×
19.06.2019
219.017.85b4

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НИКЕЛЕВОГО ЖАРОПРОЧНОГО СПЛАВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, а именно к производству жаропрочных сплавов на никелевой основе, и может быть использовано для литья лопаток газотурбинных двигателей, работающих в условиях высоких температур и напряжений. Техническим результатом является повышение длительной (сточасовой) прочности, трещиностойкости и стабильности сплава во время работы при температурах не выше 1000°С. Смешивают компоненты сплава, содержащие карбидообразующие элементы и элементы, образующие γ' фазу - Ni, Co, Cr, W, Mo, Nb и С, расплавляют их, вводят Ti, Al и микролегирующие элементы - В, La, Y и Се, выплавляют сплав и охлаждают его со скоростью не менее 50°С/мин. Количество карбидообразующих элементов выбирают из условия 14,0 мас.% ≤ (Cr+W+Nb+Ti+Mo)≤24 мас.%, а количество микролегирующих элементов выбирают из условия (B+La+Y+Ce)≤0,1 мас.%. Для обеспечения возможности управления тонкой структурой сплава углерод вводят в виде скомпактированных порошков с дисперсностью 1-100 мкм. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на никелевой основе, и может быть использовано при выплавке сплавов для литья, например, лопаток газотурбинных двигателей, работающих в условиях высоких температур и напряжений.

Известен литейный жаропрочный никелевый сплав IN-731 содержащий (мас.%): хром - 9,5, кобальт - 10,0, молибден - 2,5, алюминий - 5,5, титан 4,6, углерод - 0,18, бор - 0,015, цирконий - 0,06 и ванадий - 1,0, никель - остальное до 100% («Суперсплавы II: Жаропрочные материалы для аэрокосмических и промышленных энергоустановок", Под. редакцией Симса Ч.Т., Столофф Н.С., Хагеля У.К., М.: Металлургия, 1995 г., 384 с.).

Данный сплав имеет невысокий уровень жаропрочных свойств - при температуре 975°С - 40 часовой предел длительной прочности равен 190 МПа.

Известен жаропрочный литейный сплав на никелевой основе ЖС-6У, содержащий (мас.%): никель - основа, углерод - 0,16, хром - 9,0, кобальт - 10,0, молибден - 2,0, вольфрам - 10,0, алюминий - 5,5, титан - 2,5, ниобий - 1,0, бор - 0,025, иттрий - 0,01 (Абраимов Н.В., Елисеев Ю.С., Крымов В.В. Авиационное материаловедение и технология обработки металлов, М.: Высшая школа, 1998 г., с.215) - прототип.

Данный литейный сплав получают смешиванием компонентов сплава, в том числе карбидообразующих элементов и элементов, образующих фазу, таких как Cr, W, Nb, Ti, Mo, Al, после чего добавляют микролегирующие элементы и осуществляют выплавку никелевого жаропрочного сплава с последующим охлаждением. Для данного сплава выполняется условие: (%Cr+%W+%Nb+%Ti+%Mo)=9,0+10,0+1,0+2,5+2,0=24,5 и в качестве микролегирующих добавок используются ниобий, цирконий, бор и иттрий, сумма которых составляет 1,075 мас.%.

Известный сплав ЖС-6У имеет предел сточасовой прочности при температуре 1000°С - (170-180) МПа.

Техническим результатом, на достижение которого направлено заявляемое изобретение, является повышение длительной прочности (сточасовой прочности), трещиностойкости и стабильности сплава при его работе при температурах не выше 1000°С.

Заявляемый технический результат достигается тем, что в способе получения никелевого жаропрочного сплава с поликристаллической структурой (ЖС6У-ПК) смешивают компоненты сплава, содержащие карбидообразующие элементы и элементы, образующие γ'-фазу - Ni, Co, Cr, W, Мо, Nb и С, расплавляют, вводят Ti, Al и микролегирующие элементы, осуществляют выплавку никелевого жаропрочного сплава с последующим охлаждением, причем количество карбидообразующих элементов вводят в сплав исходя из условия 14%≤(%Cr+%W+%Nb+%Ti+%Mo)≤24% от массы сплава, количество микролегирующих элементов выбирают из условия (%B+%La+%Y+%Ce)≤0,1% от массы сплава.

