×
11.03.2019
219.016.d96b

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ШТАМПОВОГО ИНСТРУМЕНТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии и машиностроения. Заготовку получают из стали 4Х5В2ФС, 4X4 ВМФС путем ковки, высокого отпуска, термоциклической обработки в атмосферной среде и закалки, при этом перед термоциклической обработкой проводят предварительную термоциклическую обработку заготовки штампового инструмента со скоростью нагрева и охлаждения 5-20°С/м и с количеством циклов N+1 исходя из условия равенства температур начала фазового превращения материала заготовки Т*(), а также равенства температур конца фазового превращения Т* при нагреве материала заготовки и соответственно равенства температур Т**(), Т**() при охлаждении до стабилизации структуры заготовки штампового инструмента в двух последовательных циклах N и N+1, по результатам предварительной термоциклической обработки выбирают количество циклов термоциклической обработки в атмосферной среде заготовок штампового инструмента, равное N, которую ведут со скоростью нагрева и охлаждения 5-20°С/мин, причем температура нагрева заготовок штампового инструмента в каждом цикле на 10-15°С выше температуры Т*( для материала заготовки в соответствующем цикле при нагреве на стадии предварительной термоциклической обработки, а температура охлаждения заготовок в каждом цикле на 100-200°С ниже температуры Т** начала фазового превращения материала заготовки высокого отпуска заготовок исходя из условия равенства температур начала фазового превращения, а также равенства температур конца для материала заготовки в соответствующем цикле при охлаждении на стадии предварительной термоциклической обработки. Изобретение повышает износостойкость штампового инструмента и ресурс его работы.

Изобретение относится к металлургии, в частности к способам изготовления штампового инструмента, может быть использовано в любых отраслях машиностроения.

Известен способ предварительной термоциклической обработки углеродистых, легированных и инструментальных сталей (см. п. РФ №2072173, кл. МКИ C21D 1/78 от 3.08 94), включающий термоциклическую обработку в среде вакуума без изотермической выдержки. Недостатком способа является высокая скорость нагрева и охлаждения заготовок (V=20…100°С/мин), при которых создаются условия ускоренного режима термообработки, при этом стабилизация фазовых превращений в штамповых сталях не может пройти полностью. Кроме того, отсутствие изотермической выдержки также не позволяет фазовым превращениям пройти полностью.

Известен способ изготовления штампового инструмента, включающий ковку, отжиг заготовок, закалку и отпуск штампов (А.П.Гуляев. Металловедение. Учебник для вузов. 6-е издание, перераб. и доп. М.: Металлургия, 1986 г., стр.377).

Недостаток данного способа заключается в том, что отжиг заготовок не обеспечивает образование пластинчатого перлита, который после закалки и отпуска образует структуру с низкой износостойкостью штампового инструмента (500-800 ударов).

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ изготовления штампового инструмента, включающий ковку, высокий отпуск, термическую циклическую обработку (ТЦО), закалку заготовок (В.К.Федюкин, М.Е.Смагоринский. «Термоциклическая обработка металлов и деталей машин». - Л.: Машиностроение. Ленинградское от-ие, 1989, стр.114-121).

Недостатком данного способа является ускоренный нагрев заготовок (40-60°С/мин), при котором фазовые превращения не успевают пройти полностью, что ведет к росту зерна, структурной неоднородности и недостаточной стойкости штампового инструмента (1000-1200 ударов).

Технический результат выражается в повышении износостойкости и ресурса штампового инструмента. Циклическая термическая обработка основывается на явлении многократного медленного нагрева и охлаждения, обеспечивающем многократное протекание фазового превращения как при нагреве, так и при охлаждении. Фазовой переход влияет на кристаллизационные процессы, протекающие в материалах, а многократность процесса фазового превращения приводит к постепенной его стабилизации и, как следствие, стабилизации температур начала и конца фазовых превращений. Поэтому оптимальное количество термоциклов определяется по результатам фиксирования температур фазовых превращений при нагреве и охлаждении в каждом термоцикле.

При этом циклическая термическая обработка позволяет:

- получить в заготовках структуру зернистого перлита;

- провести дегазацию металла;

- повысить ударную вязкость металла;

- интенсифицировать диффузионные процессы;

- измельчить зерно.

