расстыковку фюзеляжа на носовую 4 и хвостовую 3 части. При этом до регулировки положения оси двигателя...
Тип: Изобретение
Номер охранного документа: 0002286922
Дата охранного документа: 10.11.2006
11.03.2019
№219.016.d70e

Абсорбционный способ осушки и охлаждения продуктов сгорания углеводородных топлив

Изобретение относится к теплоэнергетике и может быть использовано в процессах утилизации теплоты продуктов сгорания углеводородных топлив. Абсорбционный способ осушки и охлаждения дымовых газов включает абсорбцию водяного пара из дымовых газов охлажденным раствором соли металла в воде,...
Тип: Изобретение
Номер охранного документа: 0002290254
Дата охранного документа: 27.12.2006
11.03.2019
№219.016.d802

Осевой компрессор газотурбинного двигателя

Изобретение относится к осевым компрессорам газотурбинных двигателей, в частности к защите компрессора газотурбинного двигателя от резонансных напряжений, и может быть использовано в авиадвигателестроении, энергетике и других областях техники, в которых используются газотурбинные двигатели....
Тип: Изобретение
Номер охранного документа: 0002342566
Дата охранного документа: 27.12.2008
11.03.2019
№219.016.d804

Межроторная опора газотурбинного двигателя

Изобретение относится к газотурбинным двигателям, в частности к опорам двухроторных газотурбинных двигателей, и может быть использовано в авиадвигателестроении и других областях техники, где используют газотурбинные двигатели. Межроторная опора газотурбинного двигателя содержит вал, ротор...
Тип: Изобретение
Номер охранного документа: 0002342548
Дата охранного документа: 27.12.2008
11.03.2019
№219.016.d8be

Способ управления подачей топлива в форсажную камеру газотурбинного двигателя

Изобретение относится к системам автоматического регулирования авиационных газотурбинных двигателей (ГТД), в частности к способам управления подачей топлива в форсажную камеру ГТД, и может найти применение в авиадвигателестроении. Способ управления подачей топлива в форсажную камеру...
Тип: Изобретение
Номер охранного документа: 0002315883
Дата охранного документа: 27.01.2008
Showing 1-10 of 17 items.
10.08.2014
№216.012.e8c8

Газотурбинный двигатель

Газотурбинный двигатель содержит компрессор, лопаточные диффузоры, канальный патрубок, кольцевую полость-ресивер, камеру сгорания, турбину. Турбина выполнена с охлаждаемым сопловым аппаратом, лопатки которого вдоль профиля пера от входной кромки имеют первую, вторую, третью и четвертую...
Тип: Изобретение
Номер охранного документа: 0002525385
Дата охранного документа: 10.08.2014
27.11.2015
№216.013.9512

Способ регулирования работы теплофикационной паротурбинной установки с парокомпрессионным тепловым насосом

Изобретение относится к энергетике. Способ регулирования работы теплофикационной паротурбинной установки с парокомпрессионным тепловым насосом на теплофикационном режиме, при заданной температуре подогрева сетевой воды, включает переключение доступа основного пара к подогревателю сетевой воды...
Тип: Изобретение
Номер охранного документа: 0002569781
Дата охранного документа: 27.11.2015
27.01.2016
№216.014.bd62

Способ пуска и газоснабжения электрической экологически чистой газотурбинной установки и устройство для его осуществления

Изобретение относится к области энергетики, а именно к способу регулирования газоснабжения в энергетической газотурбинной установке (ГТУ), и может найти применение в энергетических газотурбинных установках. Раскручивают ротор газогенератора газотурбинного двигателя (ГТД) для подачи воздуха в...
Тип: Изобретение
Номер охранного документа: 0002573857
Дата охранного документа: 27.01.2016
20.01.2018
№218.016.1295

Способ испытаний малоразмерных лопаточных турбомашин и испытательный стенд для его реализации

Изобретение относится к испытаниям лопаточных машин - компрессоров и турбин. В способе лопаточные машины изготовляют с помощью аддитивных технологий (или AF-технологий), а работоспособность лопаточных машин обеспечивают уменьшением характерной температуры рабочего процесса в соответствии с...
Тип: Изобретение
Номер охранного документа: 0002634341
Дата охранного документа: 25.10.2017
13.02.2018
№218.016.2202

Система подогрева установки с тепловым двигателем

Система обеспечивает саморегулируемую утилизацию и аккумулирование тепловой энергии выхлопных газов установки с тепловым двигателем, передачу накопленной теплоты требующим обогрева элементам установки, и состоит из теплообменника-утилизатора теплоты выхлопных газов, замкнутого контура...
Тип: Изобретение
Номер охранного документа: 0002641775
Дата охранного документа: 22.01.2018
10.05.2018
№218.016.4b90

Способ и установка для выработки механической и тепловой энергии

Изобретение относится к области теплоэнергетики. Cпособ выработки механической и тепловой энергии осуществляется в установке путем направления горячих газов из камеры сгорания на вход в парогазовую турбину, после которой отработанные в парогазовой турбине газы поступают в блок утилизации тепла...
Тип: Изобретение
Номер охранного документа: 0002651918
Дата охранного документа: 24.04.2018
14.06.2018
№218.016.61d5

Способ интенсивного охлаждения высокотеплонапряженных полупроводниковых приборов

Использование: для охлаждения электронных компонентов. Сущность изобретения заключается в том, что способ интенсивного охлаждения высокотеплонапряженных полупроводниковых приборов включает отвод тепловых потоков от охлаждаемой поверхности с использованием жидкости в качестве охладителя,...
Тип: Изобретение
Номер охранного документа: 0002657341
Дата охранного документа: 13.06.2018
20.06.2018
№218.016.64e7

Регулируемый сопловой аппарат турбины, турбина и способ работы турбины

Группа изобретений относится к машиностроению, в частности к турбостроению, и может быть использована в паротурбинных приводах, транспортных газотурбинных двигателях, а также в турбокомпрессорах двигателей внутреннего сгорания. Регулируемый сопловой аппарат турбины содержит внутренний корпус,...
Тип: Изобретение
Номер охранного документа: 0002658168
Дата охранного документа: 19.06.2018
05.07.2018
№218.016.6bcc

Пластинчатый теплообменник и способ изготовления пластинчатого теплообменника

Изобретение относится к теплотехнике и может быть использовано в технике для подогрева жидких или газообразных сред, например, в качестве рекуператора. Пластинчатый теплообменник, содержащий цилиндрический наружный корпус, одно центральное и два периферийных разделительных кольца, размещенные...
Тип: Изобретение
Номер охранного документа: 0002659677
Дата охранного документа: 03.07.2018
05.09.2018
№218.016.833c

Способ и установка для выработки механической и тепловой энергии

Изобретение относится к области теплоэнергетики. Способ выработки механической и тепловой энергии включает в себя этапы, на которых горячие газы из камеры сгорания направляют на вход в парогазовую турбину, при этом давление в камере сгорания составляет по меньшей мере 7,5 МПа. Отработанные в...
Тип: Изобретение
Номер охранного документа: 0002665794
Дата охранного документа: 04.09.2018
+ добавить свой РИД