Для оптимизации технического результата в соответствии с заявляемым способом количество карбидообразующих элементов выбирают из условия (W и Ti)≥10,0% от массового состава сплава. Данное условие может выполняться, в частности, если из сплавов по заявляемому изобретению изготавливают детали высоконагруженных элементов газотурбинных двигателей, например рабочие лопатки турбин, диски и т.д.

Для оптимизации технического результата охлаждение ведут со скоростью не менее 50°С/мин.

Для возможности управления тонкой структурой жаропрочного сплава углерод могут вводить в состав сплава в виде скомпактированных порошков с дисперсностью 1-100 мкм.

Возрастающие требования к материалам высоконагруженных авиационных двигателей не могут быть удовлетворены без создания литейных жаропрочных сплавов на никелевой основе, способных длительно работать в интервале температур 800-1000°С путем подбора определенного соотношения карбидообразующих элементов - вольфрама, хрома, титана, молибдена и ниобия и микролегирующих элементов - бора, лантана, иттрий и церия.

Заявляемый способ получения никелевого жаропрочного сплава с поликристаллической структурой, позволяющего получить заявляемый технический результат, основан на следующих предпосылках.

Известна важная роль границ зерен в процессе разрушения образцов из поликристаллических сплавов при их испытаниях на малоцикловую усталость при температурах до 1000°С. Установлено, что при всех исследованных температурах зарождение усталостных трещин происходит на границах зерен, причем при температурах до 800°С - трещины распространяются преимущественно вдоль границ зерен. При температурах 900°С трещины развиваются еще и по телу зерен, а при дальнейшем повышении температуры - трещины зарождаются в основном на окисленных карбидах на поверхности образцов.

Таким образом, для достижения заявляемого технического результата особое внимание следует уделять состоянию границ зерен, а для этого целесообразно включение в систему легирования карбидообразующих элементов, стабилизирующих границы зерен, и необходима система поверхностно-активных элементов - микролегирующих добавок, образующих равновесные сегрегации на структурных дефектах (разделах) и тем самым снижающих энергию границ зерен, при их сочетании с остальными элементами, входящими в состав сплава.

Количество и состав микролегирующих добавок влияет не только на границы зерен в сплаве, но оказывает благоприятное воздействие и на другие дефекты кристаллической структуры, например, на антифазные границы в упорядоченной структуре γ'-фазы, возникающие при перерезании частиц упрочняющей γ'-фазы дислокациями в процессе ползучести и, следовательно должен быть сбалансирован как по составу микролегирующих элементов, так и по их взаимодействию с остальными компонентами сплава. Количество и состав микролегирующих добавок зависит от состава и количества других компонентов, входящих в сплав и определяется, например, расчетным путем. Количество вводимых в сплав карбидообразующих элементов также должно быть сбалансировано, так как на карбидах тоже возможно зарождение трещин, приводящих к разрушению сплавов.

Как известно, хром повышает жаростойкость и жаропрочность твердого раствора, снижает температуру плавления сплава. В эвтектической системе Ni-Cr образуются широкие области твердых растворов, так как растворимость хрома в никеле более 30%. Хром улучшает свариваемость сплавов образует карбиды (Cr23С6), однако большое количество карбида на основе Cr23С6 охрупчивает сплавы, кроме того, высокое содержание хрома стабилизирует пластинчатые хрупкие δ и μ-фазы, которые охрупчивают сплавы.