Указанный технический результат достигается тем, что при способе изготовления штампового инструмента, включающем ковку, высокий отпуск, термоциклическую обработку заготовок штампового инструмента в атмосферной среде, изготовление штампов из этих заготовок с последующей их закалкой, перед термоциклической обработкой проводят предварительную термоциклическую обработку одной из заготовок штампового инструмента, взятой в качестве образца, со скоростью нагрева и охлаждения 5-20°С/мин и с количеством циклов N+1 исходя из условия равенства температур начала фазового превращения материала образца Т*(н.ф.п), а также равенства температур конца фазового превращения Т*(к.ф.п) при нагреве материала образца и соответственно равенства Т**(н.ф.п), Т**(к.ф.п) при охлаждении до стабилизации структуры образца штампового инструмента в двух последовательных циклах N и N+1, по результатам предварительной термоциклической обработки выбирают количество циклов термоциклической обработки в атмосферной среде заготовок штампового инструмента, равное N, которую ведут со скоростью нагрева и охлаждения 5-20°С/м, причем температура нагрева заготовок штампового инструмента в каждом цикле на 10-15°С выше температуры Т*(н.ф.п) для материала образца в соответствующем цикле при нагреве на стадии предварительной термоциклической обработки, а температура охлаждения заготовок в каждом цикле на 100-200°С ниже температуры Т**(н.ф.п) начала фазового превращения материала образца в соответствующем цикле при охлаждении на стадии предварительной термоциклической обработки.

Нагрев со скоростью меньше 5°С/мин не целесообразен, так как не обоснованно увеличивает время процесса термоциклирования и ведет к дополнительным энергозатратам. Нагрев со скоростью выше 20°С/мин создает условия ускоренного режима термообработки, при котором температура фазового превращения Т не может быть определена как интервал температур: начала фазового превращения (Т (н.ф.п)) и конца фазового превращения (Т (к.ф.п)), так как процесс фазового превращения проходит во времени и при высоких скоростях нагрева, может быть не точно зафиксирован и, кроме того, является нестабильным, проходит не полностью и ведет к росту зерна, что снижает ударную вязкость и не обеспечивает высокой стойкости штампов.

Нагрев заготовок штампового инструмента в каждом цикле меньше (Т*(н.ф.п)) на 10-15°С приведет к тому, что фазовое превращение при нагреве будет проходить не до конца, и стабилизация процесса от цикла к циклу будет проходить дольше. Нагрев заготовок штампового инструмента в каждом цикле до температуры больше 10-15°С (Т*(н.ф.п)) приведет к тому, что будет наблюдаться перегрев структуры, выделение по границам зерен карбидов, что приведет к росту зерна, структурной неоднородности, повышению твердости, снижению износостойкости и обрабатываемости материала.

Охлаждение заготовок штампового инструмента в каждом цикле до температуры ниже 100°С не может гарантировать в массивных штамповых заготовках протекание процесса фазового превращения до конца во всем его объеме, а охлаждение ниже 200°С экономически нецелесообразно, так как увеличивает время термоцикла и приводит к дополнительным энергозатратам.

Проведение циклической термообработки с количеством циклов меньше N приведет к появлению нестабильной, неравновесной структуры со структурной неоднородностью. Проведение циклической термообработки с количеством циклов больше N значительно снизит производительность процесса, приведет к дополнительным энергозатратам.

Предлагаемая циклическая термообработка позволяет получить мелкодисперсную, равномерную однородную структуру со стабилизированными фазами.

Микроструктура заготовок штампов из стали ЭИ958 после термоциклирования имела равномерное распределение мелких зерен, твердость составила порядка HRC равно 51-52, износостойкость штампов на выдавливание составила порядка 5000-5200 ударов.

Циклический нагрев заготовок с регламентированной скоростью регламентированным количеством циклов до регламентированной температуры и охлаждение соответствуют каждой конкретной марки стали.

Пример осуществления способа

На заготовках из стали ЭИ958 размером 110×110×65 мм провели 3-кратный уков по трем осям, высокий отпуск по стандартной технологии, затем взяли одну из заготовок штампового инструмента, выполненную из стали ЭИ958, в качестве образца, предварительно термоциклировали в атмосферной среде со скоростью 6°С/мин. Во время предварительного термоциклирования фиксировали показания термопары на пишущем приборе КСП-24.

Анализ термограмм показал, что:

в первом цикле:

скорость нагрева - 6°С/мин;

температура начала фазового превращения (Т*(н.ф.п)) при нагреве равна 862°С;

температура конца фазового превращения (Т*(к.ф.п)) при нагреве равна 863°С;

скорость охлаждения - 6°С/мин;

температура начала фазового превращения (Т**(н.ф.п)) при охлаждении равна 728°С;

температура конца фазового превращения (Т**(к.ф.п)) при охлаждении равна 695°С;

во втором цикле:

скорость охлаждения - 6°С/мин;

температура начала фазового превращения (Т*(н.ф.п)) при нагреве равна 843°С;

температура конца фазового превращения (Т*(к.ф.п)) при нагреве равна 850°С;

температура начала фазового превращения (Т**(н.ф.п)) при охлаждении равна 718°С;

температура конца фазового превращения (Т**(к.ф.п)) при охлаждении равна 710°С;

в третьем цикле:

скорость охлаждения - 6°С/мин;

температура начала фазового превращения (Т*(н.ф.п)) при нагреве равна 840°С;

температура конца фазового превращения (Т*(к.ф.п)) при нагреве равна 850°С;

температура начала фазового превращения (Т**(н.ф.п)) при охлаждении равна 705°С;

температура конца фазового превращения (Т**(к.ф.п)) при охлаждении равна 696°С;

в четвертом цикле:

скорость охлаждения - 6°С/мин;

температура начала фазового превращения (Т*(н.ф.п)) при нагреве равна 840°С;

температура конца фазового превращения (Т*(к.ф.п)) при нагреве равна 850°С;

температура начала фазового превращения (Т**(н.ф.п)) при охлаждении равна 705°С;

температура конца фазового превращения (Т**(к.ф.п)) при охлаждении равна 696°С.

По результатам предварительного термоциклирования образца было определено количество термоциклов равным 3, так как температуры начала и конца фазового превращения третьего цикла равны температурам начала и конца фазового превращения четвертого цикла. После чего провели термоциклирование заготовок штампового инструмента по трем циклам.

Исходя из технологических возможностей оборудования, находящегося в серийном производстве, скорость нагрева и охлаждения была выбрана 6°С/мин и температурный интервал с точностью 5°С.

Температура нагрева заготовок штампового инструмента в каждом цикле на 10-15°С выше температуры Т*(н.ф.п) для материала образца в соответствующем цикле при нагреве на стадии предварительной термоциклической обработки, а охлаждение в пределах 100-200 С° ниже Т**(н.ф.п) начала фазового превращения материала образца в соответствующем цикле при охлаждении на стадии предварительной термоциклической обработки:

1 цикл - Т нагрева - 875°С, для стабилизации процесса температуру нагрева заготовки увеличили на 13°С, по сравнению с Т*(н.ф.п) образца (862+13)

время выдержки - 12 мин,

Т охлаждения - 550°С, для стабилизации процесса температуру охлаждения заготовки уменьшили на 178°С, по сравнению с Т**(н.ф.п) образца (728-178),

2 цикл - Т нагрева - 855°С, для стабилизации процесса температуру нагрева заготовки увеличили на 12°С, по сравнению с Т*(н.ф.п) образца (843+12)

время выдержки - 12 мин,

Т охлаждения - 550°С, для стабилизации процесса температуру охлаждения заготовки уменьшили на 168°С, по сравнению с Т**(н.ф.п) образца (718-168),

3 цикл - Т нагрева - 850°С, для стабилизации процесса температуру нагрева заготовки увеличили на 10°С, по сравнению с Т*(н.ф.п) образца (840+10)

время выдержки - 12 мин,

Т охлаждения - 550°С, для стабилизации процесса температуру охлаждения заготовки уменьшили на 155°С, по сравнению с Т**(н.ф.п) образца (705-155).