Вольфрам и молибден вводят в сплавы для повышения жаропрочности твердого раствора и термостабильности γ'-фазы. Вольфрам повышает температуру плавления сплавов, оба элемента входят в твердый раствор, в γ'-фазу и в карбиды. Их введение повышает температуру растворения γ'-фазы в матрице. Чрезмерное увеличение содержания вольфрама в современных жаропрочных сплавах приводит к интенсификации протекания карбидных реакций и образованию Ме6С, а также появлению фазы на основе α-вольфрама, не являющейся эффективным упрочнителем. Как правило, содержание вольфрама в сплавах, из которых изготавливают детали высоконагруженных элементов газотурбинных двигателей, например рабочие лопатки турбин, диски и т.д. колеблется в диапазоне 7,0-15,0.

Ниобий стабилизирует γ'-фазу, образует с никелем соединения типа Ni3Nb и увеличивает объемную долю упрочняющей γ'-фазы, входит в твердый раствор, повышая его жаропрочность, и в карбиды МеС.Пластинчатые выделения фаз типа Ni3Nb образуются при чрезмерно высоком содержании ниобия и охрупчивают сплавы.

Титан является одним из важных легирующих элементов в жаропрочных сплавах. Титан входит в упрочняющую γ'-фазу, и увеличение содержания титана повышает количество и стабильность γ'-фазы, длительную прочность, но избыточное его количество снижает жаропрочность и термостабильность сплава.

Микролегирующие элементы бор, церий, лантан и иттрий являются поверхностно-активными веществами, которые локализуются на дефектах структуры, в частности на границах зерен, снижают поверхностную энергию границ и, тем самым, повышают структурную стабильность сплавов. Одновременно они оказывают модифицирующее действие на сплавы - измельчают микрозерно, уменьшают размер дендритной ячейки, изменяют морфологию и распределение неметаллических включений. Они очень мало растворимы в никеле и весьма эффективно очищают границы зерен от серы, кислорода и других примесей, задерживают процессы разупрочнения литейных никелевых сплавов и тем самым повышают их структурную стабильность и, кроме того, они повышают жаростойкость и улучшают защитные свойства оксидных пленок на сплавах.

Авторами проведены теоретические и экспериментальные исследования, в ходе которых установлено, что заявляемый технический результат достигается по сравнению с прототипом в случае реализации заявляемого способа получения никелевого жаропрочного сплава при выполнении в частности соотношений: 14%≤(%Cr+%W+%Nb+%Ti+%Mo)≤24% от массового состава сплава и (%В+%La+%Y+%Се)≤0,1% от массового состава сплава. Причем заявляемый технический результат достигается при любом соотношении указанных в независимом пункте формулы компонентов, достаточно только, чтобы последовательность операций способа и количественные соотношения вводимых компонентов были выбраны в пределах заявленных диапазонов, однако для получения оптимального технического результата целесообразно для сплавов, из которых изготавливают детали высоконагруженных элементов газотурбинных двигателей, например рабочие лопатки турбин, диски и т.д, суммарное количество некоторых элементов, например (%W+%Ti) выбирать не менее 10% от массового состава сплава.

В случае, если (%Cr+%W+%Nb+%Ti+%Mo)<14%, то необходимое упрочнение границ зерен в сплаве карбидами не обеспечивается и сплав утрачивает свои преимущества в области температур до 1000°С, а если (%Cr+%W+%Nb+%Ti+%Mo)>24%, то количество карбидов на границах зерен становится избыточным и происходит охрупчивание границ зерен.

В случае, если (%В+%La+%Y+%Се)>0,1%, то избыточным становится количество микролегирующих элементов, которые входят в состав легкоплавких эвтектик и вызывают снижение характеристик жаропрочности.

Для управления тонкой структурой жаропрочного сплава углерод вводят в состав сплава в виде скомпактированных порошков с дисперсностью 1-100 мкм.

Пример конкретного выполнения способа.