После термоциклирования провели металлографический анализ заготовок, который показал, что микроструктура материала представляет собой зернистый перлит.

Затем из заготовок были изготовлены разъемные штампы на выдавливание, используемые при производстве лопаток компрессора высокого давления (КВД). Затем была проведена закалка штампов по серийной технологии и после этого проведена окончательная механическая обработка штампов до чертежных размеров. Микроструктура штампов после закалки представляет собой среднеигольчатый мартенсит с незначительными участками мелкоигольчатого мартенсита.

Гравюры кузнечных штампов на выдавливание в процесс эксплуатации подвергаются ударному воздействию. Износостойкость штампа с твердостью HRC=51-52 составила 5200 ударов (т.е. изготовлено 5200 лопаток) до начала зарождения усталостной трещины, по сравнению с 500-800 ударами прототипа.

Таким образом, предлагаемый способ изготовления штампового инструмента повышает износостойкость штампового инструмента и ресурс его работы.

Способ изготовления штампового инструмента, включающий ковку, высокий отпуск, термоциклическую обработку заготовок штампового инструмента в атмосферной среде, получение штампового инструмента из заготовок и его закалку, отличающийся тем, что перед термоциклической обработкой проводят предварительную термоциклическую обработку заготовки штампового инструмента со скоростью нагрева и охлаждения 5-20°С/м и с количеством циклов N+1 исходя из условия равенства температур начала фазового превращения материала заготовки Т*, а также равенства температур конца фазового превращения Т* при нагреве материала заготовки и, соответственно равенства температур Т**, Т** при охлаждении до стабилизации структуры заготовки штампового инструмента в двух последовательных циклах N и N+1 и, по результатам предварительной термоциклической обработки выбирают количество циклов термоциклической обработки в атмосферной среде заготовок штампового инструмента, равное N, которую ведут со скоростью нагрева и охлаждения 5-20°С/мин, причем температура нагрева заготовок штампового инструмента в каждом цикле на 10-15°С выше температуры Т* для материала заготовки в соответствующем цикле при нагреве на стадии предварительной термоциклической обработки, а температура охлаждения заготовок в каждом цикле на 100-200°С ниже температуры Т** начала фазового превращения материала заготовки высокого отпуска заготовок исходя из условия равенства температур начала фазового превращения, а также равенства температур конца для материала заготовки в соответствующем цикле при охлаждении на стадии предварительной термоциклической обработки.
Источник поступления информации: Роспатент

Showing 11-20 of 86 items.
11.03.2019
№219.016.d93e

Сплав на никелевой основе для литья монокристаллических лопаток турбины газотурбинного двигателя

Изобретение относится к металлургии, в частности к производству литейных жаропрочных коррозионно-стойких сплавов на никелевой основе, предназначенных для литья монокристаллических лопаток турбин газотурбинных двигателей методом направленной кристаллизации, и может быть использовано в наземных...
Тип: Изобретение
Номер охранного документа: 0002354733
Дата охранного документа: 10.05.2009
11.03.2019
№219.016.db20

Способ ионно-плазменной обработки поверхности металлорежущего инструмента, изготовленного из порошковой быстрорежущей стали

Изобретение относится к способам упрочнения поверхности изделий комплексным ионно-плазменным методом и может быть использовано при изготовлении металлорежущего инструмента и других изделий, обладающих высокой твердостью и износостойкостью. Способ включает очистку, нагрев поверхности инструмента...
Тип: Изобретение
Номер охранного документа: 0002413793
Дата охранного документа: 10.03.2011
17.04.2019
№219.017.15c7

Устройство для изготовления отливок с монокристаллической структурой

Изобретение относится к области литейного производства и может быть использовано для изготовления монокристальных отливок из сплавов на никелевой, кобальтовой и интерметаллидной основе. Устройство содержит керамическую форму с затравочной полостью, затравкой, теплозащитной полостью и полостью...
Тип: Изобретение
Номер охранного документа: 0002314178
Дата охранного документа: 10.01.2008
22.04.2019
№219.017.365e

Камера сгорания газотурбинного двигателя

Камера сгорания газотурбинного двигателя содержит жаровую трубу, образующие диффузор наружный и внутренний кольцевые силовые корпуса, связанные между собой стойками с торцевыми полками. Диффузор выполнен неразъемным. Каждая стойка изготовлена путем механической обработки, по меньшей мере, части...
Тип: Изобретение
Номер охранного документа: 0002289756
Дата охранного документа: 20.12.2006
22.04.2019
№219.017.3660

Способ отклонения вектора тяги воздушно-реактивного двигателя

Изобретение относится к авиадвигателестроению, в частности к регулируемым соплам воздушно-реактивных двигателей, выполненных с возможностью отклонения вектора тяги. Способ отклонения вектора тяги воздушно-реактивного двигателя заключается в том, что обеспечивают поступление газа во внутреннюю...
Тип: Изобретение
Номер охранного документа: 0002296875
Дата охранного документа: 10.04.2007
22.04.2019
№219.017.3661

Способ обеспечения заданного радиального зазора между рабочим валом и самоустанавливающимися сегментными вкладышами при изготовлении подшипника (варианты)

Изобретения относятся к механосборочным работам, в частности к технологии изготовления и монтажа подшипников, например газовых, с самоустанавливающимися сегментными вкладышами. Способ обеспечения заданного радиального зазора между рабочим валом и самоустанавливающимися сегментными вкладышами...
Тип: Изобретение
Номер охранного документа: 0002298114
Дата охранного документа: 27.04.2007
22.04.2019
№219.017.3662

Устройство для сигнализации помпажа компрессора газотурбинного двигателя

Изобретение относится к области регулирования компрессоров с вращательным движением рабочих органов, в частности к системам устранения помпажа компрессора газотурбинного двигателя. Устройство для сигнализации помпажа компрессора газотурбинного двигателя содержит амортизатор и датчик с...
Тип: Изобретение
Номер охранного документа: 0002291323
Дата охранного документа: 10.01.2007
22.04.2019
№219.017.3663

Центробежно-шестеренный насос (варианты)

Изобретения относятся к гидравлическим насосам объемного вытеснения с вращающимися внешними рабочими органами и могут быть использованы в маслосистемах авиационных газотурбинных двигателей для подачи и откачки масла. Центробежно-шестеренный насос по первому варианту содержит корпус, размещенные...
Тип: Изобретение
Номер охранного документа: 0002291321
Дата охранного документа: 10.01.2007
22.04.2019
№219.017.3664

Способ измерения формы поверхности объекта и представления результатов измерения на упомянутой поверхности

Способ включает проецирование с помощью оптического устройства на поверхность объекта распределения световой интенсивности, регистрацию изображения освещенной поверхности объекта, визуализацию на поверхности объекта с помощью оптического устройства отклонений от измеренного ранее образца....
Тип: Изобретение
Номер охранного документа: 0002295110
Дата охранного документа: 10.03.2007
22.04.2019
№219.017.3666

Катодный узел электронно-лучевой пушки, подогреватель катода и держатель подогревателя

Изобретение относится к электронно-лучевой сварке, а именно к устройствам электронно-лучевых пушек, в частности к высокотемпературным катодам косвенного накала с большой площадью эмиттирующей поверхности. Катодный узел электронно-лучевой пушки содержит катододержатель в виде цилиндрического...
Тип: Изобретение
Номер охранного документа: 0002314591
Дата охранного документа: 10.01.2008
Showing 11-20 of 29 items.
26.08.2017
№217.015.d91f

Гранулируемый высокожаропрочный никелевый сплав и изделие, изготовленное из него

Изобретение относится к области металлургии, в частности к порошковой металлургии жаропрочных никелевых сплавов, и может быть использовано для изготовления высоконагруженных роторных деталей, работающих при температурах до 650-700°С в газотурбинных двигателях. Жаропрочный никелевый сплав...
Тип: Изобретение
Номер охранного документа: 0002623540
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.e4b7

Способ нанесения защитных покрытий и устройство для его осуществления

Изобретение относится к области нанесения ионно-плазменных покрытий, а именно к устройству и способу нанесения защитных покрытий. Устройство содержит по меньшей мере одну пару расположенных напротив друг друга вакуумно-дуговых испарителей с общим электроизолированным анодом для каждой пары и...
Тип: Изобретение
Номер охранного документа: 0002625698
Дата охранного документа: 18.07.2017
26.08.2017
№217.015.e87d