Сплав готовился в вакуумных индукционных печах с разрежением 10-2-10-3 мм рт.ст. и емкостью 160 кг (ИСВ-016). Порядок загрузки: смешивают никель, кобальт, хром, вольфрам, молибден, ниобий и углерод, осуществляют их плавление и раскисление углеродом, после чего производят продувку ванны аргоном, вводят титан и алюминий, микролегирующие добавки - бор, иттрий, лантан, церий и ведут плавку при температуре 1630-1650°С, а расплав охлаждают со скоростью 50°С и получают отливки с поликристаллической структурой. Были выплавлены две композиции предлагаемого сплава и сплав прототип ЖС-6У, химический состав которых приведен в таблицах 1, 2.

Таблица 1.
№ плавкиХимический состав, в мас.%
CrСоСWAlNiNbTiMoВLaYСе
15,805,240,211,55,50Осн0,52,00,80,020,020,020,02
25,655,110,1314,75,66Осн0,62,61,00,020,020,020,02
ЖС-6У8,609,900,1810,205,60Осн0,82,41,30,035Zr-0,040,010,025

Таблица 2.
Номер плавки100 часовая прочность (МПА) при Т=1000°С100 часовая прочность (МПА) при Т=900°С100 часовая прочность (МПА) при Т=850°С100 часовая прочность (МПА) при Т=800°С
1180376523643
2174372532675
ЖС-6У170352455562

Приведенные результаты испытаний показывают, что по сравнению с прототипом заявляемый сплав обеспечивает достижение заявляемого технического результата, а именно - повышение прочностных характеристик никелевых жаропрочных поликристаллических сплавов на основе никеля таких, как предел сточасовой прочности при температурах не выше 1000°С.

1.Способполученияникелевогожаропрочногосплавасполикристаллическойструктурой,включающийсмешиваниекомпонентовсплава,содержащихкарбидообразующиеэлементыиэлементы,образующиеγ'фазу-Ni,Co,Cr,W,Mo,NbиС,ихрасплавление,введениеTi,Alимикролегирующихэлементов-В,La,YиСе,выплавкуникелевогожаропрочногосплаваспоследующимохлаждением,отличающийсятем,чтоколичествокарбидообразующихэлементоввыбираютизусловия14,0мас.%≤(Cr+W+Nb+Ti+Mo)≤24мас.%,количествомикролегирующихэлементоввыбираютизусловия(B+La+Y+Ce)≤0,1мас.%,аохлаждениеосуществляютсоскоростьюнеменее50°С/мин.12.Способпоп.1,отличающийсятем,чтоуглеродвводятввидескомпактированныхпорошковсдисперсностью1-100мкм.2
Источник поступления информации: Роспатент

Showing 1-10 of 52 items.
20.02.2019
№219.016.c0e3

Турбореактивный двухконтурный двигатель с форсажной камерой

Изобретение относится к авиастроению, в частности к турбореактивным двухконтурным двигателям с форсажной камерой. Турбореактивный двухконтурный двигатель с форсажной камерой включает компрессор высокого давления, турбину высокого давления и турбину низкого давления. Двигатель выполнен со...
Тип: Изобретение
Номер охранного документа: 0002369765
Дата охранного документа: 10.10.2009
01.03.2019
№219.016.ca2d

Способ обработки металлического сплава давлением

Изобретение относится к обработке давлением металлических сплавов, преимущественно, в виде слитков и может быть использовано при изготовлении изделий, в том числе ответственного назначения, в различных областях техники, например, в авиации, машиностроении. Сплав нагревают и деформируют за...
Тип: Изобретение
Номер охранного документа: 0002255122
Дата охранного документа: 27.06.2005
11.03.2019
№219.016.d67e

Способ изготовления колец

Изобретение относится к обработке металлов давлением и может быть использовано в металлургической и авиационной промышленности при изготовлении деталей ответственного назначения, преимущественно деталей газотурбинных двигателей. Производят поперечную осадку заготовки с получением пластины....
Тип: Изобретение
Номер охранного документа: 0002286862
Дата охранного документа: 10.11.2006
11.03.2019
№219.016.d6fa