Способ восстановления бандажных полок лопаток компрессора газотурбинных двигателей (гтд)

Изобретение относится к способу восстановления бандажных полок лопаток компрессора газотурбинных двигателей (ГТД). Определяют линии ремонтного среза бандажных полок. Удаляют по указанной линии их дефектные части. Изготавливают накладки из твердосплавного материала толщиной не более 0,9 мм со...
Тип: Изобретение
Номер охранного документа: 0002627558
Дата охранного документа: 08.08.2017
20.01.2018
№218.016.100e

Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе никеля, и может быть использовано при изготовлении рабочих лопаток газотурбинных установок. Жаропрочный сплав на основе никеля содержит, мас. %: углерод 0,05-0,15, хром 11,9-12,7, кобальт 10,0-12,0, вольфрам...
Тип: Изобретение
Номер охранного документа: 0002633679
Дата охранного документа: 16.10.2017
11.03.2019
№219.016.d93e

Сплав на никелевой основе для литья монокристаллических лопаток турбины газотурбинного двигателя

Изобретение относится к металлургии, в частности к производству литейных жаропрочных коррозионно-стойких сплавов на никелевой основе, предназначенных для литья монокристаллических лопаток турбин газотурбинных двигателей методом направленной кристаллизации, и может быть использовано в наземных...
Тип: Изобретение
Номер охранного документа: 0002354733
Дата охранного документа: 10.05.2009
09.05.2019
№219.017.4c03

Состав литейного жаропрочного сплава на основе никеля

Изобретение относится к области металлургии. Состав литейного жаропрочного сплава на основе никеля содержит компоненты при следующем соотношении, мас.%: хром - 3,0-7,0, кобальт - 4,0-8,5, углерод - 0,1-0,2, вольфрам - 11,5-15,0, алюминий - 4,8-5,8, ниобий - 0,4-1,0, титан - 2,0-3,0, молибден -...
Тип: Изобретение
Номер охранного документа: 0002344190
Дата охранного документа: 20.01.2009
18.05.2019
№219.017.5750

Способ ремонта гребешков лабиринтных уплотнений рабочих лопаток турбины газотурбинного двигателя

Изобретение относится к турбомашиностроению и может быть использовано при восстановлении изношенных поверхностей гребешков лабиринтных уплотнений рабочих лопаток турбины газотурбинного двигателя. Способ ремонта гребешков лабиринтных уплотнений рабочих лопаток турбины газотурбинного двигателя...
Тип: Изобретение
Номер охранного документа: 0002354523
Дата охранного документа: 10.05.2009
09.06.2019
№219.017.7c96

Способ очистки топливного коллектора газотурбинного двигателя от коксовых отложений и нагара

Изобретение относится к очистке изделий от коксовых отложений и нагара, в частности к очистке топливного коллектора камеры сгорания и форсажной камеры газотурбинного двигателя физико-химическим методом, и может найти применение в авиадвигателестроении, судостроении, энергетическом...
Тип: Изобретение
Номер охранного документа: 0002325606
Дата охранного документа: 27.05.2008
19.06.2019
№219.017.85ae

Способ обработки отливок из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано, в частности, для изготовления рабочих лопаток газотурбинных двигателей и других узлов и деталей, работающих в диапазоне температур до 1000°С. Техническим результатом изобретения является повышение предела выносливости и прочностных...
Тип: Изобретение
Номер охранного документа: 0002344195
Дата охранного документа: 20.01.2009
19.06.2019
№219.017.85b4

Способ получения никелевого жаропрочного сплава

Изобретение относится к металлургии, а именно к производству жаропрочных сплавов на никелевой основе, и может быть использовано для литья лопаток газотурбинных двигателей, работающих в условиях высоких температур и напряжений. Техническим результатом является повышение длительной (сточасовой)...
Тип: Изобретение
Номер охранного документа: 0002344188
Дата охранного документа: 20.01.2009
+ добавить свой РИД