Щеточное уплотнение

Изобретение относится к области машиностроения, в частности к устройствам для уплотнения зазора между подвижными относительно одна другой деталями, а именно к щеточным уплотнениям. Щеточное уплотнение зазора между выполненными с возможностью перемещения одна относительно другой деталями...
Тип: Изобретение
Номер охранного документа: 0002293894
Дата охранного документа: 20.02.2007
11.03.2019
№219.016.d6fc

Узел опоры газотурбинного двигателя

Изобретение относится к энергетическому и транспортному машиностроению, в частности к системам смазки подшипниковых опор газотурбинных двигателей, и может быть использовано для подачи масла в подшипники, например межроторные подшипники высокотемпературных авиационных газотурбинных двигателей....
Тип: Изобретение
Номер охранного документа: 0002293193
Дата охранного документа: 10.02.2007
11.03.2019
№219.016.d716

Способ безоблойной штамповки детали

Изобретение относится к обработке металлов давлением и может быть использовано при штамповке деталей типа корпусов арматуры газотурбинных двигателей. Деталь, имеющую внутреннюю полость, уступы и отростки с приливами, штампуют безоблойным методом по меньшей мере за два перехода. При этом...
Тип: Изобретение
Номер охранного документа: 0002292979
Дата охранного документа: 10.02.2007
11.03.2019
№219.016.d7c8

Обтекаемая конструкция

Изобретение относится к области прикладной гидрогазодинамики, в частности к системам для управления пограничным слоем, и может быть использовано, например, на летательных аппаратах, а также на судах и в трубопроводах. Техническим результатом изобретения является снижение гидравлического...
Тип: Изобретение
Номер охранного документа: 02218490
Дата охранного документа: 10.12.2003
11.03.2019
№219.016.d985

Способ изготовления крупногабаритной полимерной оснастки

Изобретение относится к способам изготовления крупногабаритной и другой оснастки из неметаллических материалов для производства на ней лемнискатных входов, коков обтекателей, обшивок, мотогондолл и т.д. Техническим результатом заявленного изобретения является снижение металлоемкости,...
Тип: Изобретение
Номер охранного документа: 0002375185
Дата охранного документа: 10.12.2009
11.03.2019
№219.016.da8f

Способ изготовления теплоизолирующего покрытия и композиционный материал для его осуществления

Изобретение относится к теплоизолирующим покрытиям. Описан способ изготовления теплоизолирующего покрытия элемента изделия, заключающийся в нанесении на поверхность элемента композиционного материала в виде суспензии фрагментов холста базальтового в водном геле и термообработке нанесенного...
Тип: Изобретение
Номер охранного документа: 0002364612
Дата охранного документа: 20.08.2009
10.04.2019
№219.017.0191

Смазка для заготовок при горячей или полугорячей обработке металлов давлением

Сущность: смазка содержит, мас. %: графит 12,5-25,0, оксид металла 7,5-12,0, натриевая соль фосфорной кислоты 3-7, силикат щелочного металла 2-5, карбонат щелочного металла 0,5-3, лигносульфонат 0,2-0,5, водорастворимый целлюлозный полимер 0,3-1,5, оксиэтилированный алкилфенол 0,5-2,0, вода...
Тип: Изобретение
Номер охранного документа: 02224011
Дата охранного документа: 20.02.2004
Showing 1-10 of 87 items.
10.06.2013
№216.012.489b

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству сплавов на основе интерметаллида NiАl и изделиям, получаемым из них методом направленной кристаллизации, с монокристаллической или столбчатой структурами, например лопаток газовых турбин, работающих при температурах до 1200°С....
Тип: Изобретение
Номер охранного документа: 0002484167
Дата охранного документа: 10.06.2013
27.06.2013
№216.012.50cc

Способ формирования покрытия на рабочей охлаждаемой лопатке газовой турбины из никелевого сплава

Изобретение относится к технологии нанесения покрытий на лопатки газовых турбин из никелевых сплавов и может быть использовано в авиационной промышленности, машиностроении, энергетике и других отраслях промышленности. Предварительно обезжиренную лопатку размещают в камере промышленной...
Тип: Изобретение
Номер охранного документа: 0002486277
Дата охранного документа: 27.06.2013
10.11.2013
№216.012.7ce4

Способ изготовления щеточного уплотнения роторов

Изобретение может быть использовано в процессах изготовления щеточных уплотнений методами пайки с помощью электронного луча. Кольцевое основание и кольцевые опорные пластины собирают в кольцевую оправку, на которую наматывают проволоку и прижимают ее к оправке прижимными кольцевыми пластинами....
Тип: Изобретение
Номер охранного документа: 0002497645
Дата охранного документа: 10.11.2013
20.02.2014
№216.012.a174

Способ изготовления сварной тонкостенной конической обечайки с продольными гофрами

Изобретение относится к области сварочного производства и может быть использовано в процессах изготовления методами сварки тонкостенных обечаек с элементами жесткости в виде продольных гофр, используемых, например, в качестве теплового экрана сопла ГТД. Способ заключается в том, что производят...
Тип: Изобретение
Номер охранного документа: 0002507047
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.afab

Способ изготовления сварных тонкостенных конических обечаек с ребрами жесткости

Способ предназначен для изготовления тонкостенных конических обечаек с ребрами жесткости методом сварки. Производят формирование сегментов обечайки. Отгибают продольные кромки сегментов для получения ребер жесткости, размещают сегменты на съемных опорных пластинах, установленных на основании...
Тип: Изобретение
Номер охранного документа: 0002510686
Дата охранного документа: 10.04.2014
10.06.2014
№216.012.ceca

Щеточное уплотнение роторов, способ и устройство для его изготовления

Группа изобретений относится к уплотнительной технике. Щеточное уплотнение роторов выполнено в виде прижимной щеки и последовательно состыкованных с ней элементов - кольцевой проволочной щетки и опорной щеки. Устройство снабжено технологическим кольцом. Прижимная щека выполнена с торцевым...
Тип: Изобретение
Номер охранного документа: 0002518709
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d774

Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании с высокой жаропрочностью

Изобретение относится к области металлургии, в частности к никелевым сплавам, и может быть использовано при производстве сопловых и рабочих охлаждаемых лопаток газотурбинных двигателей и установок. Жаропрочный никелевый сплав, обладающий высоким сопротивлением к сульфидной коррозии в сочетании...
Тип: Изобретение
Номер охранного документа: 0002520934
Дата охранного документа: 27.06.2014
20.10.2014
№216.012.fe34

Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на никелевой основе. Сплав, мас.%: хром - 4,0-6,0; кобальт - 8,0-11,0; молибден - 2,5-3,5; вольфрам - 6,0-8,0; алюминий - 5,4-6,2; углерод 0,05-0,16; бор - 0,008-0,04; цирконий - 0,01-0,05; титан -...
Тип: Изобретение
Номер охранного документа: 0002530932
Дата охранного документа: 20.10.2014
20.07.2015
№216.013.63e2

Композиционный материал на основе ниобия, упрочненный силицидами ниобия, и изделие, выполненное из него

Изобретение относится к области металлургии, в частности к эвтектическим композиционным материалам на основе ниобия, упрочненным силицидами ниобия, предназначенным для изготовления теплонагруженных изделий, и может быть использовано в авиационной и энергетической промышленности. Композиционный...
Тип: Изобретение
Номер охранного документа: 0002557117
Дата охранного документа: 20.07.2015
10.09.2015
№216.013.75d6

Способ работы и устройство газотурбинной установки

Группа изобретений относится к энергетике Способ работы газотурбинной установки предусматривает подачу в камеру сгорания сжатого воздуха и паро-метановодородной смеси, расширение продуктов ее сгорания в газовой турбине, охлаждение путем испарения или перегрева водяного пара, направляемого в...
Тип: Изобретение
Номер охранного документа: 0002561755
Дата охранного документа: 10.09.2015
+ добавить свой РИД